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Abstract

AC/DC is an adaptive method for prefetching
data from main memory. The basic prefetch method
divides the memory address space into equal-sized
concentration zones (CZones), and uses a global his-
tory buffer to track and detect patterns in miss address
“deltas” (differences between consecutive addresses)
within each CZone. When simulated with a realistic
desktop memory system, CZone prefetching with Delta
Correlations (C/DC) outperforms four other previously
proposed prefetching methods. C/DC yields an aver-
age performance improvement of 23 percent when
compared with no prefetching.

Adaptivity is then added to the basic method. A
tuning algorithm dynamically configures the CZone
size and prefetch degree (i.e. the amount of data pre-
fetched) on a per program-phase basis. Adaptive re-
configuration provides additional performance im-
provements of 4% over C/DC. Overall, the Adaptive
CZone / Delta Correlation (AC/DC) method outper-
forms other methods studied by 10%.

1. Introduction

Over the past two decades, advances in semicon-
ductor process technology and microarchitecture have
led to significant reductions in processor cycle times.
Meanwhile, advances in memory technology have led
to ever increasing memory densities, but relatively
minor reductions in memory access times. Conse-
quently, memory latencies measured in processor clock
cycles are continually increasing and are now on the
order of hundreds of clock cycles. Cache memories
help bridge the processor-memory latency gap, but
caches are not always effective.

One of the basic techniques for enhancing cache
performance is prefetching. As the processor-memory
latency gap continues to increase, there is a continuing
need for development and refinement of prefetch meth-
ods. In this paper, we propose an innovative method

method for cache prefetching aimed specifically at
prefetching from main memory.

The proposed prefetching method uses concentra-
tion zones (CZones) [19] that divide memory into
fixed size zones. Then, the prefetcher looks for stride
patterns in sequences of cache misses directed toward
the individual zones. When it finds an access pattern
within a CZone, it launches prefetch requests. This
method has the desirable property of not needing pro-
gram counter values for the load instructions that cause
misses. Lower levels of the memory hierarchy are of-
ten far removed from the processor core (and may
even be off-chip) so the program counter is typically
not readily available [12][16][19].

CZone history information is held in a Global His-
tory Buffer (GHB) [18]: a FIFO structure that stores all
recent L2 cache miss addresses in the order in which
they occur'. In the GHB, miss addresses within the
same CZone are placed in a time-ordered linked list.
This is in contrast to conventional cache miss history
tables, which are directly addressed. The GHB method
has the advantage of yielding a small prefetch structure
that automatically flushes itself of stale prefetch infor-
mation.

The proposed prefetcher uses delta correlations
[15][18] to prefetch miss address patterns that are more
complex than simple strides. This method is referred to
as CZone / Delta Correlation Prefetching (C/DC).
Looking beyond simple strides is particularly impor-
tant for CZone prefetching because CZones are not
completely effective at isolating access locality (dis-
cussed further in Subsection 3.2).

In general, performance of CZone prefetchers are
sensitive to the CZone size, and optimal CZone size is
a program dependent characteristic. In particular, the
CZone size should roughly match the size of the data
structures that are being accessed. Prefetch perform-
ance is also sensitive to prefetch aggressiveness or
prefetch degree (the number of prefetches triggered by

! For simplicity, in this paper we assume the lowest
level cache is the L2.



a single prefetch event). A high prefetch degree can
significantly improve the performance of some pro-
grams, but the same prefetch degree can cause memory
contention that degrades the performance of other pro-
grams. Consequently we use an adaptive tuning algo-
rithm that operates along two dimensions — for each
program phase it dynamically adjusts both the CZone
size and the prefetch degree to find a near-optimal con-
figuration. This enhanced method is referred to as
Adaptive CZone / Delta Correlation Prefetching
(AC/DC).

We evaluate C/DC and AC/DC prefetching via
simulation of a modern high-end desktop system run-
ning SPEC CPU2000 benchmarks. C/DC and AC/DC
are shown to outperform a number of previously pro-
posed prefetching methods. C/DC outperforms previ-
ously proposed methods by as much as 15%, and per-
forms 6% better on average. For a subset of the SPEC
benchmarks (chosen for its diversity, and including
benchmarks where prefetching tends to hurt perform-
ance), AC/DC is shown to outperform C/DC by an
additional 4%.

