
Comparing Program Phase Detection Techniques

Ashutosh S. Dhodapkar and James E. Smith

Dept. of Electrical and Computer Engineering,
University of Wisconsin – Madison

{dhodapka, jes}@ece.wisc.edu

Abstract

Detecting program phase changes accurately is an im-
portant aspect of dynamically adaptable systems. Three
dynamic program phase detection techniques are com-
pared – using instruction working sets, basic block vectors
(BBV), and conditional branch counts. Because program
phases are difficult to define, we compare the techniques
using a variety of metrics.

BBV techniques perform better than the other tech-
niques providing higher sensitivity and more stable
phases. However, the instruction working set technique
yields 30% longer phases than the BBV method, although
there is less stability within phases. On average, the meth-
ods agree on phase changes 85% of the time. Of the 15%
of time they disagree, the BBV method is more efficient at
detecting performance changes. The conditional branch
counter technique provides good sensitivity, but is less
effective at detecting major phase changes. Nevertheless,
the branch counter technique correlates 83% of the time
with the BBV based technique. As an auxiliary result, we
show that techniques based on procedure granularities do
not perform as well as those based on instruction or basic
block granularities. This is mainly due to their inability to
detect changes within procedures.

1. Introduction

General-purpose microprocessor design has tradition-
ally focused on optimizing microarchitectural parameters
(e.g. issue window size, cache sizes, etc.) at design time.
The goal is to provide good performance on average, over
a wide variety of workloads. This can, however, lead to
sub-optimal performance and power dissipation for certain
programs or specific execution phases of a program.

With the ever-increasing need for performance and
growing importance of power efficiency, architects have
proposed multi-configuration hardware that dynamically
adapts to changing program requirements in order to

achieve better power/performance characteristics [1]-[12].
Similarly, on the software side, dynamic code optimization
[13][14] is gaining importance with the wide spread ac-
ceptance of run-time environments such as Java [15] and
.NET [16].

In the presence of dynamically configurable hardware
and software, the ability to initiate reconfiguration at the
right time is essential. Because programs go through
phases of execution wherein their performance is rela-
tively stable [17][18], phase boundaries are a natural
choice for performing reconfiguration (or at least deter-
mining if reconfiguration will be beneficial). Detecting
phase changes accurately is thus an important aspect of
dynamically adaptable systems. Furthermore, in systems
where overheads associated with reconfiguration decisions
are significant, program phase identification may enable
reuse of configuration information for recurring phases,
thereby improving performance [11][12][19].

There have been several proposals to implicitly [13] or
explicitly detect program phase changes [2][10][11][12]
[19][20][21]. Recently, several researchers have proposed
hardware techniques aimed specifically at detecting phase
changes, identifying phases and predicting phases [2][10]
[11][12][19]. In this work, we focus on three of these
proposed schemes – the first based on working set signa-
tures [10][11], the second based on basic block vectors
[19], and the third based on a conditional branch counter
[2]. Because phases are not well-defined, a significant
aspect of the paper is the definition of appropriate metrics
for comparing these techniques.

The next section presents an overview of previously
proposed techniques for detecting program phase changes.
Section 3 discusses some of the issues related to the defi-
nition of program phases. It also describes various metrics
used for comparing the different program phase change
detection techniques (called phase detection techniques
henceforth). Section 4 presents a comparison of the tech-
niques with unbounded hardware resources. Section 5
compares practical hardware implementations based on
working set signatures and accumulator tables. Section 6
concludes the paper.

2. Background

Balasubramonian et al. [2] use a conditional branch
counter to detect program phase changes. The counter
keeps track of the number of dynamic conditional
branches executed over a fixed execution interval (meas-
ured in terms of the dynamic instruction count). Phase
changes are detected when the difference in branch counts
of consecutive intervals exceeds a threshold. Their scheme
does not use a fixed threshold. Rather, the detection algo-
rithm dynamically varies the threshold throughout the
execution of the program.

In previous work [11], we defined a program phase to
be the instruction working set of the program i.e. the set of
instructions touched in a fixed interval of time. Program
phase changes are detected by comparing consecutive
instruction working sets using a similarity metric called
the relative working set distance. Because complete work-
ing sets can be too large to efficiently represent and com-
pare in hardware, we propose the use of lossy-compressed
representations of working sets called working set signa-
tures [10[11]. Signatures are compared using a metric
called the relative signature distance. Phase changes are
detected when the relative signature distance between
consecutive intervals exceeds a preset (fixed) threshold.
We show that signatures as small as 32 bytes in size can
be used to resolve program phases in most benchmarks
studied.

Sherwood et al. [19][20][21] propose the use of basic
block vectors (BBVs) to detect program phase changes.
BBVs keep track of execution frequencies of basic blocks
touched in a particular execution interval. Phase changes
are detected when the Manhattan distance between con-
secutive BBVs exceeds a preset threshold. Because entire
BBVs cannot be stored in hardware, BBVs are approxi-
mated by hashing into an accumulator table containing a
few large counters [19]. Their results indicate that as few
as 32 24-bit counters are sufficient to represent BBVs.

Huang et al. [12] use subroutines to identify program
phases. They propose the use of a hardware based call
stack to identify program subroutines. The call stack tracks
time spent in each subroutine, taking into consideration
nesting of subroutines. If the time spent in a subroutine is
greater than a preset threshold, it is identified as a major
phase. The call stack used in their evaluation is 32 entries
deep and each entry is 9 bytes wide.

