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Abstract 

Detecting program phase changes accurately is an im-
portant aspect of dynamically adaptable systems. Three 
dynamic program phase detection techniques are com-
pared – using instruction working sets, basic block vectors 
(BBV), and conditional branch counts. Because program 
phases are difficult to define, we compare the techniques 
using a variety of metrics.  

BBV techniques perform better than the other tech-
niques providing higher sensitivity and more stable 
phases. However, the instruction working set technique 
yields 30% longer phases than the BBV method, although 
there is less stability within phases. On average, the meth-
ods agree on phase changes 85% of the time. Of the 15% 
of time they disagree, the BBV method is more efficient at 
detecting performance changes. The conditional branch 
counter technique provides good sensitivity, but is less 
effective at detecting major phase changes. Nevertheless, 
the branch counter technique correlates 83% of the time 
with the BBV based technique. As an auxiliary result, we 
show that techniques based on procedure granularities do 
not perform as well as those based on instruction or basic 
block granularities. This is mainly due to their inability to 
detect changes within procedures. 

 
 

1. Introduction 

General-purpose microprocessor design has tradition-
ally focused on optimizing microarchitectural parameters 
(e.g. issue window size, cache sizes, etc.) at design time. 
The goal is to provide good performance on average, over 
a wide variety of workloads. This can, however, lead to 
sub-optimal performance and power dissipation for certain 
programs or specific execution phases of a program. 

With the ever-increasing need for performance and 
growing importance of power efficiency, architects have 
proposed multi-configuration hardware that dynamically 
adapts to changing program requirements in order to 

achieve better power/performance characteristics [1]-[12]. 
Similarly, on the software side, dynamic code optimization 
[13][14] is gaining importance with the wide spread ac-
ceptance of run-time environments such as Java [15] and 
.NET [16]. 

In the presence of dynamically configurable hardware 
and software, the ability to initiate reconfiguration at the 
right time is essential. Because programs go through 
phases of execution wherein their performance is rela-
tively stable [17][18], phase boundaries are a natural 
choice for performing reconfiguration (or at least deter-
mining if reconfiguration will be beneficial). Detecting 
phase changes accurately is thus an important aspect of 
dynamically adaptable systems. Furthermore, in systems 
where overheads associated with reconfiguration decisions 
are significant, program phase identification may enable 
reuse of configuration information for recurring phases, 
thereby improving performance [11][12][19]. 

There have been several proposals to implicitly [13] or 
explicitly detect program phase changes [2][10][11][12] 
[19][20][21]. Recently, several researchers have proposed 
hardware techniques aimed specifically at detecting phase 
changes, identifying phases and predicting phases [2][10] 
[11][12][19]. In this work, we focus on three of these 
proposed schemes – the first based on working set signa-
tures [10][11], the second based on basic block vectors 
[19], and the third based on a conditional branch counter 
[2]. Because phases are not well-defined, a significant 
aspect of the paper is the definition of appropriate metrics 
for comparing these techniques. 

The next section presents an overview of previously 
proposed techniques for detecting program phase changes. 
Section 3 discusses some of the issues related to the defi-
nition of program phases. It also describes various metrics 
used for comparing the different program phase change 
detection techniques (called phase detection techniques 
henceforth). Section 4 presents a comparison of the tech-
niques with unbounded hardware resources. Section 5 
compares practical hardware implementations based on 
working set signatures and accumulator tables. Section 6 
concludes the paper. 



2. Background 

Balasubramonian et al. [2] use a conditional branch 
counter to detect program phase changes. The counter 
keeps track of the number of dynamic conditional 
branches executed over a fixed execution interval (meas-
ured in terms of the dynamic instruction count). Phase 
changes are detected when the difference in branch counts 
of consecutive intervals exceeds a threshold. Their scheme 
does not use a fixed threshold. Rather, the detection algo-
rithm dynamically varies the threshold throughout the 
execution of the program. 

In previous work [11], we defined a program phase to 
be the instruction working set of the program i.e. the set of 
instructions touched in a fixed interval of time. Program 
phase changes are detected by comparing consecutive 
instruction working sets using a similarity metric called 
the relative working set distance. Because complete work-
ing sets can be too large to efficiently represent and com-
pare in hardware, we propose the use of lossy-compressed 
representations of working sets called working set signa-
tures [10[11]. Signatures are compared using a metric 
called the relative signature distance. Phase changes are 
detected when the relative signature distance between 
consecutive intervals exceeds a preset (fixed) threshold. 
We show that signatures as small as 32 bytes in size can 
be used to resolve program phases in most benchmarks 
studied. 