2. Related Work

2.1. Stride Prefetching

Stride prefetching techniques detect sequences of
addresses that differ by a constant value, and launch
prefetch requests that continue the stride pattern
[6][9][13][16][19][25]. The simplest methods prefetch
only unit strides, i.e. where addresses are one location
apart. Some early methods indiscriminately prefetch
sequential lines [13], while other methods wait for a
sequential access stream to be detected before pre-
fetching [25].

More advanced stride prefetching methods can pre-
fetch non-unit strides by storing stride related informa-
tion in a history table [6][16][19]. Each table entry 1)
holds the most recent stride (the difference between the
two most recent preceding addresses) 2) the most re-
cent address (to allow computation of the next stride),
and 3) other state information that determines condi-
tions under which a prefetch should be triggered.
When the current address is a and a prefetch is trig-
gered, addresses a+s, a+2s, . . ., a+ds are prefetched —
where s is the detected stride and d is the prefetch de-
gree; more aggressive prefetch implementations will
use a higher value for d. Arbitrary Stride Prefetching
[6] was one of the first schemes for stride prefetching,
but uses the program counter as a table index, making
it less feasible for prefetching into secondary caches.

Stride Stream Buffer CZone Prefetching [19] is a
stride prefetching method that does not use program
counter values for table indexing. Instead, CZone pre-
fetching partitions the memory address space into
fixed-size (power-of-two) CZones. Two memory ref-
erences are in the same CZone if their high-order -
bits, the CZone tag, are the same. The value of n is an
implementation-specific parameter. CZone prefetching
uses the CZone tag to access a filter table for detecting
constant strides among addresses within each CZone.

2.2. Correlation Prefetching

Correlation Prefetching methods look for address
sequence patterns in order to predict future cache
behavior. Markov Prefetching [12] correlates global
miss addresses. Distance Prefetching [15] was origi-
nally proposed to prefetch TLB entries, but was
adapted in [18] to prefetch cache lines. The adaptation
correlates deltas (differences in consecutive addresses)
in the global miss address stream. Tag Correlation Pre-
fetching [10] is a two-level correlation prefetching
method that also uses the global miss address stream.
The conventional cache index accesses a first level tag
history table (THT). The THT contains the last n tags
with the same cache index. These tags are combined
to access a second level Pattern History Table (PHT).
The PHT holds the next predicted tag, which is com-
bined with the cache index to generate a prefetch.

Correlation prefetching has two advantages. First,
correlation methods can prefetch access patterns be-
yond constant stride access patterns. Second, correla-
tion prefetching methods often do not require the pro-
gram counter to detect access patterns.

2.3. Prefetching with a Global History Buffer

Most history-based prefetch methods use a table
that is directly addressed using an index value. An
alternative structure uses a Global History Buffer
(GHB) [18] (See Figure 1). The GHB is an n-entry
FIFO table (implemented as a circular buffer) that
holds the #» most recent L2 miss addresses. Each GHB
entry stores a global miss address and a link pointer.
The link pointers chain the GHB entries into time-
ordered address lists. An Index Table (IT) holds the
initial pointers to the linked lists. The index table is
accessed via some key; depending on the key that is
used, a number of history-based prefetch methods can
be implemented. In a recent study by Pérez et al.[20],
ten prefetch mechanisms proposed since 1990 were
compared using a standard simulation framework; the
GHB method gave the best performance.



In earlier work [18] the GHB was used for imple-
menting both stride and correlation prefetching meth-
ods. However, in that work, CZone indexing of the
GHB was not considered. In this paper we use the
CZone tag to access the Index Table.
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Figure 1: Global History Buffer Prefetching

3. CZone Delta Correlation Prefetching

We begin by defining and evaluating the CZone /
Delta Correlation (C/DC) prefetcher, and then add
adaptivity (AC/DC) in Section 5. As described above,
CZone prefetching divides memory into fixed size
zones, typically powers of two. Then, it looks for pat-
terns within each zone. Using delta correlation enables
prefetching of more complex patterns than simple
strides. For example, consider correlation on pairs of
consecutive deltas in the address sequence shown be-
low (time goes to the right).

Addresses 47 49 54 56 58 63 65
Deltas 2 5 2 2 5 2

In this example, the two most recent deltas are 5
and 2. If the address sequence is searched in reverse
order for the same delta pattern, it is first found at (49,
54, 56). When the delta pair (5, 2) appeared previ-
ously, the next address deltas were 2 and 5, therefore,
if the prefetch degree is two, a prefetch for addresses
67 and 72 is triggered (65+2, 67+5).

