Comparing Program Phase Detection Techniques

Ashutosh S. Dhodapkar and James E. Smith

Dept. of Electrical and Computer Engineering,
University of Wisconsin — Madison
{dhodapka, jes}@ece.wisc.edu

Abstract achieve better power/performance characteristics [1]-[12].
Similarly, on the software side, dynamic code optinirat

Detecting program phase changes accurately is an im-[13][14] is gaining importance with the wide spread ac-
portant aspect of dynamically adaptable systems. Threec€ptance of run-time environments such as Java [15] and
dynamic program phase detection techniques are com-NET [16]. _ _
pared — using instruction working sets, basic block vectors [N the presence of dynamically configurable hardware
(BBV), and conditional branch counts. Because program@nd software, the ability to initiate reconfiguratiahthe
phases are difficult to define, we compare the techniquegight time is essential. Because programs go through
using a variety of metrics. phases of execution wherein their pe_rformance is rela-

BBV techniques perform better than the other tech-fively stable [17][18], phase boundaries are a natural
nigues providing higher sensitivity and more stable choice for performing reconfiguration (or at least deter-
phases. However, the instruction working set techniqueMining if reconfiguration will be beneficial). Detecting
yields 30% longer phases than the BBV method, althougtphase _changes accurately is thus an important aspect of
there is less stability within phases. On average, the methdynamically adaptable systems. Furthermore, in systems
ods agree on phase changes 85% of the time. Of the 1594here overheads associated with reconfiguration decisions
of time they disagree, the BBV method is more efficient aftr€ significant, program phase identification may enable
detecting performance changes. The conditional branchréuse of conﬂguratlon information for recurring phases,
counter technique provides good sensitivity, but is lessthereby improving performance [11][12][19].
effective at detecting major phase changes. Nevertheless, There have been several proposals to implicitly [13] or
the branch counter technique correlates 83% of the time€Xplicitly detect program phase changes [2][10][11][12]
with the BBV based technique. As an auxiliary result, wel[19][20][21]. Recently, several researchers have proposed
show that techniques based on procedure granularities ddrardware techniques aimed specifically at detecting phase
not perform as welhs those based on instruction or basic changes, identifying phases and predicting phases [2][10]

block granularities. This is mainly due to their inability to [111[12][19]. In this work, we focus on three of these
detect changes within procedures. proposed schemes — the first basedwvorking set signa-

tures [10][11], the second based drasic block vectors
[19], and the third based oncanditional branch counter
[2]. Because phases are not well-defined, a significant

1. Introduction aspect of the paper is the definition of appropriate ngetric
for comparing these techniques.

General-purpose microprocessor design has tradition- The next section presents an overview of previously
ally focused on optimizing microarchitectural parameters Proposed techniques for detecting program phase changes.
(e.g. issue window size, cache sizes, etc.) at delsign t Section 3 discusses some of the issues related to the def
The goa| is to provide good performance on average, oveﬂition of program phases. It also describes various osetri
a wide variety of workloads. This can, however, lead toused for comparing the different program phase change
sub-optimal performance and power dissipation for gertai detection techniques (callephase detectiortechniques
programs or specific execution phases of a program. henceforth). Section 4 presents a comparison of tie te

With the ever-increasing need for performance andhiques with unbounded hardware resources. Section 5
growing importance of power efficiency, architects have compares practical hardware implementations based on
proposed multi-configuration hardware that dynamically Working set signatures and accumulator tables. Section 6
adapts to changing program requirements in order toconcludes the paper.