Sherwood et al. [19][20][21] propose the use of basic 
block vectors (BBVs) to detect program phase changes. 
BBVs keep track of execution frequencies of basic blocks 
touched in a particular execution interval. Phase changes 
are detected when the Manhattan distance between con-
secutive BBVs exceeds a preset threshold. Because entire 
BBVs cannot be stored in hardware, BBVs are approxi-
mated by hashing into an accumulator table containing a 
few large counters [19]. Their results indicate that as few 
as 32 24-bit counters are sufficient to represent BBVs. 

Huang et al. [12] use subroutines to identify program 
phases. They propose the use of a hardware based call 
stack to identify program subroutines. The call stack tracks 
time spent in each subroutine, taking into consideration 
nesting of subroutines. If the time spent in a subroutine is 
greater than a preset threshold, it is identified as a major 
phase. The call stack used in their evaluation is 32 entries 
deep and each entry is 9 bytes wide. 

HP Dynamo [13], a run-time dynamic optimization sys-
tem, detects phase changes in order to flush stale transla-
tions from the cache. Dynamo stores optimized traces of 
the program, called fragments, in a fragment cache. In 
steady state most of the instructions are fetched from this 
fragment cache. A sharp increase in fragment formation 
rate indicates a phase change and is used to trigger flush-
ing of stale fragments from the cache, making room for 
new ones. Unlike the previous schemes, Dynamo detects 

phase changes by observing an implementation dependent 
system characteristic. In general, such schemes can not be 
easily applied to configurable systems where the system 
characteristic being observed is a function of the configu-
ration. 

 

3. Comparison Metrics 

The existence of program phases has intuitive appeal -- 
but in practice phases are not easily determined, or even 
easily defined. Program phase behavior is a result of 
control passing through procedures and nested loop struc-
tures Consequently, program phases have a fractal-like 
self-similar behavior i.e. high-level (long duration) phases 
are composed of several lower-level (shorter duration) 
phases, and in the limit each instruction is a separate 
phase. In essence, there are no absolute phases and phase 
behavior can only be observed with respect to a certain 
granularity. Hind et al. arrive at a similar conclusion based 
on formal analysis of phases and the phase detection 
problem [22].  Hence, phase detection methods do not 
literally detect phase changes; rather, they detect changes 
in program behavior that are assumed to result from phase 
changes.  Nevertheless, we use the term “phase detection 
techniques” when describing them. 

Phase detection techniques typically divide program 
execution into fixed-length sampling intervals (measured 
in terms of dynamic instructions executed). Program-
related information is collected over the sampling interval 
and compared with similar information collected over the 
previous interval. If the two differ by more than a differ-
ence threshold (∆th), a phase change (or transition) is 
indicated. In general, the type of program information 
collected is implementation independent, i.e. it is a func-
tion of the dynamic instruction stream, not of perform-
ance.  

A sequence of two or more intervals containing no in-
dicated phase changes is defined as a stable region. A 
maximal length stable region is defined to be a stable 
phase. Sequences of one or more intervals that do not 
belong to stable phases are called unstable regions. In 
other words, all the individual intervals belonging to an 
unstable region are separated by phase changes.  

Comparison of phase detection techniques is compli-
cated because, as stated above, there are no absolute 
phases, and thus there is no golden standard that tech-
niques can be compared against. Consequently, we com-
pare phase detection techniques using a variety of metrics 
that have some practical appeal.  Because the goal of this 
work is to compare hardware based phase detection tech-
niques, we use metrics that are mostly relevant to dynamic 
optimization and tuning algorithms for adapting multi-
configuration hardware. 

 



3.1. Sensitivity and False Positives 

Program phase detection techniques have been used in 
power/performance optimization algorithms [2][10][11] 
[12][19] and to reduce simulation time of benchmarks by 
identifying sections of code whose performance is repre-
sentative of the entire benchmark [20][21]. Thus, one of 
the desirable properties in a phase detection mechanism is 
the ability to detect a phase change that results in a signifi-
cant performance change.  

We quantify this property with a metric called sensitiv-
ity [23]. Sensitivity is defined as the fraction of intervals 
with significant performance changes (with respect to the 
preceding interval), which were also indicated to be phase 
changes by the phase detection mechanism. It should be 
noted that “significant performance change” is a relative 
term. In this work, a performance change of 2% is consid-
ered significant unless stated otherwise. Consider an 
example program execution, which consists of 1000 inter-
vals, of which 100 intervals show a significant perform-
ance change with respect to the preceding interval. If the 
phase detection mechanism indicates a phase change in 75 
of these 100 intervals, the sensitivity is 75%. If it indicates 
a change for all 100 intervals, then the sensitivity is 100%. 
Note that if a phase change were to be indicated for each 
of the 1000 intervals, the sensitivity would still be 100% 
because all the significant performance changes were in 
fact detected. 