In general, the sequences of deltas used for correla-
tion can be any length. We undertook a preliminary
study that indicated that pairs of deltas are a good
choice. Using three deltas provided an insignificant
improvement in prefetch accuracy (i.e. the percent of
prefetches that are actually used by the program before
being evicted) over delta pairs, and in some cases de-
graded prefetch coverage (i.e. the percent of memory
accesses that are prefetched rather than demand
fetched) and performance. Consequently, in the re-
mainder of this work, we consider correlations using
pairs of address deltas as in the example given above.

3.1. Implementation Details

The global history buffer (GHB) used in the C/DC
prefetcher organizes the most recent L2 miss addresses
into linked lists, with the Index Table holding the head
pointers of the lists. To this basic structure, we add a
small delta buffer, a correlation key register, and a
correlation comparison register (See Figure 2).
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Figure 2: C/DC prefetching hardware with an ex-
ample recurring access pattern.

A simple state machine controls the C/DC prefetch-
ing algorithm’s GHB accesses. The state machine
starts when a load misses the L2 cache. The CZone
tag (the high order n-bits) of the miss address is used
to access the Index Table. If the CZone tag hits in the
Index Table, the Index Table entry points to the list of
preceding miss addresses that are in the same CZone.

The correlation mechanism then compares pairs of
deltas in the miss address stream. The first delta in the
address sequence, i.e. the difference between the cur-
rent miss address and the miss address at the head of
the linked list, is computed and shifted into the correla-
tion key register. On the next cycle, the next element
of the linked list is accessed, and the second delta is
computed and shifted into the correlation key register.
This second delta is also shifted into the correlation
comparison register. After the second delta, the linked
list is walked and deltas are shifted into the correlation
comparison register (with the older value being shifted
out). At each step the comparison register and the key
register are compared. If the registers match, a correla-
tion has been detected and prefetching is triggered.

As deltas are computed and shifted into the correla-
tion comparison register, they are also shifted into the



delta buffer and are held. Prefetch addresses are gener-
ated by accessing the delta buffer tail and proceeding
toward the head (in LIFO order) until the desired pre-
fetch degree has been reached. To compute the se-
quence of prefetch addresses the delta values are con-
secutively added to the miss address. The first two
deltas in the delta buffer are ignored, because they are
part of the current correlation. If the prefetch degree is
larger than the number of entries in the delta buffer,
then the delta buffer contains a complete recurring
access pattern. In this case, the delta buffer is accessed
more than once. After adding the last delta in the
buffer (the head) to current miss address, the buffer’s
read pointer is reset to the tail of the buffer and the
process continues. Figure 2 illustrates an example of
an abstract CZone stride pattern, and shows the state of
the GHB prefetching hardware when the pattern has
been detected.

In addition to delta pair detection, the C/DC pre-
fetcher also has a mechanism to quickly identify con-
stant stride memory accesses. Before the second delta
is shifted into the correlation key register, it is com-
pared to the first delta (stored in the correlation key
register during the previous cycle). If the first and
second deltas match, a constant stride access pattern
has been detected and addresses a+ts, a+2s,..., atds
are prefetched.

3.2. Discussion

C/DC, like other recent prefetch research
[10][12][16][18][19], was designed to prefetch into the
lowest level cache (in our case the L.2), because mod-
ern out-of-order processors can tolerate most L1 data
cache misses with relatively little performance degra-
dation. In this context, there are three main advantages
to the C/DC prefetch approach.

First, localizing address streams based on CZones is
well-suited for L2 prefetching because it does not re-
quire the program counter values of load instructions,
but is still able to accurately prefetch regular access
patterns.

Second, the use of a FIFO GHB naturally gives pri-
ority to recent program behavior and eliminates “stale”
history by evicting the oldest miss address history.
With the GHB, longer address streams are kept for the
active miss streams, while the inactive ones age away.
In contrast, a conventional prefetch table implementa-
tion would have a fixed length miss address stream in
each table entry. Furthermore, the number of entries in
a conventional table is chosen to reduce conflicts.
Overall, the conventional approach often results in
stale data and relatively large tables. Using CZones to
index the GHB also reduces the number of bits stored

in the GHB. With CZone prefetching, each GHB entry
stores only the low-order bits of the miss address, be-
cause the high order bits are implied by the CZone tag
that accesses the IT.

Third, the use of delta pair correlation is more gen-
eral than using constant strides. Furthermore, delta pair
correlation can significantly improve CZone prefetch-
ing when CZones are not completely effective at iso-
lating address patterns. For example, consider an array
of structs; each of which is 64 bytes (8, 8-byte words)
in size. In this example words 0, 1, and 5 of each
struct are accessed as part of a loop (each with a dif-
ferent load instruction). Assuming the array starts at
memory location 0, the address stream and correspond-
ing deltas are shown below.