HP Dynamo [13], a run-time dynamic optimization sys-
tem, detects phase changes in order to flush stale transla-
tions from the cache. Dynamo stores optimized traces of
the program, called fragments, in a fragment cache. In
steady state most of the instructions are fetched from this
fragment cache. A sharp increase in fragment formation
rate indicates a phase change and is used to trigger flush-
ing of stale fragments from the cache, making room for
new ones. Unlike the previous schemes, Dynamo detects

phase changes by observing an implementation dependent
system characteristic. In general, such schemes can not be
easily applied to configurable systems where the system
characteristic being observed is a function of the configu-
ration.

3. Comparison Metrics

The existence of program phases has intuitive appeal --
but in practice phases are not easily determined, or even
easily defined. Program phase behavior is a result of
control passing through procedures and nested loop struc-
tures Consequently, program phases have a fractal-like
self-similar behavior i.e. high-level (long duration) phases
are composed of several lower-level (shorter duration)
phases, and in the limit each instruction is a separate
phase. In essence, there are no absolute phases and phase
behavior can only be observed with respect to a certain
granularity. Hind et al. arrive at a similar conclusion based
on formal analysis of phases and the phase detection
problem [22]. Hence, phase detection methods do not
literally detect phase changes; rather, they detect changes
in program behavior that are assumed to result from phase
changes. Nevertheless, we use the term “phase detection
techniques” when describing them.

Phase detection techniques typically divide program
execution into fixed-length sampling intervals (measured
in terms of dynamic instructions executed). Program-
related information is collected over the sampling interval
and compared with similar information collected over the
previous interval. If the two differ by more than a differ-
ence threshold (∆th), a phase change (or transition) is
indicated. In general, the type of program information
collected is implementation independent, i.e. it is a func-
tion of the dynamic instruction stream, not of perform-
ance.

A sequence of two or more intervals containing no in-
dicated phase changes is defined as a stable region. A
maximal length stable region is defined to be a stable
phase. Sequences of one or more intervals that do not
belong to stable phases are called unstable regions. In
other words, all the individual intervals belonging to an
unstable region are separated by phase changes.

Comparison of phase detection techniques is compli-
cated because, as stated above, there are no absolute
phases, and thus there is no golden standard that tech-
niques can be compared against. Consequently, we com-
pare phase detection techniques using a variety of metrics
that have some practical appeal. Because the goal of this
work is to compare hardware based phase detection tech-
niques, we use metrics that are mostly relevant to dynamic
optimization and tuning algorithms for adapting multi-
configuration hardware.

3.1. Sensitivity and False Positives

Program phase detection techniques have been used in
power/performance optimization algorithms [2][10][11]
[12][19] and to reduce simulation time of benchmarks by
identifying sections of code whose performance is repre-
sentative of the entire benchmark [20][21]. Thus, one of
the desirable properties in a phase detection mechanism is
the ability to detect a phase change that results in a signifi-
cant performance change.

We quantify this property with a metric called sensitiv-
ity [23]. Sensitivity is defined as the fraction of intervals
with significant performance changes (with respect to the
preceding interval), which were also indicated to be phase
changes by the phase detection mechanism. It should be
noted that “significant performance change” is a relative
term. In this work, a performance change of 2% is consid-
ered significant unless stated otherwise. Consider an
example program execution, which consists of 1000 inter-
vals, of which 100 intervals show a significant perform-
ance change with respect to the preceding interval. If the
phase detection mechanism indicates a phase change in 75
of these 100 intervals, the sensitivity is 75%. If it indicates
a change for all 100 intervals, then the sensitivity is 100%.
Note that if a phase change were to be indicated for each
of the 1000 intervals, the sensitivity would still be 100%
because all the significant performance changes were in
fact detected.

The instance just given indicates that we must also con-
sider the flip side to sensitivity: the fraction of false posi-
tives [23]. The fraction of false positives is the fraction of
intervals where the performance shows no significant
change but the phase detection technique indicates a phase
change. Continuing with the previous example – of the
900 intervals where no significant performance change
occurs, if the phase detection scheme indicates a change in
90 intervals, then the fraction of false positives is 10%. In
the extreme case where all intervals are indicated as phase
changes, there are 100% false positives.

High sensitivity is desirable in tuning algorithms be-
cause it exposes more tuning opportunities leading to
better power/performance characteristics. On the other
hand, a large fraction of false positives can cause unneces-
sary reconfigurations which can lead to significant per-
formance loss and increase in power. Thus, a good phase
detection technique should have high sensitivity and a
small fraction of false positives.

3.2. Stability and Average Phase Length

Attempting to tune and reconfigure in unstable regions
can lead to unpredictable, non-optimal results. Conse-
quently, algorithms such as the ones proposed in [10][11]
do not perform tuning while in unstable regions. Tuning
algorithms can thus benefit if a large part of program

execution is spent in stable phases. We quantify this with a
metric called stability, which is defined as the fraction of
intervals that belong to stable phases.

Most tuning algorithms use trial-and-error mechanisms
to arrive at the optimal configuration. That is, they simply
try a series of different configurations and determine the
best one. These algorithms require several intervals at the
beginning of a stable phase to complete the tuning process
(the algorithm presented in [12] is an exception). If phases
are short (i.e. small number of intervals), tuning never
completes. Also, short phases make it difficult to amortize
reconfiguration overheads associated with the tuning
process. Thus, the average phase length is an important
metric – defined as the number of intervals that are part of
stable phases, divided by the total number of stable phases.

It should be noted that two programs with the same sta-
bility can have different average phase lengths. For exam-
ple, if a program runs for 1000 intervals divided into two
length 500 stable phases, the stability is 100% and the
average phase length is 500 intervals. However, if the
phase changes at the end of every other interval, the stabil-
ity is still 100% but the average phase length is two. These
metrics should therefore be used in conjunction with each
other.