The instance just given indicates that we must also con-
sider the flip side to sensitivity: the fraction of false posi-
tives [23]. The fraction of false positives is the fraction of 
intervals where the performance shows no significant 
change but the phase detection technique indicates a phase 
change. Continuing with the previous example – of the 
900 intervals where no significant performance change 
occurs, if the phase detection scheme indicates a change in 
90 intervals, then the fraction of false positives is 10%. In 
the extreme case where all intervals are indicated as phase 
changes, there are 100% false positives. 

High sensitivity is desirable in tuning algorithms be-
cause it exposes more tuning opportunities leading to 
better power/performance characteristics. On the other 
hand, a large fraction of false positives can cause unneces-
sary reconfigurations which can lead to significant per-
formance loss and increase in power. Thus, a good phase 
detection technique should have high sensitivity and a 
small fraction of false positives.  

3.2. Stability and Average Phase Length 

Attempting to tune and reconfigure in unstable regions 
can lead to unpredictable, non-optimal results. Conse-
quently, algorithms such as the ones proposed in [10][11] 
do not perform tuning while in unstable regions. Tuning 
algorithms can thus benefit if a large part of program 

execution is spent in stable phases. We quantify this with a 
metric called stability, which is defined as the fraction of 
intervals that belong to stable phases. 

Most tuning algorithms use trial-and-error mechanisms 
to arrive at the optimal configuration. That is, they simply 
try a series of different configurations and determine the 
best one. These algorithms require several intervals at the 
beginning of a stable phase to complete the tuning process 
(the algorithm presented in [12] is an exception). If phases 
are short (i.e. small number of intervals), tuning never 
completes. Also, short phases make it difficult to amortize 
reconfiguration overheads associated with the tuning 
process. Thus, the average phase length is an important 
metric – defined as the number of intervals that are part of 
stable phases, divided by the total number of stable phases.  

It should be noted that two programs with the same sta-
bility can have different average phase lengths. For exam-
ple, if a program runs for 1000 intervals divided into two 
length 500 stable phases, the stability is 100% and the 
average phase length is 500 intervals. However, if the 
phase changes at the end of every other interval, the stabil-
ity is still 100% but the average phase length is two. These 
metrics should therefore be used in conjunction with each 
other. 

3.3. Performance Variance 

Because most tuning algorithms are based on the as-
sumption that performance is uniform within a phase, the 
performance variance within a phase can be used as a 
metric. A good phase detection method should be able to 
resolve phases with a relatively small variance in perform-
ance, compared to the variance across the whole program. 
A small variance is an indicator that the phase detection 
mechanism is detecting phase boundaries correctly. 

3.4. Correlation 

Correlation between phase detection techniques can be 
useful for comparing their relative ability to detect phase 
changes. We define correlation between two phase detec-
tion techniques as the fraction of intervals for which they 
agree on the presence or absence of a phase change. If the 
techniques are highly correlated, then the technique with 
the simplest implementation is preferable. In the absence 
of high correlation, the choice of techniques must be based 
on one or more of the metrics defined above and other 
advantages associated with the technique and where it is 
being applied. 

4. Performance with Unbounded Resources 

Before comparing hardware based phase detection 
techniques, we evaluate their limits by comparing tech-
niques based on unbounded working sets, BBVs, and 



conditional branch counters. In addition to instruction 
working set based techniques [10][11], we evaluate branch 
and procedure working set based techniques. 

We equalize the granularity of these techniques by 
choosing a common sampling interval of 10 million 
instructions.  In the course of this research, we tried other 
sampling intervals, and did not find any qualitative differ-
ence in our conclusions. 

4.1. Basic Definitions 

The instruction working set is defined as the set of in-
structions touched over the sampling interval. Similarly, 
branch/procedure working sets are defined as the set of 
branches/procedures touched over the sampling interval. 
In previous work [10][11], we defined a similarity metric 
called the relative working set distance, to compare work-
ing sets. The relative working set distance between inter-
vals i and i-1 is defined as 
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where Wi and Wi-1 are working sets collected over intervals 
i and i-1. The Norm of the set is the number of elements in 
the set i.e. the cardinality of the set. Since the relative 
working set distance is a normalized metric, the maximum 
possible working set difference is 100%. 

Sherwood et al. [20] define a BBV to be a set of count-
ers, each of which counts the number of times a static 
basic block is entered in a given execution interval. In later 
work [19], they approximate the BBV with an array of 
counters, where each counter tracks the number of instruc-
tions executed by a basic block in a given execution inter-
val. In this study, we use the latter definition for a BBV as 
it relates more closely to the hardware implementation. 
The BBV difference between intervals i and i-1 is given 
by the Manhattan distance ∑∞

=
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where each distinct value of j represents a unique basic 
block. 