Addresses 0 8 40 64 72 104 128
Deltas 8§ 32 24 & 32 24

If program counter values of the load instructions
were available, then three constant stride patterns
could be extracted from the address stream. However,
in the absence of program counter values, simple
strides do not appear, and a CZone method based only
on strides would not be effective. On the other hand,
there is a clear, detectable pattern in the delta values
that C/DC can prefetch.

The apparent disadvantage of the GHB structure is
the time required to walk the linked list and perform
correlations. This delay is mitigated by the long laten-
cies of cache misses to main memory — on the order of
hundreds of cycles. Because of the long main memory
latency, there is adequate time for accessing the GHB
and performing correlations in a sequential manner.
(Our simulator models the latency for all accesses to
the GHB as the lists are walked.)

4. Evaluation of C/DC Prefetching

4.1. Simulation Method

A modified version of SimpleScalar 3.0 [3] was
used for modeling an out-of-order processor. The
processor configuration is summarized in Table 1.
Memory bandwidth constraints are very important to
data prefetching, therefore, we added a DDR memory
model to SimpleScalar. The memory bus has two
memory channels (See Figure 3), which is representa-
tive of modern high-end desktop systems. We assume
average random access latency and row cycle time of
200 processor cycles. Cuppu et al. [7] have shown that
average memory access latency on a realistic memory
channel (e.g. less than 128 bits wide) is dominated by



bus access and data transfer time. Consequently, the
simulator does not model internal DRAM operations
(i.e. open rows, precharging, and refreshes).

Table 1: Processor configuration

Branch Tournament Predictor
Predictor 16K entry tables

Issue Width |4 instructions

RUU Size 64 entries

Load/Store 32 entrics

Queue

Level 1 8KB, 2-way set associative,
D-Cache 1 cycle latency, 32B lines
Level 1 16KB, direct mapped,
I-Cache 1 cycle latency, 32B lines
Level 2 512KB, 4-way set associative,
Cache 14 cycle latency, 64B lines

Each memory channel has a 16-entry miss status
handling register (MSHR) queue for demand fetches
and a 16-entry prefetch request queue. When the de-
mand fetch MSHR queue reaches a high water mark,
i.e. the point where outstanding cache accesses could
fill the demand fetch MSHRs (if they all miss), instruc-
tion issue is forced to stall.

Channel 0 Channel 1
Prefetch Demand Prefetch Demand
Request Fetch Request Fetch
Queue MSHRs Queue MSHRs

' v v v

Arbitrator
Memory Request

Arbitrator
Memory Request

To Memory To Memory
Bank 0 Bank 1

Figure 3: Memory Bus Interface

Demand fetches are given priority over prefetches;
prefetches are allowed to access the memory bus only
when the demand fetch MSHR queue is empty. If a
prefetch request is made and the prefetch request
queue is full, the head entry (the oldest prefetch re-
quest) is overwritten.

The SPEC CPU2000 benchmark suite is used to
evaluate prefetch performance. However, benchmark
sixtract is excluded because it intermittently generates
unsupported system calls, which are very difficult to

consistently reproduce and debug. All simulations
skipped the first 2 billion instructions and simulated
the next 2 billion instructions.

We compare C/DC with four recent prefetching
methods designed to prefetch the miss address stream:
CZone Prefetching [19], Distance Prefetching [15],
Tag Correlation Prefetching [10], and Markov Pre-
fetching [12].

The simulated prefetching methods inspect the L2
miss address stream and prefetch directly into the L2
cache. Before a prefetch is issued to the memory sub-
system, the L2 cache’s tag array is probed to ensure
the prefetch address is not already in the cache. To
keep prefetched (but not yet accessed) lines from
modifying the “natural” L2 demand miss address
stream, one bit prefetch tags are added to the L2 cache
lines. When a prefetched line is written into the L2
cache, its prefetch tag is set. When a cache access hits
a prefetched line with a set prefetch tag, the prefetch
tag is cleared, and the access’s memory address is sent
to update the prefetch structures as if it were an L2
cache miss.

For each method, prefetch table configurations were
chosen with two goals in mind: 1) each method should
use a (near) optimal table configuration, and 2) when
possible, all the methods should use approximately the
same number of table entries. It is relatively easy to
design satisfactory prefetch history tables for all meth-
ods except Markov and Tag Correlation Prefetching
which have very different design constraints.