2. Background phase changes by observingiamplementation dependent
system characteristic. In general, such schemesatapen
Balasubramonian et al. [2] usecanditional branch easily applied to configurable systems where the system
counter to detect program phase changes. The countecharacteristic being observed is a function of theigon
keeps track of the number aoflynamic conditional ration.
branches executed over a fixed execution interval (meas-
ured in terms of the dynamic instruction count). Phase
changes are detected when the difference in branch counfs. Comparison Metrics
of consecutive intervals exceeds a threshold. Their scheme
does not use a fixed threshold. Rather, the detectian alg ~ The existence of program phases has intuitive appeal --
rithm dynamically varies the threshold throughout the but in practice phases are not easily determine@yven
execution of the program. easily defined. Program phase behavior is a result of
In previous work [11], we defined a program phase to control passing through procedures and nested loop struc-
be the instruction working set of the program i.e.stteof tures Consequently, program phases have a fractal-like
instructions touched in a fixed interval of time. Program self-similar behavior i.e. high-level (long duratiorf)gses
phase changes are detected by comparing consecutie composed of several lower-level (shorter duration)
instruction working sets using a similarity metric called phases, and in the limit each instruction is a separate
therelative working set distanc@ecause complete work- phase. In essence, there are no absolute phases and phase
ing sets can be too large to efficiently represent antt co behavior can only be observed with respect to a certain
pare in hardware, we propose the use of lossy-compresse@ranularity. Hind et al. arrive at a similar conclusion based
representations of working sets calledrking set signa- on formal analysis of phases and the phase detection
tures [10[11]. Signatures are compared using a metricProblem [22]. Hence, phase detection methods do not
called therelative signature distancePhase changes are literally detect phase changes; rather, they detectgeisan
detected when the relative signature distance betweetn program behavior that are assumed to result from phase
consecutive intervals exceeds a preset (fixed) thresholdchanges. Nevertheless, we use the term “phase detection
We show that signatures as small as 32 bytes in size catechniques” when describing them.
be used to resolve program phases in most benchmarks Phase detection techniques typically divide program
studied. execution into fixed-length sampling intervals (measured
Sherwood et al. [19][20][21] propose the use of basicin terms of dynamic instructions executed). Program-
block vectors (BBVSs) to detect program phase changesrelated information is collected over the sampling iraerv
BBVs keep track of execution frequencies of basic blocksand compared with similar information collected over the
touched in a particular execution interval. Phase changegrevious interval. If the two differ by more thardifer-
are detected when tHdanhattan distancdetween con- ence threshold 4;), a phase change (or transition) is
secutive BBVs exceeds a preset threshold. Because entiigdicated. In general, the type of program information
BBVs cannot be stored in hardware, BBVs are approxi-collected isimplementation independenite. it is a func-
mated by hashing into amccumulator tablecontaining a tion of the dynamic instruction stream, not of perfer
few large counters [19]. Their results indicate that as fewance.
as 32 24-bit counters are sufficient to represent BBVs. A sequence of two or more intervals containing no in-
Huang et al. [12] use subroutines to identify program dicated phase changes is defined astadble region A
phases. They propose the use of a hardware based caflaximal length stable region is defined to bestable
stack to identify program subroutines. The call stackgrac phase Sequences of one or more intervals that do not
time spent in each subroutine, taking into considerationbelong to stable phases are callatstable regionsin
nesting of subroutines. If the time spent in a subrousine other words, all the individual intervals belonging to a
greater than a preset threshold, it is identified asam unstable region are separated by phase changes.
phase. The call stack used in their evaluation is 32 entrie Comparison of phase detection techniques is compli-
deep and each entry is 9 bytes wide. cated because, as stated above, there are no absolute
HP Dynamo [13], a run-time dynamic optimization sys- phases, and thus there is golden standardhat tech-
tem, detects phase changes in order to flush staldarans niques can be compared against. Consequently, we com-
tions from the cache. Dynamo stores optimized trafes pare phase detection techniques using a variety of metrics
the program, called fragments, in a fragment cache. Irthat have some practical appeal. Because the goalsof thi
steady state most of the instructions are fetched frosn ~ work is to compare hardware based phase detection tech-
fragment cache. A sharp increase in fragment formationniques, we use metrics that are mostly relevant to dignam
rate indicates a phase change and is used to trigger flustoptimization and tuning algorithms for adapting multi-
ing of stale fragments from the cache, making room forconfiguration hardware.
new ones. Unlike the previous schemes, Dynamo detects

3.1. Sensitivity and False Positives execution is spent in stable phases. We quantify this with a
metric calledstability, which is defined as the fraction of
Program phase detection techniques have been used intervals that belong to stable phases.
power/performance optimization algorithms [2][10][11] Most tuning algorithms use trial-and-error mechanisms
[12][19] and to reduce simulation time of benchmarks by to arrive at the optimal configuration. That is, thawgy
identifying sections of code whose performance is repre-try a series of different configurations and determine the
sentative of the entire benchmark [20][21]. Thus, one ofbest one. These algorithms require several intervatseat
the desirable properties in a phase detection mechasism beginning of a stable phase to complete the tuning process
the ability to detect a phase change that results ign#isi (the algorithm presented in [12] is an exception). If phases
cant performance change. are short (i.e. small number of intervals), tuningeme
We quantify this property with a metric callednsitiv- completes. Also, short phases make it difficult to diner
ity [23]. Sensitivity is defined as the fraction of int&lsy reconfiguration overheads associated with the tuning
with significant performance changes (with respect to theprocess. Thus, thaverage phase lengtis an important
preceding interval), which were also indicated to be phasemnetric — defined as the number of intervals that are part o
changes by the phase detection mechanism. It should bstable phases, divided by the total number of stable phases
noted that “significant performance change” is a relative It should be noted that two programs with the same sta-
term. In this work, a performance change of 2% is consid-bility can have different average phase lengths. For exam-
ered significant unless stated otherwise. Consider arple, if a program runs for 1000 intervals divided into two
example program execution, which consists of 1000 inter-length 500 stable phases, the stability is 100% and the
vals, of which 100 intervals show a significant perform- average phase length is 500 intervals. However, if the
ance change with respect to the preceding intervalelf th phase changes at the end of every other interval, thié sta
phase detection mechanism indicates a phase change in 1y is still 100% but the average phase length is twas€h
of these 100 intervals, the sensitivity is 75%. If itidaties metrics should therefore be used in conjunction witth eac
a change for all 100 intervals, then the sensitivity068%. other.
Note that if a phase change were to be indicated fdr eac
of the 1000 intervals, the sensitivity would still be 100% 3.3. Performance Variance
because all the significant performance changes were in

fact detected. Because most tuning algorithms are based on the as-
The instance just given indicates that we must also consumption that performance is uniform within a phase, the
sider the flip side to sensitivity: the fraction fafse posi- ~ performance variancavithin a phase can be used as a

tives[23]. The fraction of false positives is the fraotiof metric. A good phase detection method should be able to
intervals where the performance shows no significantresolve phases with a relatively small variance ingoerf
change but the phase detection technique indicates a phagéce, compared to the variance across the whole pnogra
change. Continuing with the previous example — of theA small variance is an indicator that the phase detect
900 intervals where no significant performance changemechanism is detecting phase boundaries correctly.
occurs, if the phase detection scheme indicates a change i _

90 intervals, then the fraction of false positives is 10%. 3.4. Correlation

the extreme case where all intervals are indicatgzhase] .)
changes, there are 100% false positives. Correlation between phase detection techniques can be

High sensitivity is desirable in tuning algorithms be- useful for comparing their relative ability to detect ghas
cause it exposes more tuning opportunities leading tochanges. We define correlation between two phase detec-
better power/performance characteristics. On the othefion techniques as the fraction of intervals for ahibey
hand, a large fraction of false positives can cause usnece 9ree on the presence or absence of a phase chatfige. If
sary reconfigurations which can lead to significant per- t€chniques are highly correlated, then the technique with
formance loss and increase in power. Thus, a good phas@® Simplest implementation is preferable. In the at#sen
detection technique should have high sensitivity and g0f high correlation, the choice of techniques must bedas

small fraction of false positives. on one or more of the metrics defined above and other
advantages associated with the technique and where it is
3.2. Stability and Average Phase L ength being applied.