Phase changes are defined with respect to a difference 
threshold (∆th) i.e. a phase change is indicated when ∆i,i-1 > 
∆th. In order to compare the techniques, we normalize the 
BBV and branch count differences to 100%. This is done 
by dividing the differences by the maximum possible 
difference, which is 2N for BBVs and N for branch counts, 
where N is the number of instructions in the sampling 
interval. 

4.2. Comparison 

We evaluate phase detection techniques, using a modi-
fied version of sim-outorder, an out-of-order simulator 

provided as part of the SimpleScalar toolset [24]. The 
microarchitecture parameters used for performance meas-
urements are shown in Table 1. The results presented are 
averaged over all SPEC 2000 benchmarks [25] with the 
exception of sixtrack and facerec. The latter two could not 
be run due to shortcomings of the simulation environment. 
Reference inputs have been used for each benchmark and 
due to time and resource constraints, each benchmark was 
run to completion or 15 billion instructions. As mentioned 
before, a sampling interval of 10 million instructions was 
used. 

 
Table 1. Microarchitecture Parameters 

 

Processor 
core 

 

4-wide fetch/decode/issue/commit; 64-entry RUU, 32-
entry LSQ; 4 integer ALUs, 1 integer multiplier; 4 FP 
ALUs, 1 FP multiplier; 

Branch      
Prediction 

 

4K entry gshare, 10-bit global history; 2K entry, 2-way 
BTB; 32 entry RAS 

Memory 
subsystem 

 

I and D-cache: 32KB, 2-way, 64 byte line, latency 1 
cycle; unified L2-cache: 512KB 4-way, 128 byte line, 
latency 6 cycles; memory: width 16-byte, latency 100 
cycles 

4.2.1. Sensitivity and False Positives 

Sensitivity and false positives are typically at odds with 
each other and are a strong function of the difference 
threshold. We use Receiver Operating Characteristic 
(ROC) analysis to arrive at difference thresholds for com-
paring the different techniques. ROC analysis is a widely 
used technique for analyzing medical tests, which have 
similar sensitivity and false positive tradeoffs [26]. The 
ROC curve is a plot of the sensitivity versus false positives 
for various difference thresholds. In general, the best 
technique is the one which achieves maximum sensitivity 
for a given number of false positives. 

Fig. 1 shows ROC curves for the different phase detec-
tion techniques. These curves are based on the assumption 
that a significant CPI (cycles per instruction) change is one 
of more than 2%, i.e. the sensitivity is computed as the 
fraction of intervals where a CPI change of more than 2% 
is indicated as a phase change. False positives are com-
puted as the fraction of intervals where the CPI changes by 
less than 2%, but a phase change is indicated. 

Both sensitivity and false positives increase with de-
creasing difference thresholds because as the threshold is 
reduced, even minor fluctuations in CPI are noticed. In 
order to compare the different techniques, we choose 
difference thresholds corresponding to the knees of the 
curves. The reasoning is that beyond the knee, a small 
increase in sensitivity comes at the expense of a large 
number of false positives. Moreover, we also try to equal-



ize the false positives to make clear comparisons among 
methods. We arrive at difference thresholds of 4% for the 
BBV, instruction, and branch working set techniques; 2% 
for the procedure working set technique and 0.08% for the 
conditional branch counter based technique. This choice of 
thresholds leads to about 30% false positives for each 
technique. 

It is evident that BBVs perform the best – with a sensi-
tivity of 82%, followed by conditional branch counter 
(74%) and working set techniques (70%). The working set 
techniques do not perform well because they do not keep 
track of instruction (or branch/procedure) execution fre-
quencies. Consequently, the maximum sensitivity achiev-
able (∆th = 0) by the instruction working set technique is 
limited to 81%. 

Amongst the working set methods, the procedure based 
method shows slightly lower sensitivity than the other two. 
This is expected because it fails to detect phase changes 
within procedures. Results show that the procedure based 
working set method achieves a maximum sensitivity of 
only 68% compared to 81% achieved by the instruction 
working set method. This is a fundamental problem with 
procedure based phase detection methods. 

Redefining a “significant CPI change” leads to qualita-
tively similar results for BBV and working set based 
techniques. Fig. 2 shows ROC curves assuming that a CPI 
change of 10% (rather than 2%) is significant. The curves 
are similar to those in Fig. 1 except that each technique 
achieves higher sensitivity for a given number of false 
positives and the difference in sensitivity between the 
BBV and working set methods decreases. This is to be 

expected because a 10% change in CPI is more easily 
detected compared to a 2% change.  