3.3. Performance Variance

Because most tuning algorithms are based on the as-
sumption that performance is uniform within a phase, the
performance variance within a phase can be used as a
metric. A good phase detection method should be able to
resolve phases with a relatively small variance in perform-
ance, compared to the variance across the whole program.
A small variance is an indicator that the phase detection
mechanism is detecting phase boundaries correctly.

3.4. Correlation

Correlation between phase detection techniques can be
useful for comparing their relative ability to detect phase
changes. We define correlation between two phase detec-
tion techniques as the fraction of intervals for which they
agree on the presence or absence of a phase change. If the
techniques are highly correlated, then the technique with
the simplest implementation is preferable. In the absence
of high correlation, the choice of techniques must be based
on one or more of the metrics defined above and other
advantages associated with the technique and where it is
being applied.

4. Performance with Unbounded Resources

Before comparing hardware based phase detection
techniques, we evaluate their limits by comparing tech-
niques based on unbounded working sets, BBVs, and

conditional branch counters. In addition to instruction
working set based techniques [10][11], we evaluate branch
and procedure working set based techniques.

We equalize the granularity of these techniques by
choosing a common sampling interval of 10 million
instructions. In the course of this research, we tried other
sampling intervals, and did not find any qualitative differ-
ence in our conclusions.

4.1. Basic Definitions

The instruction working set is defined as the set of in-
structions touched over the sampling interval. Similarly,
branch/procedure working sets are defined as the set of
branches/procedures touched over the sampling interval.
In previous work [10][11], we defined a similarity metric
called the relative working set distance, to compare work-
ing sets. The relative working set distance between inter-
vals i and i-1 is defined as

1-i

1-ii1-ii
1,

WW

W WWW U IU −
=∆ −ii

where Wi and Wi-1 are working sets collected over intervals
i and i-1. The Norm of the set is the number of elements in
the set i.e. the cardinality of the set. Since the relative
working set distance is a normalized metric, the maximum
possible working set difference is 100%.

Sherwood et al. [20] define a BBV to be a set of count-
ers, each of which counts the number of times a static
basic block is entered in a given execution interval. In later
work [19], they approximate the BBV with an array of
counters, where each counter tracks the number of instruc-
tions executed by a basic block in a given execution inter-
val. In this study, we use the latter definition for a BBV as
it relates more closely to the hardware implementation.
The BBV difference between intervals i and i-1 is given
by the Manhattan distance ∑∞

=
−− −=∆

0
,1,1,

j
jijiii countcount

where each distinct value of j represents a unique basic
block.

Phase changes are defined with respect to a difference
threshold (∆th) i.e. a phase change is indicated when ∆i,i-1 >
∆th. In order to compare the techniques, we normalize the
BBV and branch count differences to 100%. This is done
by dividing the differences by the maximum possible
difference, which is 2N for BBVs and N for branch counts,
where N is the number of instructions in the sampling
interval.

4.2. Comparison

We evaluate phase detection techniques, using a modi-
fied version of sim-outorder, an out-of-order simulator

provided as part of the SimpleScalar toolset [24]. The
microarchitecture parameters used for performance meas-
urements are shown in Table 1. The results presented are
averaged over all SPEC 2000 benchmarks [25] with the
exception of sixtrack and facerec. The latter two could not
be run due to shortcomings of the simulation environment.
Reference inputs have been used for each benchmark and
due to time and resource constraints, each benchmark was
run to completion or 15 billion instructions. As mentioned
before, a sampling interval of 10 million instructions was
used.

Table 1. Microarchitecture Parameters

Processor
core

4-wide fetch/decode/issue/commit; 64-entry RUU, 32-
entry LSQ; 4 integer ALUs, 1 integer multiplier; 4 FP
ALUs, 1 FP multiplier;

Branch
Prediction

4K entry gshare, 10-bit global history; 2K entry, 2-way
BTB; 32 entry RAS

Memory
subsystem

I and D-cache: 32KB, 2-way, 64 byte line, latency 1
cycle; unified L2-cache: 512KB 4-way, 128 byte line,
latency 6 cycles; memory: width 16-byte, latency 100
cycles

4.2.1. Sensitivity and False Positives

Sensitivity and false positives are typically at odds with
each other and are a strong function of the difference
threshold. We use Receiver Operating Characteristic
(ROC) analysis to arrive at difference thresholds for com-
paring the different techniques. ROC analysis is a widely
used technique for analyzing medical tests, which have
similar sensitivity and false positive tradeoffs [26]. The
ROC curve is a plot of the sensitivity versus false positives
for various difference thresholds. In general, the best
technique is the one which achieves maximum sensitivity
for a given number of false positives.

Fig. 1 shows ROC curves for the different phase detec-
tion techniques. These curves are based on the assumption
that a significant CPI (cycles per instruction) change is one
of more than 2%, i.e. the sensitivity is computed as the
fraction of intervals where a CPI change of more than 2%
is indicated as a phase change. False positives are com-
puted as the fraction of intervals where the CPI changes by
less than 2%, but a phase change is indicated.

Both sensitivity and false positives increase with de-
creasing difference thresholds because as the threshold is
reduced, even minor fluctuations in CPI are noticed. In
order to compare the different techniques, we choose
difference thresholds corresponding to the knees of the
curves. The reasoning is that beyond the knee, a small
increase in sensitivity comes at the expense of a large
number of false positives. Moreover, we also try to equal-

ize the false positives to make clear comparisons among
methods. We arrive at difference thresholds of 4% for the
BBV, instruction, and branch working set techniques; 2%
for the procedure working set technique and 0.08% for the
conditional branch counter based technique. This choice of
thresholds leads to about 30% false positives for each
technique.

