
Speculative Versioning Cache

Sridhar Gopaly T.N.Vijaykumar� James E. Smithz Gurindar S. Sohiy

gsri@cs.wisc.edu vijay@ecn.purdue.edu jes@ece.wisc.edu sohi@cs.wisc.edu
yComputer Sciences �School of Electrical and zDepartment of Electrical

Department Computer Engineering and Computer Engineering
University of Wisconsin Purdue University University of Wisconsin

Abstract

Dependences among loads and stores whose addresses
are unknown hinder the extraction of instruction level par-
allelism during the execution of a sequential program. Such
ambiguous memory dependences can be overcome by mem-
ory dependence speculation which enables a load or store
to be speculatively executed before the addresses of all pre-
ceding loads and stores are known. Furthermore, multi-
ple speculative stores to a memory location create mul-
tiple speculative versions of the location. Program or-
der among the speculative versions must be tracked to
maintain sequential semantics. A previously proposed ap-
proach, the Address Resolution Buffer(ARB) uses a cen-
tralized buffer to support speculative versions. Our pro-
posal, called the Speculative Versioning Cache(SVC), uses
distributed caches to eliminate the latency and bandwidth
problems of the ARB. The SVC conceptually unifies cache
coherence and speculative versioning by using an orga-
nization similar to snooping bus-based coherent caches.
A preliminary evaluation for the Multiscalar architecture
shows that hit latency is an important factor affecting per-
formance, and private cache solutions trade-off hit rate for
hit latency.

1. Introduction

Modern microprocessors extract instruction level paral-
lelism (ILP) from sequential programs by issuing instruc-
tions from an active instruction window. Data dependences
among instructions, and not the original program order, de-
termine when an instruction may be issued from the win-
dow. Dependences involving register data are detected eas-
ily because register designators are completely specified
within instructions. However, dependences involving mem-
ory data (e.g. between a load and a store or two stores) are
ambiguous until the memory addresses are computed.

A straightforward solution to the problem of ambiguous
memory dependences is to issue loads and stores only af-

ter their addresses are determined. Furthermore, a store is
not allowed to complete and commit its result to memory
until all preceding instructions are known to be free of ex-
ceptions. Each such store to a memory location creates a
speculative versionof that location. These speculative ver-
sions are held in buffers until they can be committed. Mul-
tiple speculative stores to the same location create multiple
versions of the location. To improve performance, loads
are allowed to bypass buffered stores, as long as they are
to different addresses. If a load is to the same address as a
buffered store, it can use data bypassed from the store when
the data becomes available. An important constraint of this
approach is that a load instructioncannotbe issued until the
addresses of all the preceding stores are determined. This
approach may diminish ILP unnecessarily, especially in the
common case where the load is not dependent on preceding
stores.

More aggressive uniprocessor implementations issue
load instructions as soon as their addresses are known, even
if the addresses of all previous stores may not be known.
These implementations employ memory dependence spec-
ulation [8] and predict that a load does not depend on previ-
ous stores. Furthermore, one can also envision issuing and
computing store addresses out of order. Such memory de-
pendence speculation enables higher levels of ILP, but more
advanced mechanisms are needed to support this specula-
tion. These aggressive uniprocessors dispatch instructions
from a single instruction stream, and issue load and store
instructions from a common set of hardware buffers (e.g.
reservation stations). Using a common set of buffers allows
the hardware to maintain program order of the loads and
stores via simple queue mechanisms, coupled with address
comparison logic. The presence of such queues provides
support for a simple form ofspeculative versioning.

However, proposed next generation processor designs
use replicated processing units that dispatch and/or issue
instructions in a distributed manner. These future ap-
proaches partition the instruction stream into sub streams
called tasks [11] or traces [10]. Higher level instruction

1

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

control units distribute the tasks to the processors for ex-
ecution and, the processors execute the instructions within
each task leading to a hierarchical execution model. Pro-
posed next generation multiprocessors [9, 12] that provide
hardware support for dependence speculation also use such
execution models. A hierarchical execution model naturally
leads to memory address streams with a similar hierarchical
structure. In particular, each individual task generates its
own address stream, which can be properly ordered (dis-
ambiguated) within the processor that generates it, and at
the higher level, the multiple address streams produced by
the processors must also be properly ordered. It is more
challenging to support speculative versioning for this exe-
cution model than a superscalar execution model because a
processor executes loads and stores without knowing those
executed by other processors.

The Address Resolution Buffer [3] (ARB) provides spec-
ulative versioning support for such hierarchical execution
models. Each entry in the ARB buffers all versions of the
same memory location. However, there are two significant
performance limitations of the ARB:

1. The ARB is a single shared buffer connected to the multi-
ple processors and hence, every load and store incurs the
latency of the interconnection network. Also, the ARB
has to provide sufficient bandwidth for all the processors.

2. When a task completes all its instructions, the ARB com-
mits its speculative state into the architected storage (or
copies all the versions created by this task to the data
cache). Such write backs generate bursty traffic and can
increase the time to commit a task, which delays the is-
sue of new task to that processor and lowers the overall
performance.

We propose a new solution for speculative versioning
called the Speculative Versioning Cache [2, 5] (SVC), for
hierarchical execution models. The SVC comprises a pri-
vate cache for each processor, and the system is organized
similar to a snooping bus-based cache coherent Symmetric
Multiprocessor (SMP). Memory references that hit in the
private cache do not use the bus as in an SMP. Task com-
mits donotwrite back speculative versionsen masse. Each
cache line is individually handled when it is accessed the
next time.

Section 2 introduces the hierarchical execution model
briefly and identifies the issues in providing support for
speculative versioning for such execution models. Section 3
presents the SVC as a progression of designs to ease under-
standing. Section 4 gives a preliminary performance eval-
uation of the SVC to highlight the importance of a private
cache solution for speculative versioning. We derive con-
clusions in section 5.