Originally, Markov Prefetching was proposed with
an off-chip structure that prefetched the miss address
stream of a small L1 data cache. In contrast, we con-
sider prefetchers that are on-chip and prefetch the miss
address stream of a large associative L2 cache. With
this configuration, a 1MB correlation Markov table
was insufficiently small, so we used a larger table (i.e.
8MB). Tag Correlation Prefetching performance is
even more sensitive to the cache hierarchy and table
sizes. We found that, in general, Tag Correlation Pre-
fetching is less effective at prefetching the miss ad-
dress stream of an associative cache, and the effect of
conflicts in the pattern history table (PHT) is unpre-
dictable. Hence, Tag Correlation Prefetching was also
given a large table (i.e. 8MB), because its performance
was better, in general, with a larger table.

The table configurations used throughout the rest of
the paper are summarized in Table 2. Table sizes are
rounded to the nearest kilobyte/megabyte. All tables
are assumed to have a 1-cycle access latency (which
gives a slight advantage to Tag Correlation Prefetching
and Markov Prefetching).



Table 2: Prefetch Table Sizes

Prefetching | Notation | Table Size
Method Configuration
CZone C/DC 256 IT entries 2 KB
Delta 256 GHB
Correlation entries
Prefetching
CZone C/CS 256 table 6 KB
Prefetching entries
Distance G/DC 256 table 10 KB
Prefetching entries
Markov G/AC 256K table 8 MB
Prefetching entries
Tag CI/AC 2K THT 8 MB
Correlation entries
Prefetching 64K sets, 8 way

PHT

The notation given in the second column of the ta-
ble follows a consistent taxonomy introduced in [18].
Each method is denoted as a pair: X/Y, where X is the
key used for localizing the miss address stream and Y
is the mechanism used for detecting addressing pat-
terns. There are four localizing methods: CZones (C),
Cache Indices (CI), and none — or global (G). And
three detection mechanisms: Delta Correlation (DC),
Address Correlation (AC), and Constant Stride (CS).

The baseline configuration for each method (except
Tag Correlation Prefetching) has a prefetch degree of
four. This is a reasonable level of aggressiveness for
most methods and illustrates the methods’ relative pre-
fetch performance. Furthermore, a prefetch degree
greater than four becomes unreasonable for Distance
and Markov Prefetching, because increasing the pre-
fetch degree beyond four does not improve perform-
ance and significantly increases both the correlation
table size and memory traffic. Tag Correlation Pre-
fetching does not include a prefetch degree capability
(although a method to extend prefetch degree was sug-
gested as future work [10]). For the baseline prefetch
degree of four, we simulated the SPEC CPU2000
benchmark suite with different CZone sizes and chose
a baseline CZone size (64KB) that was near optimal
(averaged over the benchmarks).

4.2. Results

The benchmarks are divided into three groups.
Amiable benchmarks are those where at least one pre-
fetching method studied improves performance by
more than 5%. All amiable benchmarks have less than
75% memory utilization without prefetching; this
leaves sufficient memory bandwidth for prefetches.

Indifferent benchmarks are those where none of the
prefetching methods hurt performance, but no method
improves performance by more than 5%. Hostile
benchmarks are those where prefetching tends to de-
grade performance; this typically occurs when a
benchmark has phases with very high memory utiliza-
tion. The three benchmark groups are shown in Table
3. Figure 4 and Figure 5 show the IPC improvement
and memory utilization for the amiable and hostile
SPEC2000 benchmarks, the benchmarks where pre-
fetching effects performance by at least 5%.

Table 3: Benchmark Groups

Amiable | Indifferent Hostile
applu apsi ammp
facerec art mcf
galgel equake twolf
lucas fma3d vpr
mgrid mesa
swim crafty
wupwise | eon
bzip2 gcc
gap gzip
parser perl
vortex
mc/nc B CZone (C/CS)
SPEC FP - Performance g.[r’i:;a(gf,;g’[’c) B Markov (G/AC)

£ % 8

IPC Improvement

ammp applu facerec galgel lucas mgrid swim wupwise hmean
mc/ibc B CZone (C/CS)
SPEC FP - Memory Utilization O Distance (G/DC) E Markov (G/AC)
E Tag (CIAC) ONo Prefetch

Memory Utilization

T )
T
i
T

]

ammp applu facerec galgel lucas mgrid swim wupwise hmean

Figure 4: Spec FP IPC Improvement (top) and
Memory Utilization (bottom).