Attempting to tune and reconfigure in unstable regions4. Performance with Unbounded Resources
can lead to unpredictable, non-optimal results. Conse-)
quently, algorithms such as the ones proposed in [10][11] Before comparing hardware based phase detection
do not perform tuning while in unstable regions. Tuning techniques, we evaluate their limits by comparing tech-
algorithms can thus benefit if a large part of program niques based on unbounded working sets, BBVs, and

conditional branch counters. In addition to instruction provided as part of the SimpleScalar toolset [24]. The
working set based techniques [10][11], we evaluate branchmicroarchitecture parameters used for performance meas-
and procedure working set based techniques. urements are shown in Table 1. The results presenged ar
We equalize the granularity of these techniques byaveraged over all SPEC 2000 benchmarks [25] with the
choosing a common sampling interval of 10 million exception ofixtrackandfacerec The latter two could not
instructions. In the course of this research, wel toiner be run due to shortcomings of the simulation environment.
sampling intervals, and did not find any qualitative differ Reference inputs have been used for each benchmark and

ence in our conclusions. due to time and resource constraints, each benchmark was
run to completion or 15 billion instructions. As mentd
4.1. Basic Definitions before, a sampling interval of 10 million instructionas
used.
The instruction working set is defined as the set of in-
structions touched over the Sampling interval. Slmllarly, Table 1. Microarchitecture Parameters

branch/procedure working sets are defined as the set of
branches/procedures touched over the sampling interval. _ _ .
In previous work [10][11], we defined a similarity metric | Processor @-wide fetch/decodefissue/commit; 64-entry RUU, 32-

. . . core entry LSQ; 4 integer ALUs, 1 integer multiplier; P
called the relative working set distanée compare work- ALUS, 1 FP multiplier:
ing sets. The relative working set distance betweenm-inte
valsi andi-1 is defined as Er:gccrt] 4K entrygshare 10-bit global history; 2K entry, 2-waly
A - ||W| U Wi-l" - ||W| N Wi-l” redicion 1BTR: 32 entry RAS
i1~
"W UWi-1|| | and D-cache: 32KB, 2-way, 64 byte line, latency 1

: : Memory le; unified L2-cache: 512KB 4-way, 128 byte lif
whereW andW.; are working sets collected over intervals cycle, uniie cache , ay, yte line
i andi-1. TheNormof the sefq is the number of elements in ubsystem Iatelncy 6 cycles; memory: width 16-byte, latencyd 10

) cycles

the set i.e. the cardinality of the set. Since thlative Y
working set distance is a normalized metric, the maximum o o
possible working set difference is 100%. 4.2.1. Sensitivity and False Positives

Sherwood et al. [20] define a BBV to be a set of count- . . . :
ers, each of which counts the number of times a static Sensitivity and false positives are 'gyplcally at Od.dfhw't
basic block is entered in a given execution interval. Im late each other and are a strong functl_on of the d|ff(_argnce
work [19], they approximate the BBV with an array of threshold. We useReceiver Operating Characteristic
counters, where each counter tracks the number ofiastr (RO.C) tz;nalgl_?fls to ?{”Vﬁ at dlﬁersgcce threlsh_oldis &mvﬁd |
tions executed by a basic block in a given execution interP2rING € ditierent techniques. - analysis Is a ely
val. In this study, we use the latter definition for a BBY u_se_d teCh”'qu_ for analyzing m_e_dlcal tests, which have
it relates more closely to the hardware implementatio similar sensitivity and false positive tradeoffs [26heT

The BBV difference between intervalsandi-1 is given FOC curve 'Sd.‘"]}prOt of tr}(ﬁ ser;SIItcljwty Iversus fals;at:)h@sb ¢
by the Manhattan distance or various difference thresholds. In general, the bes

. technique is the one which achieves maximum sergitivi
_ for a given number of false positives.
A= count ; —count_y ; . .
hi=t Z| ki | L‘| Fig. 1 shows ROC curves for the different phase detec-
wher h distinct value ofrepresent unique basic tion techniques. These curves are based on the assumption
ere each distinct value girepresents a uniq that a significant CPI (cycles per instruction) charsgenie

block. . o
i . . of more than 2%, i.e. the sensitivity is computed as the
Phase chapges are defined W't_h _res_pect to a dncferencﬁaction of intervals where a CPI cha)l/ngmnjrepthanZ%
threshold 4) i.e. a phase change is indicated wign > is indicated as a phase change. False positives are com-

4. In order to compare the techniques, we normalize theyted as the fraction of intervals where the CPI chabges
BBV and branch count differences to 100%. This is done|gss thare%. but a phase change is indicated.

by dividing the differences by the maximum possible pgqiy sensitivity and false positives increase with de

difference, which i2N for BBVs andN for branch counts, reasing difference thresholds because as the threshold i
where N is the number of instructions in the sampling requced, even minor fluctuations in CPI are noticed. In
interval. order to compare the different techniques, we choose
difference thresholds corresponding to the knees of the
curves. The reasoning is that beyond the knee, a small