2. Speculative versioning

First, we discuss the issues involved in providing support
for speculative versioning for current generation processors.
Second, we describe the hierarchical execution model used
by the proposed next generation processors. Third, we dis-
cuss the issues in providing support for speculative version-
ing for this execution model and use examples to illustrate
them. Finally, we present similarities between multiproces-
sor cache coherence and speculative versioning for the hi-
erarchical execution model and use this unification to moti-
vate our new design, the speculative versioning cache.

Speculative versioning involves tracking the program or-
der among the multiple buffered versions of a location to
guarantee the following sequential program semantics:

� A load musteventuallyread the value created by the most
recent store to the same location. This requires that (i)
the load must be squashed and re-executed if it executes
before the store and incorrectly reads the previous version
and, (ii) all stores (to the same location) that follow the
load in program order must be buffered until the load is
executed.

� A memory location musteventuallyhave the correct ver-
sion independent of the order of the creation of the ver-
sions. Consequently, the speculative versions of a loca-
tion must be committed to the architected storage in pro-
gram order.

2.1. Hierarchical execution model

In this execution model, the dynamic instruction stream
of a program is partitioned into fragments calledtasks.
These tasks form asequencecorresponding to their order
in the dynamic instruction stream. A higher level control
unit predicts the next task in the sequence and assigns it
for execution to a free processor. Each processor executes
the instructions in the task assigned to it and buffers the
speculative state created by the task. The Wisconsin Mul-
tiscalar [11] is an example architecture that uses the hierar-
chical execution model.

When a task misprediction is detected, the speculative
state of all the tasks in the sequence including and after
the incorrectly predicted task are invalidated1 and the corre-
sponding processors are freed. This is called atask squash.
The correct tasks in the sequence are then assigned for exe-
cution. When a task prediction has been validated, itcom-
mitsby copying the speculative buffered state to the archi-
tected storage. Tasks commit one by one in the order of the
sequence. Once a task commits, its processor is free to ex-
ecute a new task. Since the tasks commit in program order,
tasks are assigned to the processors in program order.

1An alternative model for recovery invalidates only the dependent

2

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

3 1 13 3 1

99

0 0

2 2

4

(c)(a) (b)

Figure 1: Task commits and squashes: example.

Figure 1 illustrates task commits and task squashes. Ini-
tially, tasks0, 1, 99 and3 are predicted and speculatively
executed in parallel by the four processors as shown in
Figure 1(a). When the misprediction of task99 is detected,
tasks99 and 3 are squashed and their buffered states are
invalidated. New tasks2 and3 are then executed by the
processors as show inFigure 1(b). Tasks that are currently
executing are said to beactive. When task0 completes exe-
cution, the corresponding processor is freed and task4 is as-
signed for execution as shown inFigure 1(c). The program
order, represented by the sequence among the tasks, en-
forces animplicit total order among the processors; the ar-
rows show this order. When the tasks are speculatively exe-
cuted in parallel, the multiple speculative load/store streams
from the processors are merged in arbitrary order. Provid-
ing support for speculative versioning for such execution
models requires mechanisms that establish program order
among these streams. The following subsections outline
how the order is established using the sequence among the
tasks.

2.1.1. Loads A task executes a load as soon as its address
is available, speculating that stores from previous tasks in
the sequence do not write to the same location. The closest
previous version of the location is supplied to the load; this
version could have been created either by the same task or
by a previous task. A load that is supplied a version from a
previous task is recorded to indicate a use before a potential
definition. If such a definition (a store to the same location
from a previous task) occurs, the load was supplied with an
incorrect version and memory dependence was violated.

2.1.2. Stores When a task executes a store to a memory
location, it is communicated to all later active tasks in the
sequence2. When a task receives a new version of a location
from a previous task, it squashes if a use before definition
is recorded for that location — a memory dependence vio-
lation is detected. All tasks after the squashed task are also
squashed as on a task misprediction (simple squash model).

2.1.3. Task commits and squashesThe oldest active task
is non-speculative and can commit its speculative mem-
ory state (versions created by stores from this task) to ar-

chains of instructions by maintaining information at a finer granularity.
This paper assumes the simpler model.

2In reality, the store has to be communicated only until the task that has
created the next version, if any, of the location.

chitected storage. Committing a version involves logically
copying the versions from the speculative buffers to the ar-
chitected storage (data cache). As we assume the simple
task squash model, the speculative state associated with a
task is invalidated when it is squashed.

2.2. Examples for speculative versioning

Figure 2 illustrates the issues involved in speculative ver-
sioning using an example program and a sample execution
of the program on a four processor hierarchical system. We
use the same example in the later sections to explain the
SVC design. Figure 2(a) shows the loads and stores in the
example program and the task partitioning. Other instruc-
tions are not of direct relevance here.Figure 2(b) shows
two snapshots of the memory system during a sample exe-
cution of the program. Each snapshot contains four boxes,
one for each active task and shows the load or store that has
been executed by the corresponding task. The program or-
der among the instructions translates to a sequence among
the tasks which imposes a total order among the processors
executing them;solid arrowheads show the program order
andhollowarrowheads show the execution time order in all
the examples.

Example Program(a) (b) Sample Execution

st 3, A

ld r, A

st 0, A

0

2
13

st 0, A

st 1, A

Task #
0 st 0, A

st 1, A

st 3, A

st 5, A

ld r, A

ld r, A

P
ro

gr
am

 O
rd

er

6

3

2

1

5

st 1, A

Dependence Violation

0

2
13

Figure 2: Speculative versioning example.

