

Reducing Startup Time in Co-Designed Virtual Machines

Shiliang Hu
Dept. of Computer Sciences

University of Wisconsin – Madison
shiliang@cs.wisc.edu

James E. Smith

Dept. of Electrical & Computer Engineering
University of Wisconsin – Madison

jes@ece.wisc.edu

Abstract
A Co-Designed Virtual Machine allows designers to

implement a processor via a combination of hardware
and software. Dynamic binary translation converts code
written for a conventional (legacy) ISA into optimized
code for an underlying implementation-specific ISA.
Because translation is done dynamically, an important
consideration in such systems is the startup time for
performing the initial translations.

Beginning with a previously proposed co-designed
VM that implements the x86 ISA, we study runtime binary
translation overhead effects. The co-designed x86 virtual
machine is based on an adaptive translation system that
uses a basic block translator for initial emulation and a
superblock translator for hotspot optimization. We ana-
lyze and model VM startup performance via simulation.
We observe that non-hotspot emulation via basic block
translation is the major part of the startup overhead.

To reduce startup translation overhead, we follow
the co-designed hardware / software philosophy and pro-
pose hardware assists to dramatically accelerate basic
block translations. By combining hardware assists with
balanced translation strategies, the co-designed transla-
tion system reduces runtime overhead significantly and
demonstrates very competitive startup performance when
compared with conventional processors running a set of
Windows application benchmarks.

1 Introduction
Co-designed virtual machines (VMs) [10, 21, 22]

provide the processor designer with new opportunities for
innovation through the combined, close interaction of
implementation level hardware and software. The overall
design supports a conventional (legacy) ISA, but the
hardware directly supports an implementation ISA that is
designed for superior performance and/or power effi-
ciency. A concealed layer of software mates the conven-
tional ISA with the new implementation ISA. This layer
of software not only translates the conventional binary to
the implementation ISA, but also optimizes the binary
based on runtime-collected profile information. The hard-

ware and concealed software are developed concurrently,
i.e., co-designed, as part of a unified design effort.

Software-implemented dynamic binary translation
and optimization are base technologies for co-designed
VMs. Optimum performance is achieved only after trans-
lation and optimization have been performed, i.e., in the
steady state. On the other hand, because optimization is
performed dynamically, one must also consider the time it
takes to generate the translated, optimized code, i.e., the
startup time. If a well-behaved compute-bound program is
run for a long period of time, then the steady state per-
formance will dominate and startup time is insignificant.
However, there are situations where the startup time may
be important, and it is this aspect of co-designed VM
implementations that is of interest to us in this paper. Our
goals are to (1) illustrate how runtime binary translation
overhead affects co-designed VM startup performance,
and (2) propose simple hardware mechanisms for reduc-
ing binary translation overhead.

To investigate dynamic binary translation, we have
developed a binary translation system for a specific co-
designed x86 virtual machine. It is an adaptive translator
that uses a simple basic block translator for initial code
emulation and a superblock translator/optimizer for emu-
lating hotspot code (frequently executed code segments).
We first discuss and evaluate co-designed VM perform-
ance under transient (startup) conditions via experimental
simulations. These initial results indicate that basic block
translation overhead is the major component of startup
overhead, and hotspot optimization overhead can further
exacerbate startup delays for some applications.

Then we propose two hardware mechanisms (assists)
for reducing the startup time; both mechanisms are
targeted primarily at basic block translation. The first of
these hardware assists is a dual mode decoder at the
pipeline frontend, and the second is a special-purpose
functional unit added to the superscalar processor
backend. Using either the frontend or the backend
approaches can dramatically reduce the startup time.
Through simulations, we demonstrate that with basic
hardware support, a co-designed VM system can provide
competitive startup performance with a conventional
superscalar processor design.

1.1 Co-Designed VMs and Startup Performance
The traditional ISA used for software binary compila-

tion and distribution is called the architected ISA; the
most prominent nowadays is the x86 ISA. In a co-
designed VM, a separate ISA, the implementation ISA is
implemented in the hardware and can be designed in an
implementation-dependent way to realize performance,
power and/or efficiency advantages. The mapping from
the architected ISA to the implementation ISA is per-
formed by a concealed layer of software, the dynamic
binary translator (DBT). The DBT is designed along with
the implementation ISA and the hardware. We sometimes
refer to the layer of concealed software as the virtual
machine monitor (VMM). Because the implementation
ISA is implemented directly on the hardware, we often
refer to it as the native ISA, and we refer to the individual
instructions as micro-ops because of their similarity to the
micro-ops used in a conventional x86 design.

As discussed above, a co-designed VM implementa-
tion allows greater flexibility for realizing microarchitec-
ture innovations, leading to high performance and/or
energy efficient execution of conventional binary code in
the steady state. However, the VM paradigm also intro-
duces runtime software overhead that can offset perform-
ance gains achieved by the translated code.