We evaluate phase detection techniques, using a modii-n crease in sensitivity comes at the expense of a large
) . P ques, using number of false positives. Moreover, we also tryqoat-
fied version ofsim-outordey an out-of-order simulator

j=0

4.2. Comparison

Receiver Operating Characteristics

100 © 90

80
g e el Increasing Aw g 80
> 601 / — >
2 >
2 40 2
[v 70 1
n ——BBV —&—IWSET n

20 & —A—BWSET —%— PWSET :

4 —o—BR CNT
0 ; ; ; ; 60 ;
0 20 40 60 80 100 25 30 35
False Positives (%) False Positives (%)

Figure 1. ROC curves for the various phase detection techniques are shown. CPI changes of more than
2% are considered significant. Difference thresholds (Ax) increase from right to left. IWSET, BWSET
and PWSET represent instruction, branch and procedure working set techniques respectively. BR_CNT
represents the conditional branch counter technique. The figure on the right shows a magnified view
of the shaded part of the left figure. The circled points are chosen for comparison.

ize the false positives to make clear comparisons among@xpected because a 10% change in CPI is more easily
methods. We arrive at difference thresholds of 4% for thedetected compared to a 2% change.
BBV, instruction, and branch working set techniques; 2%
for the procedure working set technique and 0.08% for the
conditional branch counter based technique. This choice of
thresholds leads to about 30% false positives for each
technique. 80 1
It is evident that BBVs perform the best — with a sens

Receiver Operator Characteristics

100

Increasing A

tivity of 82%, followed by conditional branch counter S 60 1 —
(74%) and working set techniques (70%). The working set *E

techniques do not perform well because they do not keep 3 y

track of instruction (or branch/procedure) execution fre- é 407 8

guencies. Consequently, the maximum sensitivity achiev- 1
able (\th = 0) by the instruction working set technique is 20 o
limited to 81%.

Amongst the working set methods, the procedure based
method shows slightly lower sensitivity than the ottne.
This is expected because it fails to detect phase changes
within procedures. Results show that the procedure based
working set method achieves a maximum sensitivity of Figure 2. ROC curves for the various phase de-
only 68% compared to 81% achieved by the instructiontection techniques are shown. CPI changes of
working set method. This is a fundamental problem with more than 10% are considered significant. (See
procedure based phase detection methods. Fig. 1 caption for more details)

Redefining a “significant CPI change” leads to qualita-
tively similar results for BBV and working set based A more interesting result is that in this case thekvagr
techniques. Fig. 2 shows ROC curves assuming that a CFget based techniques work better than the conditional
change of 10% (rather than 2%) is significant. The curvesbranch counter based technique, if the fraction of false
are similar to those in Fig. 1 except that each techniquddositives is limited to less than 40%. This means tfet th
achieves higher sensitivity for a given number ofefals Wworking set based techniques are more efficient at detect
positives and the difference in sensitivity between theing major phase changes, a result in agreement with our
BBV and working set methods decreases. This is to beprevious results [11].

—o—BBV —B—IWSET
—A—BWSET —¥—PWSET
—6—BR_CNT

0 T T T T

20 40 60 80 100
False Positives (%)

4.2.2. Stability and Average Phase Length

Fig. 3 shows, for BBV and working set methods, how
stability and average phase length vary with respetie
difference threshold. Fig. 4 shows the same for timelico
tional branch counter method. Clearly, the stabilitgath
method increases with the difference threshold becaus

fewer changes are detected due to reduced sensitivity (se

Fig. 1). For the difference thresholds chosen for compari
son in the previous section (circled in the figureg th
working set based methods achieve slightly greater stabil
ity (64%) compared to the BBV (62%) and conditional
branch counter (63%) based schemes.

The average phase length roughly increases with the
difference threshold because small perturbations in pro-
gram behavior are not indicated as phase changes.d-or th

chosen difference thresholds, instruction and branck-wor

Dynamic Branch Counter based Technique

100 20
> >
80 L 16 S
S -
52\607 12 3
= 2
« 40 8
o 3
(o)
20 4 =

N
9

0.1 0.2 0.3 0.4
Difference Threshold (%)

0

0 0.5

Figure 4. Stability (primary axis) and average

ing set techniques lead to 30% longer phases on averagghase length (secondary axis) with respect to
compared to BBVs and 38% longer phases on averaggifference threshold, for the conditional branch

compared to the conditional branch counter technique

counter technique. The circled points correspond

Given that the stability shown by each of these techniquesg difference thresholds used for comparison.
is similar, using BBVs or branch counts leads to a larger

number ofshorter phases. This may not be desirable for
tuning algorithms with large performance overheads
associated with reconfiguration.

Stability, Avg. Phase Length vs. Difference Thresholds

90
80
S
> 70
E
< 60 7
n —B—insn. wset
50 A —A—branch wset
4 —¥—proc. wset
40 T T
< 15 4
o
c
)
-
0]
%)
©
=
0'. —— BBV
;” —B—insn. wset
< —A— branch wset
—¥—proc. wset
O T T T T

2 4 6 8
Difference Threshold (%)

10

Figure 3. Variation of stability and average phase
length with respect to the difference threshold.
The phase length is shown in terms of number of
intervals. The circled points correspond to the
difference thresholds used for comparison.