The first snapshot is taken just before task1 executes
a store to addressA. Tasks0 and 3 have already stored
0 and 3 to A and task2 has executed a load toA. The
load is supplied the version created and buffered by task
0. But, according to the original program, this loadmust
be supplied the value1 created by the store from task1,
i.e., the store to load dependence has been violated. This
violation is detected when task1 stores to addressA and
all the tasks including and after task2 are squashed and re-
executed. The second snapshot is taken after the tasks have
been squashed and re-started.

2.3. Coherence and speculative versioning

The actions performed on memory accesses and task
commits and squashes are summarized inTable 1. The
functionality in this table requires the hardware to track the

3

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

active tasks or processors that executed a load/store to a lo-
cation and the order among the different copies/versions of
this location. Cache coherent Symmetric MultiProcessors
(SMP) use similar functionality to track the caches that have
a copy of every memory location. SMPs, however, need not
track the order among these copies since all the copies are
of a single version.

Event Actions

Load Record use before definition by the task;
supply the closest previous version.

Store Communicate store to later tasks; later
tasks look for memory dependence violations.

Commit Write back buffered versions created
by the task to main memory.

Squash Invalidate buffered versions created
by the task.

Table 1: Versioning: events and actions.

SMPs typically use snooping [4] to implement a Multi-
ple Reader/Single Writer protocol, which uses a coherence
directory that is a collection of sets, each of which tracks the
sharers of a line. In a snooping bus based SMP, the direc-
tory is typically implemented in a distributed fashion com-
prising state bits associated with each cache line. On the
other hand, the Speculative Versioning Cache (SVC) im-
plements a Multiple Reader/Multiple Writer protocol that
tracks copies of multiple speculative versions of each mem-
ory location. This protocol uses a version directory that
maintainsorderedsets for each line, each of which tracks
the program order among the multiple speculative versions
of a line. This ordered set or list, called the Version Or-
dering List (VOL), can be implemented in several differ-
ent ways — the SVC, proposed in this paper, uses explicit
pointers in each line to implement it as a linked list (like in
SCI [1]). The following sections elaborate on a design that
uses pointers in each cache line to maintain the VOL.

The private cache organization of the SVC makes it
a feasible memory system for proposed next generation
single chip multiprocessors that execute sequential pro-
grams on tightly coupled processors using automatic par-
allelization [9, 12]. Previously, ambiguous memory de-
pendences limited the range of programs chosen for auto-
matic parallelization. The SVC provides hardware support
to overcome ambiguous memory dependences and enables
more aggressive automatic parallelization of sequential pro-
grams.

3. SVC design

In this section, we present the Speculative Versioning
Cache (SVC) as a progression of designs to ease under-
standing. Each design improves the performance over the

previous one by tracking more information. We begin with
a brief review of snooping bus-based cache coherence and
then present a base SVC design which provides support for
speculative versioning with minimal modifications to the
cache coherence scheme. We then highlight the perfor-
mance bottlenecks in the base design and introduce opti-
mizations one by one in the rest of the designs.

3.1. Snooping bus based cache coherence

Figure 3 shows a 4-processor SMP with private L1
caches that uses a snooping bus to keep the caches consis-
tent. Each cache line comprises an address tag that identi-
fies the data that is cached, the data that is cached, and two
bits (valid and store) representing the state of the line. The
valid (V) bit is set if the line is valid. The store (S) or dirty
bit is set when a processor stores to the line.

Bus Arbiter

V: Valid S: Store or dirty

P

$

P

$

P

$

P

$

Tag V S Data

Next level

memory
Snooping Bus

Figure 3: SMP coherent cache.

A cache line is in one of three states: Invalid, Clean and
Dirty. A request (load or store) from a processor to its L1
cachehits if a valid line with the requested tag is in an ap-
propriate state; otherwise, itmisses. Cache misses issue bus
requests while cache hits do not. More specifically, a load
from a clean or dirty line and a store to a dirty line result in
cache hits. Otherwise, the load(store) misses and the cache
issues aBusRead(BusWrite) request. The L1 caches and
the next level memory snoop the bus on every request. If
a cache has a valid line with the requested tag, it issues an
appropriate response according to acoherence protocol. A
store to a clean line misses and the cache issues aBusWrite
request. An invalidation-based coherence protocol invali-
dates copies of this line in all other caches, if any. This
protocol allows a dirty line to be present in only one of
the caches. However, a clean line can be present in mul-
tiple caches simultaneously. The cache with the dirty line
supplies the data on aBusReadrequest. A cache issues a
BusWbackrequest to cast out a dirty line on a replacement.
This simple protocol can be extended by adding anexclu-
sivebit to the state of each line to cut down traffic on the
shared bus. If a cache line has the exclusive bit set, then it
has the only valid copy of the line and can perform a store

4

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

to that line locally. The SVC designs we discuss in the fol-
lowing sections also use an invalidation-based protocol.

Z
Y

X
W

Z
Y

X
W

Z
Y

X
W

Z
Y

X
W

BusWback

Flush
Replace

VS 1

BusWrite Invalidate
ld r, A

BusRead

Flush
st 1, A

V

V 0

0

State Data W..Z: Caches

VS 0

Figure 4: Cache coherence example.

Figure 4 shows snapshots of the cache lines with tag or
addressA in an SMP with four processors,W , X , Y , and
Z. The state of the cache line is shown in a box corre-
sponding to that cache. An empty box corresponding to a
cache represents that the line is not present in that cache.
The first snapshot is taken before processorZ issues a load
fromA and misses in its private cache. The cache issues a
BusReadrequest and cacheX supplies the data on the bus.
The second snapshot shows the final state of the lines; they
are clean. Later, processorY issues aBusWriterequest to
perform a store toA. The clean copies in cachesX andZ
are invalidated and the third snapshot shows the final state.
Now, if cacheY chooses to replace this line, it casts out
the line to memory by issuing aBusWbackrequest; the fi-
nal state is shown in the fourth snapshot; only the next level
memory contains a valid copy of the line.