 
Figure 2. ROC curves for the various phase de-
tection techniques are shown. CPI changes of 
more than 10% are considered significant. (See 
Fig. 1 caption for more details) 

 
A more interesting result is that in this case the working 

set based techniques work better than the conditional 
branch counter based technique, if the fraction of false 
positives is limited to less than 40%.  This means that the 
working set based techniques are more efficient at detect-
ing major phase changes, a result in agreement with our 
previous results [11]. 
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4.2.2. Stability and Average Phase Length 

Fig. 3 shows, for BBV and working set methods, how 
stability and average phase length vary with respect to the 
difference threshold. Fig. 4 shows the same for the condi-
tional branch counter method. Clearly, the stability of each 
method increases with the difference threshold because 
fewer changes are detected due to reduced sensitivity (see 
Fig. 1). For the difference thresholds chosen for compari-
son in the previous section (circled in the figure) the 
working set based methods achieve slightly greater stabil-
ity (64%) compared to the BBV (62%) and conditional 
branch counter (63%) based schemes. 

The average phase length roughly increases with the 
difference threshold because small perturbations in pro-
gram behavior are not indicated as phase changes. For the 
chosen difference thresholds, instruction and branch work-
ing set techniques lead to 30% longer phases on average 
compared to BBVs and 38% longer phases on average 
compared to the conditional branch counter technique.  
Given that the stability shown by each of these techniques 
is similar, using BBVs or branch counts leads to a larger 
number of shorter phases. This may not be desirable for 
tuning algorithms with large performance overheads 
associated with reconfiguration. 

 
Figure 3. Variation of stability and average phase 
length with respect to the difference threshold. 
The phase length is shown in terms of number of 
intervals. The circled points correspond to the 
difference thresholds used for comparison. 

 
Figure 4. Stability (primary axis) and average 
phase length (secondary axis) with respect to 
difference threshold, for the conditional branch 
counter technique. The circled points correspond 
to difference thresholds used for comparison. 

4.2.3. Performance Variance 

Although large average phase lengths are desirable, the 
performance stability within a phase is also important. Fig. 
5 shows the percent coefficient of variance (standard 
deviation/average) in CPI within stable phases, averaged 
over all benchmarks. The difference thresholds used were 
the ones arrived at in Sec. 4.2.1. Each of the techniques 
achieved less than 2% variance in CPI within stable phases 
as compared to a 116% CPI variance across all intervals 
(i.e. including unstable regions). 

 
Figure 5. Average CPI variance within stable 
phases. Difference thresholds used were 4% for 
BBV, instruction and branch working sets, 2% for 
procedure working set, and 0.08% for the condi-
tional branch counter technique. 
 

Using BBVs leads to least performance variance 
(0.65%) within phases. Instruction and branch working set 
techniques achieve just less than 1% variance. Using 
procedure working sets leads to 1.4% variance which 
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further establishes that procedure based techniques do not 
work as well as instruction and branch based techniques. 
Interestingly, the conditional branch counter technique 
performs the worst with a CPI variance of 1.6%, although 
its sensitivity is higher than any of the working set tech-
niques. This means that the technique detects more rela-
tively small phase changes and misses some of the larger 
phase changes compared to the working set techniques. 

4.3. Correlation 

Because BBVs perform better than the other techniques 
on most metrics, we compute correlation between the 
BBV technique and each of the other techniques. The 
difference thresholds used were the ones arrived at in Sec. 
4.2.1. The instruction and branch working set schemes 
show 85% correlation, while the procedure working set 
and conditional branch counter based schemes show 80% 
and 83% correlation respectively. Since each of the tech-
niques agrees with the BBV technique more than 80% of 
the time, an important question is – do they agree on most 
of the major phase changes? 

 
Figure 6. A comparison of BBV and instruction 
working set schemes. The first set of four bars 
(correlation) shows the fraction of time that the 
two techniques agree, disagree, only BBV de-
tects a change and only working set detects a 
change. The remaining four sets show the rela-
tive change in CPI; data and L2 cache miss rates 
and branch misprediction rates for each of the 
four types of events described above. 
 

To answer this question, we compare the BBV and in-
struction working set techniques in more detail (Fig. 6). 
The first set of four bars in Fig. 6 show respectively, the 
percent of time the two techniques agree on the presence 
or absence of a phase change (agree), the percent of time 
they disagree (disagree), the percent of time the BBV 
technique indicates a change but the instruction working 
set technique does not (bbv_change_only) and the percent 
of time the instruction working set technique indicatess a 
change but the BBV technique does not (wset_change 
_only). The next four sets of bars show the average rela-

tive change in performance metrics (CPI; data and L2 
cache miss rates; branch misprediction rate) for each of 
these four events (agree, disagree, bbv_change_only, 
west_change_only). We do not include instruction cache 
miss rates because being close to zero they cause very 
large relative changes that cannot be well represented on 
this graph. Note that for the performance metrics, the 
agree case consists only of events where both techniques 
indicate a phase change, i.e. it does not contain cases 
where both agree that there is no phase change. 