4.2.3. Performance Variance

Although large average phase lengths are desirable, the
performance stability within a phase is also importait.
5 shows the percent coefficient of variance (standard
deviation/average) in CPI within stable phases, averaged
over all benchmarks. The difference thresholds used were
the ones arrived at in Sec. 4.2.1. Each of the techniques
achieved less than 2% variance in CPI within stablegzhas
as compared to a 116% CPI variance across all intervals
(i.e. including unstable regions).

Average CPIl Variance in Stable Phases

1.8
S 15
§ 1.2
< 09
g 0.6
o 037
O
07 T T T
BBV Insn Branch Proc Branch
Wset Wset Wset Counter

Figure 5. Average CPI variance within stable
phases. Difference thresholds used were 4% for
BBV, instruction and branch working sets, 2% for
procedure working set, and 0.08% for the condi-
tional branch counter technique.

Using BBVs leads to least performance variance
(0.65%) within phases. Instruction and branch working set
techniques achieve just less than 1% variance. Using
procedure working sets leads to 1.4% variance which

further establishes that procedure based techniques do néive change in performance metrics (CPI; data and L2
work as well as instruction and branch based techniquescache miss rates; branch misprediction rate) foh exf
Interestingly, the conditional branch counter techniquethese four eventsafree disagree bbv_change onjy
performs the worst with a CPI variance of 1.6%, altimioug west_change_only We do not include instruction cache
its sensitivity is higher than any of the working teth- miss rates because being close to zero they cause very
niques. This means that the technique detects more reldarge relative changes that cannot be well represemted o
tively small phase changes and misses some of the largehis graph. Note that for the performance metricg th
phase changes compared to the working set techniques. agreecase consistenly of events where both techniques
indicate a phase change, i.e. it does not contain cases
4.3. Corréation where both agree that there is no phase change.
As seen from the figure, the BBV and the instruction
Because BBVs perform better than the other techniquesyorking set technique agree about 85% of the time. Of the
on most metrics, we compute correlation between thei50 of the time they disagree, they are split roughly
BBV technique and each of the other techniques. Theequally. Focusing on the first two bars in each set of
difference thresholds used were the ones arrived atcin Se performance metrics, it is evident that the relatpes-
4.2.1. The instruction and branch Working set SChemES‘ormance Change seen when both the methods agree on a
show 85% correlation, while the procedure working setchange is much higher than the relative change seen when
and conditional branch counter based schemes show 80%ey disagree. This means thabst of the major phase
and 83% correlation respectively. Since each of the-te changes are detected by both methods
niques agrees with the BBV technique more than 80% of |n cases where the two techniques disagree, the eelativ
the time, an important question is — do they agree o moschange in performance seen when only the BBV indicates

of themajor phase changes? a phase change (third bar in each set) is higher than th
Correlation and Performance changes relative change seen when only the working set method
90 indicates a change (fourth bar in each set). This nteahs
M agree

the BBV based technique is better at detecting changes in
performance. This is expected because the BBV inherently
contains much more information compared to the instruc
tion working set. However, it should be noted that this
happens less than 9% of the time on average.

75 A O disagree
@ bbv_change_only | |
O wset_change_only

60 7

45 A

Percent

30 7

] 5. Hardware I mplementations
15
cpi

The previous section compared the performance of

correlation dcache l2cache bpred BBV, working set and conditional branch count tech-
Figure 6. A comparison of BBV and instruction niques using unbounded hardware resources. In practice,
working set schemes. The first set of four bars BBVs and working sets are too large to be efficiently
(correlation) shows the fraction of time that the stored and compared in hardware. In previous work
two techniques agree, disagree, only BBV de- [10][11], we proposed a hardware structure called the
tects a change and only working set detects a working set signaturewhich is a compact representation
change. The remaining four sets show the rela- of the working set. Similarly, Sherwood et al. [19] pro-
tive change in CPI; data and L2 cache miss rates posed an array of accumulators (counters) called the
and branch misprediction rates for each of the accumulator tablgo represent BBVs. In this section, we
four types of events described above. compare the performance of these hardware implementa-

tions. The hardware implementation for a conditional

To answer this question, we compare the BBV and in-branch counter is equivalent to its unbounded implementa-
struction working set techniques in more detail (Fig. 6).tion for the interval sizes studied, and thus is not dis-
The first set of four bars in Fig. 6 show respectivéhg cussed.
percent of time the two techniques agree on the presenc
or absence of a phase changgrée, the percent of time 5.1. Hardware Structures
they disagreedjsagre®, the percent of time the BBV))
technique indicates a change but the instruction working®-1.1. Working Set Signature
set technique does ndihv_change_onjyand the percent
of time the instruction working set technique indicatess a
change but the BBV technique does nakdt change
_only). The next four sets of bars show the average rela

A working set signature is a lossy-compressed repre-
sentation of the complete working set [10][11]. The signa-
ture is formed by sampling the working set i.e. program

counters (PCs) over a fixed interval of instructiong. (20 instructions, then each accumulator is 24-bits wide. &2has
million) and hashing the samples intorabit vector using changes are detected by comparing consecutive arrays
a random hash function (Fig. 7). The signature is ra@set using a Manhattan distance metric (see Sec. 4.1). If the
the beginning of each interval to remove stale working setdistance is greater than a preset threshold, a phasge

information. is indicated.
Phase changes are detected by comparing consecutive Accumulator
signatures using the relative signature distancae@is Table
IS, 0S,| Branch PC
A=1— <1 1111000 0]«
||Sl+82|| | | 00010100
i.e. (ones count of exclusive OR of sighatures)/(onestcoun g g é g (1’ g g é
of inclusive OR of signatures). If the relative sigmatu H

distance is greater than a preset threshold, a phasge il

is indicated. We propose the use of virtual machine soft- Adder
ware to compute the relative signature distance [10][11]. _
However, it can also be done in hardware.