3.2. Base SVC design

The organization of the private L1 caches in the SVC
design is shown inFigure 5; all the SVC designs use the
same organization. The base design minimally modifies the
memory system of the snooping bus-based cache coherent
SMP to support speculative versioning for processors based
on the hierarchical execution model. We assume that mem-
ory dependences among loads and stores executed by an in-
dividual processor are ensured by a conventional load-store
queue; our design guarantees program order among loads
and stores from different processors. The base design also
assumes that the cache line size is one word; a later design
relaxes this assumption. First, we introduce the modifica-
tions to the SMP coherent cache, and then discuss how the
individual operations listed inTable 1 are performed.

1. Each cache line maintains an extra state bit called the load
(L) bit, as shown inFigure 6. TheL bit is set when a task
loads from a line before storing to the line — a potential

PPPP

Bus Arbiter
Version Control Logic

SV$ SV$ SV$ SV$

Next level

memory
Snooping Bus

Version Control LogicTask

assignment

information

VCL responses to each cache

States of snooped lines from each cache

Figure 5: Speculative versioning cache.

V: Valid S: Store L: Load

Tag Pointer DataS LV

Figure 6: Base SVC design: structure of a line.

violation of memory dependence in case a previous task
stores to the same line.

2. Each cache line maintains a pointer that identifies the
processor (or L1 cache) that has the next copy/version,
if any, in the Version Ordering List (VOL) for that line.
Thus, the VOL for a line is stored in a distributed fashion
among the private L1 cache lines. It is important to note
that the pointer identifies a processor rather than a task.
Storing the VOL explicitly in the cache lines using point-
ers may not be necessary for the base design. However, it
is necessary to explicitly store the VOL for the advanced
designs and we introduce it in the base design to ease the
transition to the advanced designs.

3. The SVC uses combinational logic called the Version
Control Logic (VCL) that provides support for specula-
tive versioning using the VOL. A processor request that
hits in the private L1 cache does not need to consult the
VOL and hence does not issue a bus request; the VCL
is also not used. Cache misses issue a bus request that
is snooped by the L1 caches and the next level memory.
The states of the requested line in each L1 cache and the
VOL are supplied to the VCL. The VCL uses the bus re-
quest, the program order among the tasks, and the VOL
to compute appropriate responses for each cache. Each
cache line is updated based on its initial state, the bus
request and the VCL response. A block diagram of the
Version Control Logic is shown inFigure 5. For the base
design, the VCL responses are similar to that of the dis-

5

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

ambiguation logic in the ARB [3]. The disambiguation
logic searches for previous or succeeding stages in a line
to execute a load or store, respectively.

3.2.1. Loads Loads are handled in the same way as in an
SMP except that theL bit is set if the line was initially in-
valid. On aBusReadrequest, the VCL locates the closest
previous version by searching the VOL in the reverse order
beginning from the requestor; this version, if any, is sup-
plied to the requestor. If a previous version is not buffered
in any of the L1 caches, the next level memory supplies the
data. Task assignment information is used to determine the
position of the requestor in the VOL. The VCL can search
the VOL in reverse order because it has the entire list avail-
able and the list is short.

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1

0..3: TasksDataPointerStateW..Z: Caches

ZS

WL 1

S Y 0

S 3 1S3

S Y 0

S W 1

ld r, A

- -

Execution time orderProgram order

Figure 7: Base SVC design: example load.

We illustrate the load executed by task2 to addressA in
the example program.Figure 7 shows two snapshots: one
before the load executes and one after the load completes.
Each box shows the line with tag or addressA in an L1
cache (the valid bit is not explicitly shown). The number
adjacent to a box gives a processor/cache identifier and a
task identifier. The processor identifiers are used by the ex-
plicit pointers in each line to represent the VOL, whereas,
the task identifiers serve only to ease the explanation of the
examples. Task2 executes a load that misses in cacheZ and
results in a bus request. The VCL locates cacheZ in the
VOL for addressA using program order and then searches
the VOL in the reverse order to find the correct version to
supply, which is the version in cacheY (the version created
by task1).

3.2.2. Stores The SVC performs more operations on a
store miss as compared to a cache coherent SMP. When a
BusWriterequest is issued on a store miss, the VCL sends
invalidation responses to the caches beginning from the re-
questor’s immediate successor (in task assignment order) to
the cache that has the next version (including it, if it has
theL bit set). This invalidation response allows for multi-
ple versions of the same line to exist and also serves to de-
tect memory dependence violations. A cache sends a task
squash signal to its processor when it receives an invalida-
tion response from the VCL and theL bit is set in the line.

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1

S 0

S 3

S 0

-

WL

S 0

S 3

S Y 0

S 1 --

-L 0

Z Z

Z

st 3, A st 1, A

X/0
Y/1W/-

Z/-

0

0WL

Figure 8: Base SVC design: example stores.

We illustrate the stores executed by tasks1 and3 in the
example program. Figure 8 shows four snapshots of the
cache lines with addressA. The first snapshot is taken be-
fore task3 executes a store that results in aBusWritere-
quest. Since task3 is the most recent in program order, the
store by task3 does not result in any invalidations. Note
that a store to a line does not invalidateall other cache lines
(unlike an SMP) to allow for multiple versions of the same
line. The second snapshot is taken after the store from task
3 completes and before task1 executes its store. Based on
task assignment information, the VCL sends an invalidation
response to each cache from the one after cacheY until the
one before cacheW , which has the next version of the line
(cacheW is not included since it does not have theL bit set)
— VCL sends an invalidation response to cacheZ. But, the
load executed by task2, which follows the store by task1
in program order, has already executed. CacheZ detects a
memory dependence violation since theL bit is set when
it receives an invalidation response from the VCL. Tasks2

and3 are squashed as shown in the third snapshot by shaded
boxes. The final snapshot is taken after the store by task1

has completed.