C/DC performs as well or better than CZone pre-
fetching (C/CS) on all amiable benchmarks, except for
bzip2. On the floating point benchmarks, C/DC out-
performs C/CS by as much as 15% (on lucas and
wupwise), and by 7% on average. On the integer
benchmarks, C/DC outperforms C/CS by as much as
6%; on average C/DC and C/CS perform the same.



mc/inc B CZone (C/CS)
SPEC INT - Performance O Distance (G/DC) E Markov (G/AC)
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bzip2 gap mcf parser twolf vpr hmean
A mC/DC @ CZone (C/CS)
SPEC INT - Memory Utilization D Distance (G/DC) & Markov (G/AC)
ETag (CIAC)

O No Prefetch
100% =

Memory Utilization

bzip2 gap mcf parser twolf vpr hmean

Figure 5: Spec INT IPC Improvement (top) and
Memory Utilization (bottom).

For workloads that are sensitive to memory conten-
tion (i.e. the hostile ones: ammp, mcf, vpr, and twolf)
inaccurate prefetches result in higher memory utiliza-
tion that degrades performance of all the studied pre-
fetchers. When studied with realistic memory con-
straints, as we have done, the additional memory traf-
fic generated by prefetching is often detrimental to
performance. Prior research on prefetch methods
sometimes assumes much less constrained limits on
available memory bandwidth (often unlimited). As will
be described in Section 5, adding prefetch adaptivity to
C/DC improves performance for the hostile bench-
marks by turning off prefetching in situations where it
is detrimental to performance.

Turning to the previously proposed correlation pre-
fetch methods: Distance, Markov, and Tag Correlation
prefetching (G/DC, G/AC, and CI/AC, respectively),
we see that these methods usually under perform the
CZone methods (C/DC and C/CS). The only excep-
tions are for benchmarks ammp, galgel, and facerec.
In the case of ammp, galgel, and facerec, Markov pre-
fetching (G/AC) performs the best (by a small
amount), however, recall that Markov prefetching uses
an 8MB table.

5. Adaptive Prefetching

Different programs use different data structures and
access patterns. Consequently, the optimal CZone size
and prefetch degree vary across programs. Even within
a program, the data access patterns might change as the
program goes through various phases of execution.
Like most design parameters, the CZone size and pre-
fetch degree can be optimized for good performance,

on average, over a spectrum of benchmarks. However,
this may lead to non-optimal performance (even per-
formance losses) for certain benchmarks, which can be
a deterrent to the use of more aggressive prefetch
mechanisms.
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Figure 6: Performance variation with respect to
CZone size and prefetch degree for benchmarks
mgrid, mcf, and wupwise. Speedup is computed with
respect to no prefetching.

Figure 6 shows the performance variation with
CZone size and prefetch degree for three benchmarks.
The surfaces are generated by simulating 81 configura-
tions (ten CZone sizes times eight prefetch degrees,
plus no-prefetching) and linearly interpolating between
them. It is evident that these benchmarks have widely
differing optimal configurations. Wupwise performs
best with a large CZone size and a large prefetch de-
gree, while mgrid works best with a moderate CZone
size and small prefetch degree. In case of mcf, pre-
fetching actually hurts performance, leading to as
much as 11% performance loss with respect to using



no prefetching. Overall, performance is a strong func-
tion of the CZone size and varies moderately with the
prefetch degree.

Figure 6 illustrates the opportunity for dynamically
tuning the CZone size and prefetch degree to match a
program (or program phase). Furthermore, dynamic
tuning provides the opportunity to implement a back-
off mechanism that turns off prefetching completely in
those cases where prefetching hurts performance.

5.1. An Oracle Tuning Algorithm

In order to evaluate the performance potential of
adaptively tuning the CZone size and prefetch degree,
we first implemented an oracle tuning algorithm. The
oracle algorithm divides program execution into fixed
intervals of one million instructions. Performance is
evaluated for a range of CZone sizes (from 64B to
16MB) and prefetch degrees (from two to sixteen). At
the end of each interval, the algorithm compares per-
formance of each of 81 configurations and selects the
one that provides the best performance. Unnecessary
reconfigurations are eliminated by reconfiguring only
when IPC improves over the previous interval by at
least 1%.