Figure 8. Accumulator table update mechanism.
Branch PC is hashed into the table and the cor-

Signature responding counter is incremented with the num-
Shifted PC 0] ber of instructions committed since the last
% branch. Hash function used is pseudo-random.
0
IEI H % 5.2. Design Space
% In this work, we study three different sizes for each of
0] the hardware based phase detection techniques. The sizes
0] for instruction/branch signatures (4096, 1024, 512 bits)
Figure 7. Working set signature mechanism. PCs, and accumulator tables (1024, 128, 32 entries) are similar
shifted by a few bits, are hashed into the signa- to those used in previous work [10][11][19]. Procedure
ture bit vector and the corresponding entries are signature sizes were chosen to be 1024, 256 and 64 bits
set. The hash function used is pseudo-random. because procedure working sets are much smaller com-

pared to corresponding instruction/branch working sets.
The signature fill-factor depends on the signature size

as well as the working set size. Large working sefs ca 4+ Accumulator table BBV
saturate small working set signatures. In order to reduce (32,%) ()
the pressure on instruction working set signatures, @ P 5 ° A °
are shifted by a few bits thereby reducing the number of &

unique elements that are hashed. In this work, we shift 3 (B:rancth

PCs by five bits, which is equivalent to sampling blocks of g at’::)er Working set

eight instructions. Shifting may not be necessary for signature Working set
branch and procedure working set signatures because only 5 (1024,1) (1)
20 - 25% of committed instructions are branches and a < o
mere 1 - 2% are procedure entry points. R
5.1.2. Accumulator Table # counters

Figure 9. The position of each of the techniques

The accumulator table (Fig. 8) is an array of countersin the design space is shown. The X-axis repre-
indexed by hashing branch PCs. Whenever a branch PC isents the number of counters used to capture
encountered, the corresponding counter is incremented binformation. The Y-axis shows the number of bits
the number of instructions committed since the lastused in each counter.
branch. The accumulator table collects samples over a
fixed interval of instructions and is reset at the beigign These hardware techniques, along with the unbounded
of each interval. cases considered in the previous section, span a wide

To prevent overflow, each accumulator is made largedesign space as shown in Fig. 9. Each technique can be
enough to be able to count up to the number of instruction categorized in terms of the number of counters and the
in the interval. For example, if the interval is 10lion number of bits in each counter. The unbounded BBV

contains maximum information with unbounded counters This translates to a total of 32*24 = 768 bits. This is com-
each with an unbounded number of bits, the accumulatoparable in area to a 1024-bit signature taking into account
tables have a small number of unbounded counters anthe extra sense amplifiers and fast adder(s) requiréaeby
finally the conditional branch counter based scheme hasccumulator table. Correlation between the 32-entry ac-
one unbounded counter, although it counts only condi-cumulator table and 1024-bit instruction working set
tional branches. The working set based techniques form aignature showed results similar to those given in €ig.
similar spectrum albeit with a larger number of singte-b and thus are not repeated. The two hardware techniques
counters. It should be noted that accumulator table counteorrelate 87% of the time and the change in performance
ers have a bounded number of bits, but they are coadider metrics when the techniques agree is much higher than the
unbounded because they are large enough to preverthange when they disagree. This means that both tech-

overflows for a given sampling interval. niques agree on major phase changes. This is not surpris-
_ ing given the fact that both these techniques are highly
5.3. Comparison correlated to their unbounded cases and a similar abserv

. _ tion was made there.
Fig. 10 shows the correlation of each of the hardware

based techniques with the corresponding unbounded case
i.e. instruction working set signatures are compared t05.3.1. Conditional Branch Counter
complete instruction working sets, accumulator tabbes t
BBVs, etc. The difference threshold used is 4% for the Sherwood et al. [19] evaluated the performance of ac-
instruction and branch working set signatures, 2% for thecumulator tables by using a metric called visble phase
procedure working set signature and 4% for the accumuladifference The visible phase difference is the ratio of the
tor table. (see Sec. 4.2.1.) phase difference (Manhattan distance) observed using the
It is evident that the hardware schemes are highly cor-accumulator table, to the phase difference observed using
related with their corresponding unbounded schemes. Asginbounded BBVs. The visible phase difference of the
the number of bits/entries is reduced, the correlatipog ~ unbounded BBV is 100%.
off mainly due to increased aliasing. However, the small- The accumulator table size for their algorithms was
est size hardware structure still correlates more 8% chosen to be 32 entries, because the visible phase- diff
of the time (in each case) with the unbounded scheme. ence achieved by using 32 entries is 72%. However, this is
Hardware vs Unbounded Correlations u large not necessarily a good metric to use because phase
@ medium changes are detected based on a difference threshold and
0 small as long as the phase difference is above threshaldeg
not matter what the visible phase difference is. As an
80 1 m example, if the difference threshold is 10% and the un-
bounded BBV shows a phase difference of 90%, it does
not matter if the phase difference achieved by the accumu-
lator table is 80% or 25% because a phase change is de-
tected in both cases. This explains why the 32-counter
20 || method agrees with the unbounded BBV 93% of the time
even when results from [19] show that it achieves ibleis
04 ; ; ; phase difference of only 70%.
insnsign branchsign procsign acc table This means that perhaps an even smaller number of
Figure 10. The correlation of each hardware counters can p_r_ovide reasonable phase detection alility.
scheme with the corresponding unbounded fact, the condltlon_al bran_ch counter [2], which is_an ex-
scheme is shown. The figure shows correlations treme example with a single counter, works quite well
for three different sizes of instruction and branch correlating 83% of the time with the unbounded BBV
working set signatures (4096, 1024, 512), proce- scheme.
dure working set signatures (1024, 256, 64) and
accumulator tables (1024, 128, 32).