3.2.3. Task commits and squashesThe base SVC de-
sign handles task commits and squashes in a naive man-
ner. When a processor commits a task, all dirty lines in
its L1 cache areimmediatelywritten back to the next level
memory and all other lines are invalidated. To write back
all the dirty lines immediately, a list of the stores executed
by the task is maintained by the processor. When a task
is squashed,all lines in the corresponding cache are invali-
dated.

3.3. Base design performance drawbacks

The base design just described has two significant per-
formance limitations that make it less desirable: (i) write
backs performed when a processor commits a task lead to
bursty bus traffic that may increase the time to commit the
task and delay issuing a new task to that processor, (ii) clean

6

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

lines are also invalidated when a task commits or squashes
because the buffered versions could be stale for the new task
allocated on the same processor; the correct version may be
present in other caches. Consequently,every task begins
execution with acold L1 cache, increasing the bandwidth
demand. The following advanced designs eliminate these
problems by tracking additional information.

1. The first advanced design, theECS design(section 3.5),
makes task commits and squashes more efficient. To ease
the understanding of this design, we first present an inter-
mediate design, the EC design (section 3.4), that makes
task commits efficient by distributing the write backs of
dirty lines over time. Also, it retains read-only data in the
L1 caches across task commits by careful book-keeping.
However, it assumes that mispredictions do not occur.
Then, we present the ECS design that extends the EC de-
sign to allow task squashes. Task squashes are as simple
as in the base design, but are more efficient as they retain
non-speculative data in the caches across task squashes.

2. The second advanced design (section 3.6) boosts the hit-
rate of the ECS design by allowing requests tosnarf [6]
the bus to account for reference spreading. Snarfing in-
volves copying the data supplied on a bus request issued
by another processor in an attempt to combine bus re-
quests indirectly.

3. The final design (section 3.7) is realistic and allows the
size of a cache line to be more than one word.

3.4. Implementing efficient task commits (EC)

The EC design avoids expensive cache flushes on task
commits by maintaining an extra state bit, called the commit
bit, in each cache line. Task commits do not stall until all
lines with speculative versions are written back. The EC
design eliminates write back bursts on the bus during task
commits. Also, no extra hardware is necessary to maintain a
list of stores performed by each task. Further, the EC design
improves cache utilization by keeping the L1 caches warm
across tasks.

Tag S LV DataC T Pointer

V: Valid L: Load
C: Commit

S: Store
T: sTale

Figure 9: EC design: structure of a line.

The structure of a cache line in the EC design is shown
in Figure 9. When a processor commits a task, theC bit
is set inall its cache lines. This operation is entirely local
to the L1 cache and does not issue a bus request. A dirty
committed line is written back, if necessary, when it is ac-
cessed the next time either on a processor request or on a
bus request. Therefore, committed versions could remain in

the caches until much later in time since the task that cre-
ated the version committed. The order among committed
and uncommitted versions is still maintained by the explicit
pointers in the line. This order among the versions is nec-
essary to write back the correct committed version and to
supply the correct version on a bus request. The EC de-
sign uses an additional state bit, the sTale (T) bit, to retain
read-only data across tasks. First, we discuss how loads and
stores are handled when caches have both committed and
uncommitted versions and then discuss the stale bit.

3.4.1. Loads and stores Loads to committed lines are
handled like cache misses and issue a bus request. The VCL
searches the VOL in the reverse order beginning from the
requestor for the closest previousuncommittedversion; this
version, if any, is supplied to the requestor. If no such ver-
sion is found, the VCL supplies the most recentcommitted
version, if any. This version is the first committed version
that is encountered on the reverse search. All other commit-
ted versions need not be written back and are invalidated.
On a store miss, committed versions are purged in a similar
fashion.

Z/2

X/4
W/3 Y/5

Z/2

X/4
W/3 Y/5S 33- -S

CS 1

CS 0

W

X

ld r, A

W 1L

Figure 10: EC design: example load.

We illustrate the load executed by task2 in the example
program. Figure 10 shows two snapshots: one before the
load executes and one after the load completes. Versions
0 and1 have been committed (theC bit is set in the lines
in cachesX andY). Task2 executes a load that misses in
cacheZ and results in a bus request. The VCL knows that
task2 is the head task and determines that cacheX has the
most recent committed version. CacheX supplies the data
which is also written back to the next level memory. Other
committed versions (version0) are invalidated and are never
written back to memory. The VCL also inserts the new copy
of version1 into the VOL by modifying the pointers in the
lines accordingly — the second snapshot shows the modi-
fied VOL.

Figure 11 illustrates the actions performed on a store
miss. The first snapshot is taken before a store is executed
by task5. Versions0 and1 have been committed. Task
5 executes a store that misses in cacheY and results in a
BusWriterequest even though the line has a committed ver-
sion. The VCL purges all committed versions of this line
— it determines that version1 has to be written back to the
next level memory and the other versions (version0) can
be invalidated. Purging the committed versions also makes

7

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

space for the new version (version5). The modified VOL
shown in the second snapshot contains only the two uncom-
mitted versions.

Z/2

X/4
W/3 Y/5

Z/2

X/4
W/3 Y/5S 33-S

CS 1

CS 0

W

X S - 5Y

st 5, A

Figure 11: EC design: example store.