Due to limited simulation resources, we studied a
proper subset of the SPEC CPU2000 benchmarks. The
benchmarks were chosen to represent a mix of amiable
(facerec, lucas, mgrid, wupwise, and gap) and hostile
(mcf and twolf) benchmarks. We did not study indif-
ferent benchmarks because, by our earlier evaluation,
they neither benefit nor are hurt by prefetching.

Table 4: Performance improvement achieved with
the oracle tuning algorithm versus baseline C/DC
prefetching

Floating | Performance Performance
. Integer

Point Improvement Improvement

facerec 8.7% gap 3.1 %

lucas 8.3 % mcf 5.1%

mgrid 4.0 % twolf 4.2 %

wupwise 3.8%

Table 4 shows the performance improvement
achieved by the oracle algorithm versus the baseline
C/DC configuration used in Section 4, i.e. CZone size
of 64KB and prefetch degree of 4. The oracle tuning
algorithm is highly effective and can provide addi-
tional performance benefits of 2% to 9% beyond the
baseline C/DC prefetch method. In hostile benchmarks
such as mcf and twolf, tuning eliminates performance
losses completely. Thus, it is evident that adding adap-
tivity has the potential for adding to prefetch perform-

ance gains. The next section describes a practical tun-
ing algorithm that achieves a large fraction of the gains
demonstrated by the oracle algorithm.

5.2. A Phased-Based Tuning Algorithm

Tuning algorithms have been proposed to control
dynamically configurable hardware structures such as
caches [2], branch predictors [14], and pipelines [1],
among others. Recently, there have been proposals for
tuning algorithms based on program phase detection
[23][8][21][11]. These algorithms exploit the fact that
programs go through phases of execution, with their
behavior being relatively constant within a phase. Tun-
ing is performed whenever a phase change is detected.
The tuning algorithm we study (see Figure 7) uses in-
struction working set signatures [8][23] to detect pro-
gram phase changes. A working set signature is a
(lossy) compressed representation of the program’s
instruction working set. If the instruction working set
signature changes significantly, it is assumed that the
phase has changed.

A

UNSTABLE

A A~

, .

TUNING

v

- TASA

Figure 7: Tuning algorithm for dynamically adapt-
ing the prefetch mechanism. A represents the rela-
tive signature distance while Ay, is the threshold.

The tuning algorithm begins in the UNSTABLE
state with the configuration set to the baseline (CZone
size 64KB, prefetch degree 4). At the end of each tun-
ing interval (e.g. 1M instructions), the algorithm com-
putes a relative working set signature change, or “dis-
tance” (4) with respect to the previous interval’s work-
ing set signature, and compares it with a preset thresh-
old distance (4,) [8]. If the instruction working set
change exceeds the threshold, a phase change is indi-
cated and the algorithm stays in the UNSTABLE state;
if not, the program is assumed to be stable and the al-
gorithm transitions to TUNING. While in TUNING,
the algorithm tries several different prefetch configura-
tions. After all configurations have been tried, the al-
gorithm chooses the one that provides the best per-



formance, and transitions to STABLE. If a phase
change is detected while in the TUNING or STABLE
state, it transitions to the UNSTABLE state and the
configuration is reset.

The tuning algorithm can be implemented entirely
in hardware or using a combination of hardware and
software, for example with a co-designed virtual ma-
chine as proposed in [8]. The implementation requires
a signature generation mechanism, a performance
counter, and a control register for configuring the pre-
fetcher. In the virtual machine implementation, the
tuning algorithm is implemented in software. This
leads to some performance overhead (< 0.1% for a 1M
instruction tuning interval) but provides flexibility with
respect to algorithm development, and possibly lower
power dissipation. A hardware implementation suffers
essentially no performance overhead because tuning
decisions can be overlapped with computation, but it
does require a small amount of additional hardware for
storing the signature from the previous tuning interval,
a mechanism for computing the relative signature dis-
tance [8], and a small state machine to control the algo-
rithm. For evaluations here, we assume a hardware
implementation.

5.3. Optimizations
5.3.1. Adapting Tuning Interval

Because program phases have different lengths and
periodicities, a single tuning interval is not necessarily
suitable for all programs. For example, a tuning inter-
val of 1M instruction causes certain benchmarks (e.g.
facerec) to spend a large fraction of time in the UN-
STABLE state. Consequently, when tuning for a given
program, it is best to first adapt the length of the tuning
interval to the program. In this work, we choose either
100K or 1M instruction intervals; however, other in-
tervals could be easily incorporated into the algorithm.
For the first 250 million instructions simulated (before
initiating tuning), the algorithm computes stability (i.e.
fraction of time not spent in the UNSTABLE state) for
tuning intervals of 100K and 1M instructions, and
chooses the interval providing higher stability. When
stability is similar, the larger tuning interval is given
preference in order to minimize tuning overhead. For
our evaluation the tuning interval is determined only at
the beginning, but for long running programs, the algo-
rithm for finding the best tuning interval can be initi-
ated periodically to adapt to long term changes in pro-
gram behavior.