100

60 —

40 A I

Correlation (%)

5.4. Other Considerations

It is worth comparing the accumulator table with an
equivalent instruction working set signature. We consider

the smallest accumulator table i.e. 32 entries, sihce t0 use a particular technique mav be based on other con-
shows reasonably high correlation with BBVs. Tovprd . ap 4 y . "
siderations such as hardware complexity and additional

overflow for a sampling interval of 10 million instrumtis, attributes that mav be useful for tuning algorithms
each of the accumulators should be at least 24-bits wide. y 9ag)

Because the hardware schemes discussed in the previ-
ous section correlate (agree) most of the timegdéugsion

5.4.1. Hardware Complexity factor f (number of ones) of the signature using the rela-

tion
The hardware used in the conditional branch counter log(1- f)
scheme is clearly the simplest and warrants no further k=e———=,
discussion. The working set signature requires a 1-di wi IOg(l—l)
RAM array with one read/write port. The instruction n

sampling hardware samples each instruction (at most 4 iRyhere n is the signature size. In cases where performance
a 4-wide superscalar) and hashes it to get the sigrtature of 3 unit is directly related to the working set sizey.(e.

to be set. One possible optimization is to sample on&/ instruction and data caches) signatures can be used to
instruction every two to four cycles. We have seert tha determine the optimal configuration without going through
this periodic sampling technique works reasonably well 3 tuning process. This has been shown to reduce the nu
because the signature only tracks the number of statiger of reconfigurations by 74% in a particular instruction
instructions touched and not the numbertiaies they cache tuning algorithm [11].

were touched. This can simplify the hardware signifigant ~ However, it should be noted that to make use of this
and make it amenable to a slow-transistor implementatio property, the signature should capture saeneworking
thereby saving power. set that the unit performance is dependent on. For exam-

~The accumulator table uses a 24-bit wide RAM array, ple, instruction working set signatures can be used to
with one read and one write port. Separate read aitél Wr configure instruction caches but not data caches.

ports may be needed for throughput reasons. The sampling

hardware is more complex than that used in the workingg. Conclusions

set signatures as it has to analyze the retire strealetect

positions of branches and increment counters appropri- The BBV based technique provides better sensitivity

ately. Moreover, since the Manhattan distance is based oand lower performance variation in phases compared to

instruction counts, dropping samples may not advisablethe other techniques. The instruction and branch working

thus making fast hardware essential. Additionally, theset techniques have similar performance on each of the

accumulator table also requires a fast 24-bit adder tometrics described. These techniques are less senhbiive t

update the accumulators. the BBV technique mainly because working sets contain
It is clear that the accumulator table is more comple |ess information compared to BBVs. However, the ircstr

and less power efficient compared with the signaturetion working set technique provides slightly higher stabil-

method. However, it should also be noted that neither Of]ty and achieves 30% |0nger phages on average Compared

these schemes would form an appreciable fraction ofio the BBV technique. This can benefit trial and error

hardware in a modern microprocessor, and thus their smalbased tuning algorithms. On average, the BBV and in-

contribution to power dissipation/ complexity may not be struction working set schemes agree on phase changes

a concern. 85% of the time. Of the 15% time they disagree, the BBV
] o is more efficient at detecting important performance
5.4.2. Recurring Phase | dentification changes. As an auxiliary result, we show that procedure

working set based techniques do not perform quite as well

'I_'he ability to identify_recurring_ phases ?S a desirable as the other working set based methods. This is mainly due
attribute n phas_:e detectl_on techniques. Th|s_property €aly their inability to detect phase changes within proce-
be used in tuning algorithms to reuse previously founddures

optimal configurations for recurring phases [10][11][12] One of the surprising results of this study is thaina si

[19]. This eliminates a significant fraction of reconfigura- ple conditional branch counter scheme performs quite wel

tions, Ie?(d”l% to perfohrmar;ﬁetlmﬂrovergen't[i_. Int_oewE)r dand agrees with the unbounded BBV scheme 83% of the
ous work [11], we show that phase-identification base time. However, it does lead to shorter average phase

algorithms can reduce reconfigurations by as much 92% : : s
over a subset of SPEC 2000 integer benchmarks, lengths and higher performance variance within phases

. ; compared with the BBV and working set schemes. This
Working set signatures and BBVs have been shown t P g

.) . CGndicates that the branch counter based technique fails to
identify recurring program phases [10][11][19]. Whether detect some of the major phase changes. d

c_onditional branch counters can be used to identify recur- Finally, we find that the hardware schemes i.e. working
ring phases remains to be shown. set signatures and the accumulator table approximate thei
corresponding unbounded cases (working sets and BBV)
very closely, correlating more than 90% of the timenev

Working set signatures have an added advantage thdf' the smallest structures considered. Also, equivalent
they can be used to estimate the working set sizetigirec Sized instruction working set signatures and accumulator
[11]. The working set sizk can be estimated from the fill tables agree on phase changes 87% of the time.

5.4.3. Estimating Working Set Size

Given the high correlation between these techniques,
the choice of technique may be guided by other considera-
tions. While the conditional branch counter is theptast [10]
to implement, signatures and accumulator tables can be
used to identify recurring phases — leading to more effi-
cient tuning algorithms. Signatures also provide the add 91]
advantage that they can be used to estimate certakz wor
ing set sizes and immediately configure the corresponding
microarchitectural units such as caches.