3.4.2. Stale copies The EC design makes task commits
efficient by delaying to commit each cache line until a later
time. Therefore, a cache line could have astale copybe-
cause versions more recent than the version buffered by the
committed task could be present in other caches. The base
SVC design does not introduce stale copies because it inval-
idates all non-dirty lines whenever a task commits. The EC
design uses the stale (T) bit to distinguish stale copies from
correct copies and avoids issuing a bus request on accesses
to correct copies. This additional information allows the EC
design to retain read-only data (correct copies) across task
commits. First, we illustrate that stale and correct copies
are indistinguishable without theT bit and then show how
theT bit is used.

Z/2

X/4X/0

Z/6

ld r, A

W/3 Y/5Y/1 W/7 CSS 1Z 1Z

CSS 0Y 0Y

1 1CLL - -

X/4

Z/2

X/4

Z/6

ld r, A

CS CS0Y Y 0

1 1CLL W

Y/5W/3 Y/5 CS CSCS3S W/71Z Z3 1

W

- -

Figure 12: EC design: correct and stale copies.

Figure 12 shows two execution time lines — one that
leaves a correct copy of addressA (shown using solid lines)
in cacheZ and another that leaves a stale copy of address
A in the same cache (shown using dashed lines). The first
time line shows a sample execution of a modified version of
our example program — task3 in Figure 2 does not execute
the store. The second time line shows an execution of our
original program. The first snapshot is the same for both
time lines. The second snapshot in the second time line is
taken after tasks0 and1 have committed. TheC bit is set in
their caches and new tasks4 and5 have been allocated. The
final snapshot in both time lines are taken when tasks4 to 7

are active and before task6 executes a load. In the first time

line, the data in cacheZ is a correct copy, since no versions
were created after version1; the load can be supplied data
by just resetting theC bit and without issuing a bus request.
In the second time line, the copy in cacheZ is stale since the
creation of version3 and hence the load misses resulting a
bus request. However, cacheZ cannot distinguish between
these two scenarios and has to issue a request in both cases
to consult the VOL and obtain a copy of the correct version.

The EC design uses the stale (T) bit to distinguish be-
tween these two scenarios and avoids the bus request when-
ever a copy is not stale. The design maintains the invariant:
the most recent version of an address and its copies have
theT bit reset and the other copies and versions have theT

bit set. This invariant is easily guaranteed by resetting the
T bit in the most recent version, or a copy thereof, when
it is created and setting theT bit in the previous versions,
if any. TheT bits are updated on theBusWriterequest is-
sued to create a version or aBusReadrequest issued to copy
a version and hence do not generate additional bus traffic.
Since stores in different tasks can be executed out of pro-
gram order, an active task could execute a store to a copy
that has theT bit set (the copy is not stale for this task, but
is stale for the next task allocated to the same processor).
Figure 13 shows the two time lines in our example with the
status of theT bit. CacheZ can distinguish between the
correct copy (T bit is not set) and the stale copy (T bit is
set). The load hits if a correct copy is present and no bus
request is issued.

Z/2

X/4X/0

Z/6

ld r, A

W/3 Y/5Y/1 W/7

CST

1CLL

X/4

Z/2

X/4

Z/6

ld r, A

Y/5W/3 Y/53 W/7-

LT

- 1

Z 1S

ST Y 0

ZCST 1S

CST 0

Z 1CST

W 1

CS Z 1

Y 0

CST

CLT

CS - 3

Y 0Y

W 1

-

Figure 13: EC design: Using the stale bit.

The EC design eliminates the serial bottleneck in flush-
ing the L1 cache on task commits by using the commit (C)
bit. Also, this design retains non-dirty lines after task com-
mits as long as they are not stale. More generally, read-only
data used by a program is fetchedonly onceinto the L1
caches and never invalidated unless chosen to be replaced
on a cache miss. Further a task commits by just setting the
C bit in all lines in its L1 cache.

8

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

3.5. Implementing efficient task squashes (ECS)

The ECS design extends the EC design to allow task
squashes for the EC design. Also, the ECS design makes
the task squashes more efficient than in the base design by
retaining non-speculative data in the caches across squashes
using another state bit, the Architectural (A) bit. The struc-
ture of a line in the ECS design is shown inFigure 14.

V: Valid S: Store L: Load

C: Commit T: sTale A: Architectural

Tag S LV C A Pointer DataT

Figure 14: ECS design: structure of a line.

When a task squashes, all uncommitted lines (lines with
theC bit reset) are invalidated by resetting the valid (V) bit.
The invalidation makes the pointers in these lines and their
VOLs inexact. The VOL has a (dangling) pointer in the last
valid (or unsquashed) copy or version of the line and the
status of theT bit in the lines are incorrect. The ECS design
repairs the VOL of such a line when the line is accessed later
either on a processor request or on a bus request. Updating
theT bits is not necessary because it is only a hint to avoid a
bus request and a squash would not incorrectly reset a stale
version to be correct. However, the ECS design updates the
T bit on this bus request by consulting the repaired VOL.

Z/2
W/3 Y/1

X/4

1

CST Y 0

1

ld r, A

S -
X/4

W/-
X/-

Y/1
Z/2

Y/1
Z/2

W/3

L -

Y 0CST

ST ST WW3

ZS 1

1

Figure 15: ECS design: VOL repair.

Figure 15 illustrates VOL repair with an example time
line with three snapshots. The first snapshot is taken just
before the task squash occurs. Tasks3 and4 are squashed;
only version3 is invalidated. The VOL with incorrectT bits
and the dangling pointer are shown in the second snapshot.
Task2 executes a load that misses in cacheW and results
in a bus request. The VCL resets the dangling pointer and
theT bit in cacheY . The VCL then determines the version
to supply the load. Also, the most recent committed version
(version0) is written back to the next level memory. The
third snapshot is taken after the load has completed.