As seen from the figure, the BBV and the instruction 
working set technique agree about 85% of the time. Of the 
15% of the time they disagree, they are split roughly 
equally. Focusing on the first two bars in each set of 
performance metrics, it is evident that the relative per-
formance change seen when both the methods agree on a 
change is much higher than the relative change seen when 
they disagree. This means that most of the major phase 
changes are detected by both methods. 

In cases where the two techniques disagree, the relative 
change in performance seen when only the BBV indicates 
a phase change (third bar in each set) is higher than the 
relative change seen when only the working set method 
indicates a change (fourth bar in each set). This means that 
the BBV based technique is better at detecting changes in 
performance. This is expected because the BBV inherently 
contains much more information compared to the instruc-
tion working set. However, it should be noted that this 
happens less than 9% of the time on average. 

5. Hardware Implementations 

The previous section compared the performance of 
BBV, working set and conditional branch count tech-
niques using unbounded hardware resources. In practice, 
BBVs and working sets are too large to be efficiently 
stored and compared in hardware. In previous work 
[10][11], we proposed a hardware structure called the 
working set signature, which is a compact representation 
of the working set. Similarly, Sherwood et al. [19] pro-
posed an array of accumulators (counters) called the 
accumulator table to represent BBVs. In this section, we 
compare the performance of these hardware implementa-
tions. The hardware implementation for a conditional 
branch counter is equivalent to its unbounded implementa-
tion for the interval sizes studied, and thus is not dis-
cussed. 

5.1. Hardware Structures 

5.1.1. Working Set Signature 

A working set signature is a lossy-compressed repre-
sentation of the complete working set [10][11]. The signa-
ture is formed by sampling the working set i.e. program 
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counters (PCs) over a fixed interval of instructions (e.g. 10 
million) and hashing the samples into an n-bit vector using 
a random hash function (Fig. 7). The signature is reset at 
the beginning of each interval to remove stale working set 
information. 

Phase changes are detected by comparing consecutive 
signatures using the relative signature distance defined as 

∆ = 
21

21

S  S

S  S

+
⊕

, 

i.e. (ones count of exclusive OR of signatures)/(ones count 
of inclusive OR of signatures). If the relative signature 
distance is greater than a preset threshold, a phase change 
is indicated. We propose the use of virtual machine soft-
ware to compute the relative signature distance [10][11]. 
However, it can also be done in hardware. 
 

 
Figure 7. Working set signature mechanism. PCs, 
shifted by a few bits, are hashed into the signa-
ture bit vector and the corresponding entries are 
set. The hash function used is pseudo-random. 

 
The signature fill-factor depends on the signature size 

as well as the working set size. Large working sets can 
saturate small working set signatures. In order to reduce 
the pressure on instruction working set signatures, the PCs 
are shifted by a few bits thereby reducing the number of 
unique elements that are hashed. In this work, we shift 
PCs by five bits, which is equivalent to sampling blocks of 
eight instructions. Shifting may not be necessary for 
branch and procedure working set signatures because only 
20 - 25% of committed instructions are branches and a 
mere 1 - 2% are procedure entry points. 

5.1.2. Accumulator Table 

The accumulator table (Fig. 8) is an array of counters 
indexed by hashing branch PCs. Whenever a branch PC is 
encountered, the corresponding counter is incremented by 
the number of instructions committed since the last 
branch. The accumulator table collects samples over a 
fixed interval of instructions and is reset at the beginning 
of each interval. 

To prevent overflow, each accumulator is made large 
enough to be able to count up to the number of instructions 
in the interval. For example, if the interval is 10 million 

instructions, then each accumulator is 24-bits wide. Phase 
changes are detected by comparing consecutive arrays 
using a Manhattan distance metric (see Sec. 4.1). If the 
distance is greater than a preset threshold, a phase change 
is indicated. 

 
Figure 8. Accumulator table update mechanism. 
Branch PC is hashed into the table and the cor-
responding counter is incremented with the num-
ber of instructions committed since the last 
branch. Hash function used is pseudo-random. 

5.2. Design Space 

In this work, we study three different sizes for each of 
the hardware based phase detection techniques. The sizes 
for instruction/branch signatures (4096, 1024, 512 bits) 
and accumulator tables (1024, 128, 32 entries) are similar 
to those used in previous work [10][11][19]. Procedure 
signature sizes were chosen to be 1024, 256 and 64 bits 
because procedure working sets are much smaller com-
pared to corresponding instruction/branch working sets. 

 

 
Figure 9. The position of each of the techniques 
in the design space is shown. The X-axis repre-
sents the number of counters used to capture 
information. The Y-axis shows the number of bits 
used in each counter. 
 