It is evident that BBVs perform the best – with a sensi-
tivity of 82%, followed by conditional branch counter
(74%) and working set techniques (70%). The working set
techniques do not perform well because they do not keep
track of instruction (or branch/procedure) execution fre-
quencies. Consequently, the maximum sensitivity achiev-
able (∆th = 0) by the instruction working set technique is
limited to 81%.

Amongst the working set methods, the procedure based
method shows slightly lower sensitivity than the other two.
This is expected because it fails to detect phase changes
within procedures. Results show that the procedure based
working set method achieves a maximum sensitivity of
only 68% compared to 81% achieved by the instruction
working set method. This is a fundamental problem with
procedure based phase detection methods.

Redefining a “significant CPI change” leads to qualita-
tively similar results for BBV and working set based
techniques. Fig. 2 shows ROC curves assuming that a CPI
change of 10% (rather than 2%) is significant. The curves
are similar to those in Fig. 1 except that each technique
achieves higher sensitivity for a given number of false
positives and the difference in sensitivity between the
BBV and working set methods decreases. This is to be

expected because a 10% change in CPI is more easily
detected compared to a 2% change.

Figure 2. ROC curves for the various phase de-
tection techniques are shown. CPI changes of
more than 10% are considered significant. (See
Fig. 1 caption for more details)

A more interesting result is that in this case the working

set based techniques work better than the conditional
branch counter based technique, if the fraction of false
positives is limited to less than 40%. This means that the
working set based techniques are more efficient at detect-
ing major phase changes, a result in agreement with our
previous results [11].

Receiver Operator Characteristics

0

20

40

60

80

100

0 20 40 60 80 100
False Positives (%)

S
en

si
tiv

ity
 (%

)

BBV IWSET

BWSET PWSET

BR_CNT

Increasing ∆∆∆∆ th

Figure 1. ROC curves for the various phase detection techniques are shown. CPI changes of more than
2% are considered significant. Difference thresholds (∆∆∆∆th) increase from right to left. IWSET, BWSET
and PWSET represent instruction, branch and procedure working set techniques respectively. BR_CNT
represents the conditional branch counter technique. The figure on the right shows a magnified view
of the shaded part of the left figure. The circled points are chosen for comparison.

60

70

80

90

25 30 35

False Positives (%)

S
en

si
tiv

ity
 (%

)

∆∆∆∆ th = 4%

∆∆∆∆ th = 0.08%

∆∆∆∆ th = 2%

Receiver Operating Characteristics

0

20

40

60

80

100

0 20 40 60 80 100

False Positives (%)

S
en

si
tiv

ity
 (%

)

BBV IWSET

BWSET PWSET

BR_CNT

Increasing ∆∆∆∆ th

60

70

80

90

25 30 35

False Positives (%)

S
en

si
tiv

ity
 (%

)

∆∆∆∆ th = 4%

∆∆∆∆ th = 0.08%

∆∆∆∆ th = 2%

Receiver Operating Characteristics

0

20

40

60

80

100

0 20 40 60 80 100

False Positives (%)

S
en

si
tiv

ity
 (%

)

BBV IWSET

BWSET PWSET

BR_CNT

Increasing ∆∆∆∆ th

4.2.2. Stability and Average Phase Length

Fig. 3 shows, for BBV and working set methods, how
stability and average phase length vary with respect to the
difference threshold. Fig. 4 shows the same for the condi-
tional branch counter method. Clearly, the stability of each
method increases with the difference threshold because
fewer changes are detected due to reduced sensitivity (see
Fig. 1). For the difference thresholds chosen for compari-
son in the previous section (circled in the figure) the
working set based methods achieve slightly greater stabil-
ity (64%) compared to the BBV (62%) and conditional
branch counter (63%) based schemes.

The average phase length roughly increases with the
difference threshold because small perturbations in pro-
gram behavior are not indicated as phase changes. For the
chosen difference thresholds, instruction and branch work-
ing set techniques lead to 30% longer phases on average
compared to BBVs and 38% longer phases on average
compared to the conditional branch counter technique.
Given that the stability shown by each of these techniques
is similar, using BBVs or branch counts leads to a larger
number of shorter phases. This may not be desirable for
tuning algorithms with large performance overheads
associated with reconfiguration.

Figure 3. Variation of stability and average phase
length with respect to the difference threshold.
The phase length is shown in terms of number of
intervals. The circled points correspond to the
difference thresholds used for comparison.

Figure 4. Stability (primary axis) and average
phase length (secondary axis) with respect to
difference threshold, for the conditional branch
counter technique. The circled points correspond
to difference thresholds used for comparison.

4.2.3. Performance Variance

Although large average phase lengths are desirable, the
performance stability within a phase is also important. Fig.
5 shows the percent coefficient of variance (standard
deviation/average) in CPI within stable phases, averaged
over all benchmarks. The difference thresholds used were
the ones arrived at in Sec. 4.2.1. Each of the techniques
achieved less than 2% variance in CPI within stable phases
as compared to a 116% CPI variance across all intervals
(i.e. including unstable regions).

Figure 5. Average CPI variance within stable
phases. Difference thresholds used were 4% for
BBV, instruction and branch working sets, 2% for
procedure working set, and 0.08% for the condi-
tional branch counter technique.