3.5.1. Squash invalidations The base design invalidates
non-dirty lines in the L1 cache on task squashes. This in-

cludes both speculative data from previous tasks and archi-
tectural data from the next level memory (or the commit-
ted tasks). The base design invalidates these lines because
it does not track the creator of a speculative versions for
each line and hence cannot determine whether the version
in a line has been committed or squashed. Squashing non-
speculative data leads to higher miss rates for tasks that are
squashed and restarted multiple times.

To distinguish between copies of speculative and archi-
tectural versions, we add the architectural (A) bit to each
cache line as shown inFigure 14. TheA bit is set in a
copy if either the next level memory or a committed ver-
sion supplies data when a bus request issued to obtain the
copy; else theA bit is reset. One of the VCL responses on
a bus request specifies whether theA bit should be set or
reset. Copies of architectural versions are not invalidated
on task squashes, i.e., the ECS design only invalidates lines
that have both theA andC bits reset. Further, a copy of a
speculative version used by a task becomes an architectural
copy when the task commits. However, theA bit is not set
until the line is accessed by a later task, when theC bit is
reset and theA bit is set.

3.6. Hit rate optimizations

The base and ECS designs incur severe performance
penalties due toreference spreading. When a uniproces-
sor program is executed on multiple processors with private
L1 caches, successive accesses to the same line that hit after
missing once in a shared L1 cache could result in a series of
misses. This phenomenon is also observed for parallel pro-
grams where the miss rate for read-only shared data with
private caches is higher than that with a shared cache. We
usesnarfing[6] to mitigate this problem. Our SVC imple-
mentation snarfs data on the bus if the corresponding cache
set has a free line available. However, an active task’s cache
can only snarf the version that the task can use unlike an
SMP coherent cache. The VCL determines whether a task
can copy a particular version or not and informs caches of
an opportunity to snarf data on a bus request.

3.7. Realistic line size

The base and ECS designs assume that the line size of
the L1 caches is one word. The final SVC design however
allows lines to be longer than a word. Similar to an SMP
coherent cache, we observe effects due to false sharing. In
addition to causing higher bus traffic, false sharing leads to
more squashes when a store to a cache line from a task is
executed out-of-order with a load from a different byte or
word in the same line from a later task. We mitigate the
effects of false sharing by using a technique similar to the
sector cache [7]. Each line is divided into sub-blocks and
theL andS bits are maintained for each sub-block. The

9

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

size of a sub-block or versioning block is less than that of
the address block (storage unit for which an address tag is
maintained). Also, when a store miss results in aBusWrite
request, mask bits that indicate the versioning blocks modi-
fied by the store are also made available on the bus.

4. Performance evaluation

We report preliminary performance results for the SVC
using the SPEC95 benchmarks. The goal of our implemen-
tation and evaluation is to prove the SVC design not just to
analyze its performance. We underline the importance of
a private cache solution by first showing how performance
degrades rapidly as the hit latency for a shared cache solu-
tion is increased; the Address Resolution Buffer (ARB) is
the shared cache solution we use for this evaluation. We
mitigate the commit time bottlenecks in the ARB (by using
an extra stage that contains architectural data) to isolate the
effects of pure hit latency from other performance bottle-
necks.

4.1. Methodology and configuration

All the results in this paper were collected on a simu-
lator that faithfully models a Multiscalar processor. The
simulator dynamically switches between a functional and a
detailed cycle-by-cycle model to provide accurate and fast
simulation of a program. The memory system model in-
cludes a fair amount of detail including an off chip cache,
DRAM banks and interconnects between the different lev-
els of memory hierarchy. The Multiscalar processor used in
the experiments has 4 processors each of which can issue 2
instructions out-of-order. Each processor has 2 simple inte-
ger ALUs, 1 complex integer unit, 1 floating point unit, 1
branch unit and 1 address calculation unit, all of which are
assumed to be completely pipelined. Inter-processor reg-
ister communication latency is 1 cycle and each processor
can send as many as two registers to its neighbor in every
cycle. Loads and stores from each processor are executed
in program order by using a load/store queue of 16 entries
each.

The ARB is a fully-associative set of 32-byte lines with
a total of 8KB storage per stage and five stages; the shared
data cache that backs up the ARB is 2-way set associative
and 64KB in size. The off chip cache is 4MB in size with
a total peak bandwidth of 16 bytes per processor clock to
the L1 data, instruction and task caches. Main memory ac-
cess time for the first word is 24 processor clocks and has
a RAMBUS-like interface that operates at half the speed
of the processors to provide a peak bandwidth of 8 bytes
every bus clock. All the caches and memory are 4-way in-
terleaved. Both the ARB and the L1 data cache have 16
MSHRs/writebuffers each; each buffer can combine up to 8
accesses to the same line. Disambiguation is performed at

the byte-level. The base ARB hit time is varied from 1 to 3
cycles in the experiments. Both the tags and data RAMs are
single ported in all the caches.

The private caches that comprise the SVC are connected
together and with the off chip cache by an 8-word split-
transaction snooping bus where a typical transaction re-
quires 3 processor cycles3. Each processor has its own pri-
vate L1 cache with 16KB of 4-way set-associative storage in
32-byte lines. Both loads and stores are non-blocking with
8 MSHRs/writebuffers per cache. Each buffer can combine
up to 4 accesses to the same line. Disambiguation is per-
formed at the byte-level. L1 cache hit time is fixed at 1 cy-
cle. The tag RAM is dual ported to support snooping while
the data RAM is single ported.

4.2. Benchmarks

We used the following programs from the SPEC95
benchmark suite with train inputs except in the cases
listed: compress, gcc (ref/jump.i), vortex, perl, ijpeg
(test/specmun.ppm), mgrid (test/mgrid.in), apsi, fpppp, and
turb3d. All programs were stopped after executing 1 billion
instructions. From past experience, we know that for these
programs performance change is not significant beyond 1
billion instructions.