These hardware techniques, along with the unbounded 
cases considered in the previous section, span a wide 
design space as shown in Fig. 9. Each technique can be 
categorized in terms of the number of counters and the 
number of bits in each counter. The unbounded BBV 
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contains maximum information with unbounded counters 
each with an unbounded number of bits, the accumulator 
tables have a small number of unbounded counters and 
finally the conditional branch counter based scheme has 
one unbounded counter, although it counts only condi-
tional branches. The working set based techniques form a 
similar spectrum albeit with a larger number of single-bit 
counters. It should be noted that accumulator table count-
ers have a bounded number of bits, but they are considered 
unbounded because they are large enough to prevent 
overflows for a given sampling interval. 

5.3. Comparison 

Fig. 10 shows the correlation of each of the hardware 
based techniques with the corresponding unbounded case 
i.e. instruction working set signatures are compared to 
complete instruction working sets, accumulator tables to 
BBVs, etc. The difference threshold used is 4% for the 
instruction and branch working set signatures, 2% for the 
procedure working set signature and 4% for the accumula-
tor table. (see Sec. 4.2.1.) 

It is evident that the hardware schemes are highly cor-
related with their corresponding unbounded schemes. As 
the number of bits/entries is reduced, the correlations drop 
off mainly due to increased aliasing. However, the small-
est size hardware structure still correlates more than 90% 
of the time (in each case) with the unbounded scheme. 

 
Figure 10. The correlation of each hardware 
scheme with the corresponding unbounded 
scheme is shown. The figure shows correlations 
for three different sizes of instruction and branch 
working set signatures (4096, 1024, 512), proce-
dure working set signatures (1024, 256, 64) and 
accumulator tables (1024, 128, 32). 
 

It is worth comparing the accumulator table with an 
equivalent instruction working set signature. We consider 
the smallest accumulator table i.e. 32 entries, since it 
shows reasonably high correlation with BBVs. To prevent 
overflow for a sampling interval of 10 million instructions, 
each of the accumulators should be at least 24-bits wide. 

This translates to a total of 32*24 = 768 bits. This is com-
parable in area to a 1024-bit signature taking into account 
the extra sense amplifiers and fast adder(s) required by the 
accumulator table. Correlation between the 32-entry ac-
cumulator table and 1024-bit instruction working set 
signature showed results similar to those given in Fig. 6 
and thus are not repeated. The two hardware techniques 
correlate 87% of the time and the change in performance 
metrics when the techniques agree is much higher than the 
change when they disagree. This means that both tech-
niques agree on major phase changes. This is not surpris-
ing given the fact that both these techniques are highly 
correlated to their unbounded cases and a similar observa-
tion was made there. 

 

5.3.1. Conditional Branch Counter 

Sherwood et al. [19] evaluated the performance of ac-
cumulator tables by using a metric called the visible phase 
difference. The visible phase difference is the ratio of the 
phase difference (Manhattan distance) observed using the 
accumulator table, to the phase difference observed using 
unbounded BBVs. The visible phase difference of the 
unbounded BBV is 100%. 

The accumulator table size for their algorithms was 
chosen to be 32 entries, because the visible phase differ-
ence achieved by using 32 entries is 72%. However, this is 
not necessarily a good metric to use because phase 
changes are detected based on a difference threshold and 
as long as the phase difference is above threshold, it does 
not matter what the visible phase difference is. As an 
example, if the difference threshold is 10% and the un-
bounded BBV shows a phase difference of 90%, it does 
not matter if the phase difference achieved by the accumu-
lator table is 80% or 25% because a phase change is de-
tected in both cases. This explains why the 32-counter 
method agrees with the unbounded BBV 93% of the time 
even when results from [19] show that it achieves a visible 
phase difference of only 70%. 

This means that perhaps an even smaller number of 
counters can provide reasonable phase detection ability. In 
fact, the conditional branch counter [2], which is an ex-
treme example with a single counter, works quite well 
correlating 83% of the time with the unbounded BBV 
scheme. 

 

5.4. Other Considerations 

Because the hardware schemes discussed in the previ-
ous section correlate (agree) most of the time, the decision 
to use a particular technique may be based on other con-
siderations such as hardware complexity and additional 
attributes that may be useful for tuning algorithms. 
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5.4.1. Hardware Complexity 

The hardware used in the conditional branch counter 
scheme is clearly the simplest and warrants no further 
discussion. The working set signature requires a 1-bit wide 
RAM array with one read/write port. The instruction 
sampling hardware samples each instruction (at most 4 in 
a 4-wide superscalar) and hashes it to get the signature bit 
to be set. One possible optimization is to sample only one 
instruction every two to four cycles. We have seen that 
this periodic sampling technique works reasonably well 
because the signature only tracks the number of static 
instructions touched and not the number of times they 
were touched. This can simplify the hardware significantly 
and make it amenable to a slow-transistor implementation, 
thereby saving power. 