Using BBVs leads to least performance variance
(0.65%) within phases. Instruction and branch working set
techniques achieve just less than 1% variance. Using
procedure working sets leads to 1.4% variance which

Average CPI Variance in Stable Phases

0

0.3

0.6

0.9

1.2

1.5

1.8

BBV Insn
Wset

Branch
Wset

Proc
Wset

Branch
Counter

C
P

I v
ar

ia
n

ce
 (%

)

Dynamic Branch Counter based Technique

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5
Difference Threshold (%)

S
ta

b
ili

ty
 (%

)

0

4

8

12

16

20

A
vg

. P
h

ase L
en

g
th

0

5

10

15

0 2 4 6 8 10
Difference Threshold (%)

A
vg

. P
h

as
e

L
en

g
th

BBV
insn. wset
branch wset
proc. wset

40

50

60

70

80

90

S
ta

b
ili

ty
 (%

)

BBV
insn. wset
branch wset
proc. wset

Stability, Avg. Phase Length vs. Difference Thresholds

0

5

10

15

0 2 4 6 8 10
Difference Threshold (%)

A
vg

. P
h

as
e

L
en

g
th

BBV
insn. wset
branch wset
proc. wset

40

50

60

70

80

90

S
ta

b
ili

ty
 (%

)

BBV
insn. wset
branch wset
proc. wset

Stability, Avg. Phase Length vs. Difference Thresholds

further establishes that procedure based techniques do not
work as well as instruction and branch based techniques.
Interestingly, the conditional branch counter technique
performs the worst with a CPI variance of 1.6%, although
its sensitivity is higher than any of the working set tech-
niques. This means that the technique detects more rela-
tively small phase changes and misses some of the larger
phase changes compared to the working set techniques.

4.3. Correlation

Because BBVs perform better than the other techniques
on most metrics, we compute correlation between the
BBV technique and each of the other techniques. The
difference thresholds used were the ones arrived at in Sec.
4.2.1. The instruction and branch working set schemes
show 85% correlation, while the procedure working set
and conditional branch counter based schemes show 80%
and 83% correlation respectively. Since each of the tech-
niques agrees with the BBV technique more than 80% of
the time, an important question is – do they agree on most
of the major phase changes?

Figure 6. A comparison of BBV and instruction
working set schemes. The first set of four bars
(correlation) shows the fraction of time that the
two techniques agree, disagree, only BBV de-
tects a change and only working set detects a
change. The remaining four sets show the rela-
tive change in CPI; data and L2 cache miss rates
and branch misprediction rates for each of the
four types of events described above.

To answer this question, we compare the BBV and in-
struction working set techniques in more detail (Fig. 6).
The first set of four bars in Fig. 6 show respectively, the
percent of time the two techniques agree on the presence
or absence of a phase change (agree), the percent of time
they disagree (disagree), the percent of time the BBV
technique indicates a change but the instruction working
set technique does not (bbv_change_only) and the percent
of time the instruction working set technique indicatess a
change but the BBV technique does not (wset_change
_only). The next four sets of bars show the average rela-

tive change in performance metrics (CPI; data and L2
cache miss rates; branch misprediction rate) for each of
these four events (agree, disagree, bbv_change_only,
west_change_only). We do not include instruction cache
miss rates because being close to zero they cause very
large relative changes that cannot be well represented on
this graph. Note that for the performance metrics, the
agree case consists only of events where both techniques
indicate a phase change, i.e. it does not contain cases
where both agree that there is no phase change.

As seen from the figure, the BBV and the instruction
working set technique agree about 85% of the time. Of the
15% of the time they disagree, they are split roughly
equally. Focusing on the first two bars in each set of
performance metrics, it is evident that the relative per-
formance change seen when both the methods agree on a
change is much higher than the relative change seen when
they disagree. This means that most of the major phase
changes are detected by both methods.

In cases where the two techniques disagree, the relative
change in performance seen when only the BBV indicates
a phase change (third bar in each set) is higher than the
relative change seen when only the working set method
indicates a change (fourth bar in each set). This means that
the BBV based technique is better at detecting changes in
performance. This is expected because the BBV inherently
contains much more information compared to the instruc-
tion working set. However, it should be noted that this
happens less than 9% of the time on average.

5. Hardware Implementations

The previous section compared the performance of
BBV, working set and conditional branch count tech-
niques using unbounded hardware resources. In practice,
BBVs and working sets are too large to be efficiently
stored and compared in hardware. In previous work
[10][11], we proposed a hardware structure called the
working set signature, which is a compact representation
of the working set. Similarly, Sherwood et al. [19] pro-
posed an array of accumulators (counters) called the
accumulator table to represent BBVs. In this section, we
compare the performance of these hardware implementa-
tions. The hardware implementation for a conditional
branch counter is equivalent to its unbounded implementa-
tion for the interval sizes studied, and thus is not dis-
cussed.

5.1. Hardware Structures

5.1.1. Working Set Signature

A working set signature is a lossy-compressed repre-
sentation of the complete working set [10][11]. The signa-
ture is formed by sampling the working set i.e. program

Correlation and Performance changes

0

15

30

45

60

75

90

correlation cpi dcache l2cache bpred

P
er

ce
n

t

agree

disagree

bbv_change_only

wset_change_only

counters (PCs) over a fixed interval of instructions (e.g. 10
million) and hashing the samples into an n-bit vector using
a random hash function (Fig. 7). The signature is reset at
the beginning of each interval to remove stale working set
information.

Phase changes are detected by comparing consecutive
signatures using the relative signature distance defined as

∆ =
21

21

S S

S S

+
⊕

,

i.e. (ones count of exclusive OR of signatures)/(ones count
of inclusive OR of signatures). If the relative signature
distance is greater than a preset threshold, a phase change
is indicated. We propose the use of virtual machine soft-
ware to compute the relative signature distance [10][11].
However, it can also be done in hardware.

Figure 7. Working set signature mechanism. PCs,
shifted by a few bits, are hashed into the signa-
ture bit vector and the corresponding entries are
set. The hash function used is pseudo-random.