4.3. Experiments

Figure 16 presents the instructions per cycle (IPC) for
a Multiscalar processor with either the ARB or the SVC.
The configurations keep total data storage of the SVC and
ARB/cache storage roughly the same. The percentage miss
rates for the ARB and the SVC are shown on top of the
IPC bar clusters (in that order). For the SVC, an access is
counted as a miss if data is supplied by the next level mem-
ory; data transfers between the L1 caches are not counted
as misses.

From these preliminary experiments, we make three ob-
servations: (i) the hit latency of data memory significantly
affects ARB performance, (ii) the SVC trades-off hit rate
for hit latency and the ARB trades-off hit latency for hit
rate to achieve performance, and (iii) for the same total data
storage, the SVC performs better than the ARB having a hit
latency of 2 or more cycles as shown inFigure 16. The
graphs in these figures show that performance improves in
the range of 5% to 20% when decreasing the hit latency of
the ARB from 3 cycles to 1 cycle. This improvement in-
dicates that techniques that use private caches to improve
hit latency are an important factor in increasing overall per-
formance, even for latency tolerant processors like a Multi-
scalar processor.

3Bus arbitration occurs only once for cache to cache data transfers. An
extra cycle is used to flush a committed version to the next level memory.

10

To appear in the Fourth International Symposium on High-Performance Computer Architecture.

1

2

3

4

5

6

compress

gcc
vortex

perl
ijpeg

mgrid
apsi

fpppp
turb3d

IP
C

3.1/7.5

 2.1/3.6

1.9/2.5

2.6/2.4

1.5/2.7

 8.1/9.3

2.3/3.4

1.1/2.2

6.9/8.1

ARB (3 cycle)

ARB (2 cycle)

ARB (1 cycle)

SVC (1 cycle)

Figure 16: SPEC95 IPCs for ARB and SVC.

The distribution of storage for the SVC produces higher
miss rates than for the ARB. We attribute the increase in
miss rates for the SVC to two factors. First, distributing
the available storage results in reference spreading [6] and
replication of data reduces available storage. Second, a
latest version of a line that caches fine-grain shared data
between Multiscalar tasks constantly moves from one L1
cache to another (migratory data). Such fine-grain commu-
nication may increase the number of total misses as well.

5. Conclusion

Speculative versioning is important to overcome limits
on Instruction Level Parallelism (ILP) due to ambiguous
memory dependences in a sequential program. Our pro-
posal, called the Speculative Versioning Cache(SVC), uses
distributed caches to eliminate the latency and bandwidth
problems of a previous solution, the Address Resolution
Buffer, which uses a centralized buffer. The SVC conceptu-
ally unifies cache coherence and speculative versioning by
using an organization similar to snooping bus-based coher-
ent caches. A preliminary evaluation for the Multiscalar
architecture shows that hit latency is an important factor
affecting performance, and private cache solutions trade-
off hit rate for hit latency. The SVC provides hardware
support to break ambiguous memory dependences allowing
proposed next generation multiprocessors to use aggressive
parallelizing software for sequential programs.

Acknowledgements

We thank Scott Breach, Andreas Moshovos, Subbarao
Palacharla and the anonymous referees for their comments
and valuable suggestions on earlier drafts of the paper.

This work was supported in part by NSF GrantsCCR-
9303030 and MIP-9505853, ONR Grant N00014-93-1-
0465, and by U.S. Army Intelligence Center and Fort
Huachuca under Contract DABT63-95-C-0127 and ARPA
order no. D346 and a donation from Intel Corp. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of the U. S. Army Intelligence Center and Fort
Huachuca, or the U.S. Government.

References

[1] IEEE Standard for Scalable Coherent Interface (SCI) 1596-
1992. IEEE 1993.

[2] S. E. Breach, T. Vijaykumar, S. Gopal, J. E. Smith, and
G. S. Sohi. Data memory alternatives for multiscalar pro-
cessors. Technical Report CS TR-1344, University of Wis-
consin, Madison, Nov. 1996.

[3] M. Franklin and G. S. Sohi. ARB: A hardware mechanism
for dynamic reordering of memory references.IEEE Trans-
actions on Computers, 45(5):552–571, May 1996.

[4] J. R. Goodman. Using cache memory to reduce processor-
memory traffic. InProceedings of the 10th Annual Inter-
national Symposium on Computer Architecture, pages 124–
131, 1983.

[5] S. Gopal, T.N.Vijaykumar, J. E. Smith, and G. S. Sohi. Spec-
ulative Versioning Cache. Technical Report CS TR-1334,
University of Wisconsin, Madison, July 1997.

[6] D. Lilja, D. Marcovitz, and P.-C. Yew. Memory reference
behavior and cache performance in a shared memory multi-
processor. Technical Report 836, CSRD, University of Illi-
nois, Urbana-Champaign, Dec. 1988.

[7] J. S. Liptay. Structural aspects of the system/360 model 85
part II: The cache.IBM Systems Journal, 7(1):15–21, 1968.

[8] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S.
Sohi. Dynamic speculation and synchronization of data de-
pendences. InProceedings of the 24th Annual International
Symposium on Computer Architecture, June 2–4, 1997.

[9] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K.-Y. Chang. The case for a single-chip multiprocessor. In
Proceedings of the 7th International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems, pages 2–11, October 1–5, 1996.

[10] J. E. Smith and S. Vajapeyam. Trace processors: Moving to
fourth-generation microarchitectures.Computer, 30(9):68–
74, Sept. 1997.

[11] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. InProceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 414–425, June
22–24, 1995.

[12] J. G. Steffan and T. C. Mowry. The potential for thread-level
data speculation in tightly-coupled multiprocessors. Techni-
cal Report CSRI-TR-350, Computer Systems Research In-
stitute, University of Toronto, Feb. 1997.

11