5.3.2. Reducing Configuration Space

Tuning with 81 prefetching configurations, while
useful for the oracle study, is probably too time-
consuming in practice (unless the program phases are
very long). Therefore, we systematically reduced our
initial configuration space by making two observations
based on Figure 6:

1. Performance at a given point is close to that at
surrounding points. Therefore, choosing fewer
evenly distributed CZone sizes and prefetch de-
grees should work reasonably well. We choose
CZone sizes of 256B, 128KB, and 16MB, and
prefetch degrees of 2, 8, and 16, in addition to the
no-prefetching and baseline configurations.

2. The performance variation with CZone size is
roughly the same for any given prefetch distance,
and vice versa. Thus, the tuning of CZone size and
prefetch degree can be done independently, e.g.
first optimize CZone, then optimize prefetch de-
gree — leading to a significant reduction in tuning
combinations.

5.4. Evaluation

We evaluated the tuning algorithms by simulating
each benchmark for 4 billion instructions. The simula-
tor is fast forwarded by 1.75 billion instructions, after
which the tuning algorithm searches for the best tuning
interval for 250 million instructions. Performance is
then measured over the next 2 billion instructions.
Working set signature size is 128 bytes, and the
threshold for detecting phase changes is set to 50% [8].

Figure 8 compares the Adaptive C/DC (AC/DC)
prefetch mechanism against C/DC and C/CS. As dis-
cussed earlier, C/DC outperforms C/CS on most
benchmarks, except the hostile ones. On hostile
benchmarks, C/CS leads to smaller performance losses
than C/DC mainly due to fewer prefetches generated.
AC/DC, on the other hand, outperforms C/CS consis-
tently on all benchmarks. On hostile benchmarks,
AC/DC often turns off prefetching, thereby eliminating
performance loss. On average, AC/DC improves per-
formance by 10% over C/CS.

AC/DC also improves performance over C/DC on
all benchmarks. In the case of amiable benchmarks,
the performance improvements are a result of adapting
the prefetch parameters (CZone size and Prefetch de-
gree). In hostile benchmarks, the improvements are a
result of turning off prefetching. On average, AC/DC
provides 4% performance improvement over C/DC.
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Figure 8: Speedups attained by the C/CS, C/DC
and AC/DC prefetch mechanisms with respect to no
prefetching.

6. Conclusions

We have proposed and studied innovative methods
for data cache prefetching, aimed specifically at pre-
fetching from main memory because modern out-of-
order processors can tolerate most L1 data cache
misses. The basic method, CZone / Delta Correlation
prefetching (C/DC), combines CZone prefetching,
GHB prefetching, and delta correlation, and has a
number of advantages over existing prefetching meth-
ods.

e (C/DC has the desirable property of not needing
the program counter values of memory instruc-
tions causing misses, allowing the method to be
easily implemented at lower levels of the mem-
ory hierarchy.

e C/DC has a very small prefetch table require-
ments (on the order of a few kilobytes), espe-
cially when compared to other correlation pre-
fetching methods (sometimes requiring mega-
bytes).

e Overall, C/DC outperforms the other prefetching
methods studied. For example, C/DC outper-
forms conventional CZone prefetching by 6%.

Nevertheless, C/DC has some features that are un-
desirable. In general, performance of CZone prefetch-
ers is sensitive to the CZone size, and optimal CZone
size is a program dependent characteristic. Further-
more, C/DC, like the other correlation prefetching
methods studied, is not as accurate as constant stride
prefetching methods, which can lead to higher memory
utilization and performance losses on benchmarks that
are sensitive to memory contention.

We applied a phase-based adaptive tuning algo-
rithm to solve the problems with C/DC and create a
robust prefetching method that performs well on a di-
verse set of benchmarks. On average, the Adaptive
CZone / Delta Correlation prefetching method
(AC/DC) outperforms C/DC by 4%, and outperforms

CZone prefetching (C/CS) by 10%. Adaptivity pro-
vides performance improvements not only by tuning
CZone size and prefetch degree, but it also provides
benefits by turning off prefetching in situations where
performance is degraded.
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