Finally, in this work, we dealt with a very large desig [12]
space composed of several variables including sampling
intervals, difference thresholds, and hardware sizes. Ad-
mittedly, the results therefore represent a very sstiak [13]
of the design space. On the other hand, in the pradess
conducting this research we did simulate a large nuniber o
variations and found the results to be qualitativelyilaim
to those reported here. [14]
7. Acknowledgements

This work is being supported by an NSF grant CCR[—15%

0311361, SRC grant 2000-HJ-782, Intel and IBM. H%
8. References
(18]

[1] D. H. Albonesi, “Dynamic IPC/clock rate optimizatiori’

Proc. of the 28 Annual Intl. Sym. on Computer Architec- [19]
ture, Jun. 1998, pp. 282-292.

[2] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas, "Memory hierarchy reconfiguration for20]
energy and performance in general purpose architectureé,"
in Proc. of the33“ Annual Intl. Sym. on Microarchitectyre
Dec. 2000, pp. 245-257.

[3] S. H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N 21]
Vijaykumar, "An integrated circuit/architecture approach to
reducing leakage in deep submicron high-performance I-
caches,'In Proc. of the ¥ Intl. Sym. on High Performance
Computer Architecturelan. 2001, pp. 147-157.

[4] P. Ranganathan, S. Adve, and N. Jouppi, "Reconfigurabl@z]
caches and their application to media processingProc.
of the 2% Annual Intl. Sym. on Computer Architectudan.

2000, pp. 214-224. 23]

[5] T. Juan, S. Sanjeevan, and J. Navarro, “Dynamic histor);-
length fitting: a third level of adaptivity for branch predic-
tion,” in Proc. of the 28 Annual Intl. Sym. on Computer [24]
Architecture Jun. 1998, pp. 155-166.

[6] D. Folegnani, and A. Gonzalez, "Energy-effective issue
logic,” in Proc. of the 28 Annual Intl. Sym. on Computer [25]
Architecture Jun. 2001, pp. 230-239.

[7] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P.
Bose, “Energy efficient co-adaptive instruction fetch and is[26]
sue,”in Proc. of the 30th Annual Intl. Sym. on Computer
Architecture Jun. 2003, pp. 147-156.

[8] R. Bahar, and S. Manne, “Power and energy reduction via
pipeline balancing,’in Proc. of the 28th Annual Intl. Sym.
on Computer Architecturdul. 2001, pp. 218-229.

[9] M. Huang, J. Reneau, S.-M. Yoo, and J. Torrellas, “A
framework for dynamic energy efficiency and temperature

management,ih Proc. of the 33rd Annual Intl. Sym. on Mi-
croarchitecture Dec. 2000, pp. 202-213.

J. E. Smith, and A. S. Dhodapkar, “Dynamic microarchitec-
ture adaptation via co-designed virtual machin@s,2002
Intl. Solid State Circuits Conference, Digest of Technical
Papers pp. 198-199, Feb. 2002.

A. S. Dhodapkar, and J. E. Smith, “Managing multi-
configuration hardware via dynamic working set analysis,”
in Proc. of the 28 Annual Intl. Sym. on Computer Architec-
ture, May 2002, pp. 233-244.

M. Huang, J. Renau, and J. Torrellas, “Positional adaptati
of processors: application to energy reduction,Proc. of
the 3" Annual Intl. Sym. on Computer Architectudein.
2003, pp. 157-168.

V. Bala, E. Duesterwald, S. Banerjia, "Dynamo: A transpar
ent dynamic optimization systemp' Proc. of the Conf. on
Programming Language Design and Implementat®@M
SIGPLAN, 2000, pp. 1-12.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney,
“Adaptive Optimization in the Jalapeno JVMii Proc. of
the ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applicatip@ct. 2000.
http://java.sun.com

http://www.microsoft.com/net

Timothy Sherwood, and Brad Calder, “Time varying behav-
ior of programs,”"UC San Diego Technical Report UCSD-
CS99-630Aug. 1999.

J. Henning, “SPEC CPU2000 memory footprint,” online at
http://www.spec.org/ cpu2000/analysis/memory

T. Sherwood, S. Sair, and B. Calder, “Phase tracking and
prediction,”in Proc. of the 30 Annual Intl. Sym. on Com-
puter ArchitectureJun. 2003, pp. 336-347.

T. Sherwood, E. Perelman, and B. Calder, “Basic block dis
tribution analysis to find periodic behavior and simulation,”
Proc. of the Intl. Conf. on Parallel Architectures and Com-
pilation TechniquesSep. 2001, pp. 3-14.

T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
“Automatically characterizing large scale program behav
ior,” Proc. of 18" Intl. Conf. on Architectural Support for
Programming Languages and Operating Systel@st.
2002, pp. 45-57.

M. J. Hind, V. T. Rajan, and P. F. Sweeney, “Phase shift
detection: a problem classificationBM Research Report
RC-22887 Aug. 2003.

D. Grunwald, A. Klauser, S. Manne and A. Pleszkun, “Con-
fidence estimation for speculation contrdPfoc. of the 28

Intl. Sym. on Computer Architecturduly 1998.

D. Burger and T. Austin, “The SimpleScalar tool setioars
2.0,” University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, June 1997.

J. L. Henning, “SPEC CPU2000: Measuring CPU perform-
ance in the new millenniumJEEE Computervol. 33, no.

7, pp. 28-35, Jul. 2000.

M. S. Pepe, “The statistical evaluation of medical tésts
classification and prediction,'Oxford University Press
2003.