The signature fill-factor depends on the signature size

as well as the working set size. Large working sets can
saturate small working set signatures. In order to reduce
the pressure on instruction working set signatures, the PCs
are shifted by a few bits thereby reducing the number of
unique elements that are hashed. In this work, we shift
PCs by five bits, which is equivalent to sampling blocks of
eight instructions. Shifting may not be necessary for
branch and procedure working set signatures because only
20 - 25% of committed instructions are branches and a
mere 1 - 2% are procedure entry points.

5.1.2. Accumulator Table

The accumulator table (Fig. 8) is an array of counters
indexed by hashing branch PCs. Whenever a branch PC is
encountered, the corresponding counter is incremented by
the number of instructions committed since the last
branch. The accumulator table collects samples over a
fixed interval of instructions and is reset at the beginning
of each interval.

To prevent overflow, each accumulator is made large
enough to be able to count up to the number of instructions
in the interval. For example, if the interval is 10 million

instructions, then each accumulator is 24-bits wide. Phase
changes are detected by comparing consecutive arrays
using a Manhattan distance metric (see Sec. 4.1). If the
distance is greater than a preset threshold, a phase change
is indicated.

Figure 8. Accumulator table update mechanism.
Branch PC is hashed into the table and the cor-
responding counter is incremented with the num-
ber of instructions committed since the last
branch. Hash function used is pseudo-random.

5.2. Design Space

In this work, we study three different sizes for each of
the hardware based phase detection techniques. The sizes
for instruction/branch signatures (4096, 1024, 512 bits)
and accumulator tables (1024, 128, 32 entries) are similar
to those used in previous work [10][11][19]. Procedure
signature sizes were chosen to be 1024, 256 and 64 bits
because procedure working sets are much smaller com-
pared to corresponding instruction/branch working sets.

Figure 9. The position of each of the techniques
in the design space is shown. The X-axis repre-
sents the number of counters used to capture
information. The Y-axis shows the number of bits
used in each counter.

These hardware techniques, along with the unbounded
cases considered in the previous section, span a wide
design space as shown in Fig. 9. Each technique can be
categorized in terms of the number of counters and the
number of bits in each counter. The unbounded BBV

counters

 b

it
s

in
 c

o
u

n
te

r

BBV
(∞,∞)

Working set
(∞,1)

Accumulator table
(32,∞)

Working set
signature
(1024,1)

Branch
Counter

(1,∞)

counters

 b

it
s

in
 c

o
u

n
te

r

BBV
(∞,∞)

Working set
(∞,1)

Accumulator table
(32,∞)

Working set
signature
(1024,1)

Branch
Counter

(1,∞)

H

Branch PC

Accumulator
Table

Adder# instructions

1

1 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0H

Branch PC

Accumulator
Table

Adder# instructions

1

1 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 01

1 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0

0
1
1
0
0
0
1
0
0
0

H

Shifted PC

Signature

0
1
1
0
0
0
1
0
0
0

H

Shifted PC 0
1
1
0
0
0
1
0
0
0

0
1
1
0
0
0
1
0
0
0

H

Shifted PC

Signature

contains maximum information with unbounded counters
each with an unbounded number of bits, the accumulator
tables have a small number of unbounded counters and
finally the conditional branch counter based scheme has
one unbounded counter, although it counts only condi-
tional branches. The working set based techniques form a
similar spectrum albeit with a larger number of single-bit
counters. It should be noted that accumulator table count-
ers have a bounded number of bits, but they are considered
unbounded because they are large enough to prevent
overflows for a given sampling interval.

5.3. Comparison

Fig. 10 shows the correlation of each of the hardware
based techniques with the corresponding unbounded case
i.e. instruction working set signatures are compared to
complete instruction working sets, accumulator tables to
BBVs, etc. The difference threshold used is 4% for the
instruction and branch working set signatures, 2% for the
procedure working set signature and 4% for the accumula-
tor table. (see Sec. 4.2.1.)

It is evident that the hardware schemes are highly cor-
related with their corresponding unbounded schemes. As
the number of bits/entries is reduced, the correlations drop
off mainly due to increased aliasing. However, the small-
est size hardware structure still correlates more than 90%
of the time (in each case) with the unbounded scheme.

Figure 10. The correlation of each hardware
scheme with the corresponding unbounded
scheme is shown. The figure shows correlations
for three different sizes of instruction and branch
working set signatures (4096, 1024, 512), proce-
dure working set signatures (1024, 256, 64) and
accumulator tables (1024, 128, 32).

It is worth comparing the accumulator table with an
equivalent instruction working set signature. We consider
the smallest accumulator table i.e. 32 entries, since it
shows reasonably high correlation with BBVs. To prevent
overflow for a sampling interval of 10 million instructions,
each of the accumulators should be at least 24-bits wide.

This translates to a total of 32*24 = 768 bits. This is com-
parable in area to a 1024-bit signature taking into account
the extra sense amplifiers and fast adder(s) required by the
accumulator table. Correlation between the 32-entry ac-
cumulator table and 1024-bit instruction working set
signature showed results similar to those given in Fig. 6
and thus are not repeated. The two hardware techniques
correlate 87% of the time and the change in performance
metrics when the techniques agree is much higher than the
change when they disagree. This means that both tech-
niques agree on major phase changes. This is not surpris-
ing given the fact that both these techniques are highly
correlated to their unbounded cases and a similar observa-
tion was made there.

5.3.1. Conditional Branch Counter

Sherwood et al. [19] evaluated the performance of ac-
cumulator tables by using a metric called the visible phase
difference. The visible phase difference is the ratio of the
phase difference (Manhattan distance) observed using the
accumulator table, to the phase difference observed using
unbounded BBVs. The visible phase difference of the
unbounded BBV is 100%.