The accumulator table uses a 24-bit wide RAM array, 
with one read and one write port. Separate read and write 
ports may be needed for throughput reasons. The sampling 
hardware is more complex than that used in the working 
set signatures as it has to analyze the retire stream to detect 
positions of branches and increment counters appropri-
ately. Moreover, since the Manhattan distance is based on 
instruction counts, dropping samples may not advisable, 
thus making fast hardware essential. Additionally, the 
accumulator table also requires a fast 24-bit adder to 
update the accumulators.  

It is clear that the accumulator table is more complex 
and less power efficient compared with the signature 
method. However, it should also be noted that neither of 
these schemes would form an appreciable fraction of 
hardware in a modern microprocessor, and thus their small 
contribution to power dissipation/ complexity may not be 
a concern. 

5.4.2. Recurring Phase Identification 

The ability to identify recurring phases is a desirable 
attribute in phase detection techniques. This property can 
be used in tuning algorithms to reuse previously found 
optimal configurations for recurring phases [10][11][12] 
[19]. This eliminates a significant fraction of reconfigura-
tions, leading to performance improvements. In our previ-
ous work [11], we show that phase-identification based 
algorithms can reduce reconfigurations by as much 92% 
over a subset of SPEC 2000 integer benchmarks. 

Working set signatures and BBVs have been shown to 
identify recurring program phases [10][11][19]. Whether 
conditional branch counters can be used to identify recur-
ring phases remains to be shown. 

5.4.3. Estimating Working Set Size 

Working set signatures have an added advantage that 
they can be used to estimate the working set size directly 
[11]. The working set size k can be estimated from the fill 

factor f (number of ones) of the signature using the rela-
tion 

k =

)
1

1log(

)1log(

n

f

−

−
, 

where, n is the signature size. In cases where performance 
of a unit is directly related to the working set size (e.g. 
instruction and data caches) signatures can be used to 
determine the optimal configuration without going through 
a tuning process. This has been shown to reduce the num-
ber of reconfigurations by 74% in a particular instruction 
cache tuning algorithm [11]. 

However, it should be noted that to make use of this 
property, the signature should capture the same working 
set that the unit performance is dependent on. For exam-
ple, instruction working set signatures can be used to 
configure instruction caches but not data caches. 

6. Conclusions 

The BBV based technique provides better sensitivity 
and lower performance variation in phases compared to 
the other techniques. The instruction and branch working 
set techniques have similar performance on each of the 
metrics described. These techniques are less sensitive than 
the BBV technique mainly because working sets contain 
less information compared to BBVs. However, the instruc-
tion working set technique provides slightly higher stabil-
ity and achieves 30% longer phases on average compared 
to the BBV technique. This can benefit trial and error 
based tuning algorithms. On average, the BBV and in-
struction working set schemes agree on phase changes 
85% of the time. Of the 15% time they disagree, the BBV 
is more efficient at detecting important performance 
changes. As an auxiliary result, we show that procedure 
working set based techniques do not perform quite as well 
as the other working set based methods. This is mainly due 
to their inability to detect phase changes within proce-
dures. 

One of the surprising results of this study is that a sim-
ple conditional branch counter scheme performs quite well 
and agrees with the unbounded BBV scheme 83% of the 
time. However, it does lead to shorter average phase 
lengths and higher performance variance within phases 
compared with the BBV and working set schemes. This 
indicates that the branch counter based technique fails to 
detect some of the major phase changes. 

Finally, we find that the hardware schemes i.e. working 
set signatures and the accumulator table approximate their 
corresponding unbounded cases (working sets and BBV) 
very closely, correlating more than 90% of the time even 
for the smallest structures considered. Also, equivalent 
sized instruction working set signatures and accumulator 
tables agree on phase changes 87% of the time. 



Given the high correlation between these techniques, 
the choice of technique may be guided by other considera-
tions. While the conditional branch counter is the simplest 
to implement, signatures and accumulator tables can be 
used to identify recurring phases – leading to more effi-
cient tuning algorithms. Signatures also provide the added 
advantage that they can be used to estimate certain work-
ing set sizes and immediately configure the corresponding 
microarchitectural units such as caches. 

Finally, in this work, we dealt with a very large design 
space composed of several variables including sampling 
intervals, difference thresholds, and hardware sizes. Ad-
mittedly, the results therefore represent a very small slice 
of the design space. On the other hand, in the process of 
conducting this research we did simulate a large number of 
variations and found the results to be qualitatively similar 
to those reported here. 
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