The accumulator table size for their algorithms was
chosen to be 32 entries, because the visible phase differ-
ence achieved by using 32 entries is 72%. However, this is
not necessarily a good metric to use because phase
changes are detected based on a difference threshold and
as long as the phase difference is above threshold, it does
not matter what the visible phase difference is. As an
example, if the difference threshold is 10% and the un-
bounded BBV shows a phase difference of 90%, it does
not matter if the phase difference achieved by the accumu-
lator table is 80% or 25% because a phase change is de-
tected in both cases. This explains why the 32-counter
method agrees with the unbounded BBV 93% of the time
even when results from [19] show that it achieves a visible
phase difference of only 70%.

This means that perhaps an even smaller number of
counters can provide reasonable phase detection ability. In
fact, the conditional branch counter [2], which is an ex-
treme example with a single counter, works quite well
correlating 83% of the time with the unbounded BBV
scheme.

5.4. Other Considerations

Because the hardware schemes discussed in the previ-
ous section correlate (agree) most of the time, the decision
to use a particular technique may be based on other con-
siderations such as hardware complexity and additional
attributes that may be useful for tuning algorithms.

Hardware vs Unbounded Correlations

0

20

40

60

80

100

insn sign branch sign proc sign acc table

C
o

rr
el

at
io

n
 (%

)

large

medium

small

5.4.1. Hardware Complexity

The hardware used in the conditional branch counter
scheme is clearly the simplest and warrants no further
discussion. The working set signature requires a 1-bit wide
RAM array with one read/write port. The instruction
sampling hardware samples each instruction (at most 4 in
a 4-wide superscalar) and hashes it to get the signature bit
to be set. One possible optimization is to sample only one
instruction every two to four cycles. We have seen that
this periodic sampling technique works reasonably well
because the signature only tracks the number of static
instructions touched and not the number of times they
were touched. This can simplify the hardware significantly
and make it amenable to a slow-transistor implementation,
thereby saving power.

The accumulator table uses a 24-bit wide RAM array,
with one read and one write port. Separate read and write
ports may be needed for throughput reasons. The sampling
hardware is more complex than that used in the working
set signatures as it has to analyze the retire stream to detect
positions of branches and increment counters appropri-
ately. Moreover, since the Manhattan distance is based on
instruction counts, dropping samples may not advisable,
thus making fast hardware essential. Additionally, the
accumulator table also requires a fast 24-bit adder to
update the accumulators.

It is clear that the accumulator table is more complex
and less power efficient compared with the signature
method. However, it should also be noted that neither of
these schemes would form an appreciable fraction of
hardware in a modern microprocessor, and thus their small
contribution to power dissipation/ complexity may not be
a concern.

5.4.2. Recurring Phase Identification

The ability to identify recurring phases is a desirable
attribute in phase detection techniques. This property can
be used in tuning algorithms to reuse previously found
optimal configurations for recurring phases [10][11][12]
[19]. This eliminates a significant fraction of reconfigura-
tions, leading to performance improvements. In our previ-
ous work [11], we show that phase-identification based
algorithms can reduce reconfigurations by as much 92%
over a subset of SPEC 2000 integer benchmarks.

Working set signatures and BBVs have been shown to
identify recurring program phases [10][11][19]. Whether
conditional branch counters can be used to identify recur-
ring phases remains to be shown.

5.4.3. Estimating Working Set Size

Working set signatures have an added advantage that
they can be used to estimate the working set size directly
[11]. The working set size k can be estimated from the fill

factor f (number of ones) of the signature using the rela-
tion

k =

)
1

1log(

)1log(

n

f

−

−
,

where, n is the signature size. In cases where performance
of a unit is directly related to the working set size (e.g.
instruction and data caches) signatures can be used to
determine the optimal configuration without going through
a tuning process. This has been shown to reduce the num-
ber of reconfigurations by 74% in a particular instruction
cache tuning algorithm [11].

However, it should be noted that to make use of this
property, the signature should capture the same working
set that the unit performance is dependent on. For exam-
ple, instruction working set signatures can be used to
configure instruction caches but not data caches.

6. Conclusions

The BBV based technique provides better sensitivity
and lower performance variation in phases compared to
the other techniques. The instruction and branch working
set techniques have similar performance on each of the
metrics described. These techniques are less sensitive than
the BBV technique mainly because working sets contain
less information compared to BBVs. However, the instruc-
tion working set technique provides slightly higher stabil-
ity and achieves 30% longer phases on average compared
to the BBV technique. This can benefit trial and error
based tuning algorithms. On average, the BBV and in-
struction working set schemes agree on phase changes
85% of the time. Of the 15% time they disagree, the BBV
is more efficient at detecting important performance
changes. As an auxiliary result, we show that procedure
working set based techniques do not perform quite as well
as the other working set based methods. This is mainly due
to their inability to detect phase changes within proce-
dures.

One of the surprising results of this study is that a sim-
ple conditional branch counter scheme performs quite well
and agrees with the unbounded BBV scheme 83% of the
time. However, it does lead to shorter average phase
lengths and higher performance variance within phases
compared with the BBV and working set schemes. This
indicates that the branch counter based technique fails to
detect some of the major phase changes.

Finally, we find that the hardware schemes i.e. working
set signatures and the accumulator table approximate their
corresponding unbounded cases (working sets and BBV)
very closely, correlating more than 90% of the time even
for the smallest structures considered. Also, equivalent
sized instruction working set signatures and accumulator
tables agree on phase changes 87% of the time.

Given the high correlation between these techniques,
the choice of technique may be guided by other considera-
tions. While the conditional branch counter is the simplest
to implement, signatures and accumulator tables can be
used to identify recurring phases – leading to more effi-
cient tuning algorithms. Signatures also provide the added
advantage that they can be used to estimate certain work-
ing set sizes and immediately configure the corresponding
microarchitectural units such as caches.

Finally, in this work, we dealt with a very large design
space composed of several variables including sampling
intervals, difference thresholds, and hardware sizes. Ad-
mittedly, the results therefore represent a very small slice
of the design space. On the other hand, in the process of
conducting this research we did simulate a large number of
variations and found the results to be qualitatively similar
to those reported here.

7. Acknowledgements

This work is being supported by an NSF grant CCR-
0311361, SRC grant 2000-HJ-782, Intel and IBM.

8. References

[1] D. H. Albonesi, “Dynamic IPC/clock rate optimization,” in
Proc. of the 25th Annual Intl. Sym. on Computer Architec-
ture, Jun. 1998, pp. 282-292.

[2] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas, "Memory hierarchy reconfiguration for
energy and performance in general purpose architectures,"
in Proc. of the 33rd Annual Intl. Sym. on Microarchitecture,
Dec. 2000, pp. 245-257.

[3] S. H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N.
Vijaykumar, "An integrated circuit/architecture approach to
reducing leakage in deep submicron high-performance I-
caches," in Proc. of the 7th Intl. Sym. on High Performance
Computer Architecture, Jan. 2001, pp. 147-157.

[4] P. Ranganathan, S. Adve, and N. Jouppi, "Reconfigurable
caches and their application to media processing," in Proc.
of the 27th Annual Intl. Sym. on Computer Architecture, Jun.
2000, pp. 214-224.

[5] T. Juan, S. Sanjeevan, and J. Navarro, “Dynamic history-
length fitting: a third level of adaptivity for branch predic-
tion,” in Proc. of the 25th Annual Intl. Sym. on Computer
Architecture, Jun. 1998, pp. 155-166.

[6] D. Folegnani, and A. González, "Energy-effective issue
logic," in Proc. of the 28th Annual Intl. Sym. on Computer
Architecture, Jun. 2001, pp. 230-239.

[7] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P.
Bose, “Energy efficient co-adaptive instruction fetch and is-
sue,” in Proc. of the 30th Annual Intl. Sym. on Computer
Architecture, Jun. 2003, pp. 147-156.

[8] R. Bahar, and S. Manne, “Power and energy reduction via
pipeline balancing,” in Proc. of the 28th Annual Intl. Sym.
on Computer Architecture, Jul. 2001, pp. 218-229.

[9] M. Huang, J. Reneau, S.-M. Yoo, and J. Torrellas, “A
framework for dynamic energy efficiency and temperature

management,” in Proc. of the 33rd Annual Intl. Sym. on Mi-
croarchitecture, Dec. 2000, pp. 202-213.

[10] J. E. Smith, and A. S. Dhodapkar, “Dynamic microarchitec-
ture adaptation via co-designed virtual machines,” in 2002
Intl. Solid State Circuits Conference, Digest of Technical
Papers, pp. 198-199, Feb. 2002.

[11] A. S. Dhodapkar, and J. E. Smith, “Managing multi-
configuration hardware via dynamic working set analysis,”
in Proc. of the 29th Annual Intl. Sym. on Computer Architec-
ture, May 2002, pp. 233-244.

[12] M. Huang, J. Renau, and J. Torrellas, “Positional adaptation
of processors: application to energy reduction,” in Proc. of
the 30th Annual Intl. Sym. on Computer Architecture, Jun.
2003, pp. 157-168.

[13] V. Bala, E. Duesterwald, S. Banerjia, "Dynamo: A transpar-
ent dynamic optimization system," in Proc. of the Conf. on
Programming Language Design and Implementation, ACM
SIGPLAN, 2000, pp. 1-12.

[14] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney,
“Adaptive Optimization in the Jalapeno JVM,” in Proc. of
the ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, Oct. 2000.

[15] http://java.sun.com
[16] http://www.microsoft.com/net
[17] Timothy Sherwood, and Brad Calder, “Time varying behav-

ior of programs,” UC San Diego Technical Report UCSD-
CS99-630, Aug. 1999.

[18] J. Henning, “SPEC CPU2000 memory footprint,” online at
http://www.spec.org/ cpu2000/analysis/memory

[19] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and
prediction,” in Proc. of the 30th Annual Intl. Sym. on Com-
puter Architecture, Jun. 2003, pp. 336-347.

[20] T. Sherwood, E. Perelman, and B. Calder, “Basic block dis-
tribution analysis to find periodic behavior and simulation,”
Proc. of the Intl. Conf. on Parallel Architectures and Com-
pilation Techniques, Sep. 2001, pp. 3-14.

[21] T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
“Automatically characterizing large scale program behav-
ior,” Proc. of 10th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Oct.
2002, pp. 45-57.

[22] M. J. Hind, V. T. Rajan, and P. F. Sweeney, “Phase shift
detection: a problem classification,” IBM Research Report
RC-22887, Aug. 2003.

[23] D. Grunwald, A. Klauser, S. Manne and A. Pleszkun, “Con-
fidence estimation for speculation control,” Proc. of the 25th
Intl. Sym. on Computer Architecture, July 1998.

[24] D. Burger and T. Austin, “The SimpleScalar tool set version
2.0,” University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, June 1997.

[25] J. L. Henning, “SPEC CPU2000: Measuring CPU perform-
ance in the new millennium,” IEEE Computer, vol. 33, no.
7, pp. 28-35, Jul. 2000.

[26] M. S. Pepe, “The statistical evaluation of medical tests for
classification and prediction,” Oxford University Press,
2003.