Typically, the overhead of an optimizing DBT for
each architected ISA instruction is on the order of thou-
sands of instructions. For example, DAISY [10] is
reported to take more than four thousand operations to
translate and optimize one PowerPC instruction for its
VLIW engine. The translation of each Alpha instruction
to a proposed superscalar-like ILDP ISA takes more than
one thousand Alpha instructions [19]. Because of the
heavy DBT optimization overhead, VM systems usually
employ a staged approach to ISA emulation. During
program startup, one-instruction-at-a-time interpretation
or simple basic block translation are first used. However,
the emulation speed of an interpreter is typically 10X to
100X slower than native execution. An alternative
(sometimes an addition) to interpretation is simple basic
block translation (BBT) where code is translated one
basic block at a time without optimization and is placed in
a code cache [1, 3, 10] for repeated reuse. For many
ISAs, the translation overhead for simple BBT is gener-
ally not much slower than interpretation, so most recent
binary translating systems skip interpretation and imme-
diately begin execution with simple BBT; the Intel IA-32
EL [3] uses this approach, for example. In our work, we
also adopt this approach.

During the startup phase, profiling is used to identify
hotspots, and DBT optimization is only applied to the
hotspots. As observed in related projects [1,2,3,10], a
staged emulation strategy reduces the runtime translation
overhead, but it still can lead to slow start-up times when

compared with conventional processors. We provide
some data in Section 3 to illustrate this effect.

Clearly, long-running applications with small, stable
instruction working sets can benefit from the co-designed
VM scheme even when there is a significant startup over-
head. However, there are important cases where slow
startup can put a co-designed VM at a disadvantage when
compared with a conventional processor. For example,
• Workloads consisting of many short-running pro-

grams or fine-grained cooperating tasks: execution
may finish before the startup overhead can be fully
amortized.

• Real-time applications: real-time constraints can be
compromised if any real-time code is not translated
in advance and then has to go through the slow
startup process.

• Multitasking server-like systems: for large working-
set workloads, the slow startup process can be further
exacerbated by frequent context switches among
resource-competing tasks. A limited code cache size
can cause hotspot re-translations when a switched-out
task resumes.

• OS boot-up or shut-down: here performance is impor-
tant for many client side platforms such as laptops
and mobile devices.

1.2 Related Work
There are a variety of systems that employ software

interpretation and/or dynamic binary translation as their
key enabling technology [1]. The Transmeta Crusoe proc-
essor [21] is a co-designed VM that uses an interpreter to
emulate x86 code initially. Later versions of the IBM
DAISY [10] also interpret PowerPC instructions before
invoking “tree-region” translation. The Transmeta
Efficeon processors [22, 27] use a staged translation strat-
egy (4-stages including the initial interpretation) to pro-
vide the most performance-efficient optimization on each
piece of code. In our research, we use a two-stage strat-
egy, employing basic block translation (BBT) and super-
block [17] translation/optimization (SBT). (Terminology:
DBT is the generic term that includes both BBT and SBT
as special cases).

 With regard to special support for binary translation,
Efficeon designers implemented an execute instruction
that allows native VLIW instructions to be constructed
and executed on the fly. This capability was added to
improve the performance of the CMS interpreter [22].
However, details about the design are not published. In
contrast, we propose special hardware to accelerate BBT
and then save the translated code in a code cache for re-
use. The rePLay [24] and PARROT [25] projects employ
hardware hotspot detector to find program hotspots. Once
a hotspot is detected, it is optimized via hardware and
stored in a small on-chip frame/trace cache for optimized

hotspot execution. The Instruction Path Coprocessor [6] is
a programmable coprocessor that optimizes core proces-
sor’s instructions to improve execution efficiency. In this
work, we explore hardware assists (integrated into pipe-
line) that require simpler hardware than a full-blown
coprocessor or hardware optimizer; also, in our work
translated code is held in a main memory code cache.

On-the-fly profiling is an important part of DBT sys-
tems, both for identifying hotspot code and for assisting
with certain optimizations. To reduce runtime overhead of
profiling, there are proposals for hardware support of pro-
filing and/or hotspot detection, An example is ProfileMe
[7]. Merten et al. [23] proposed a 4K-entry branch behav-
ior buffer (BBB) located after the instruction-retire-stage
to identify dynamic hotspots. In our VM systems, we rely
on such a hardware mechanism to detect hotspots and
reduce initial emulation overhead.

IA-32 EL [3] is a software approach for supporting
x86 applications on Intel IPF platforms. It dynamically
translates x86 instructions into IPF VLIW instructions for
user mode applications. It is a two-stage translator that
begins with a simple basic block translator. Once hotspot
code is detected, an optimizing translator is invoked.
IA-32 EL is a pure software solution that reports signifi-
cant startup (translation) overhead for Windows applica-
tions such as those represented by SYSmark2000. The
Digital FX!32 system [5, 14] is an emulation system for
running x86 Windows applications on DEC Alpha plat-
forms. It initially uses an interpreter that discovers un-
translated code which is then translated and optimized
offline between program runs. DynamoRIO [4] is a soft-
ware infrastructure for runtime code manipulation. It
targets user-mode x86 applications on both Linux and
Windows platforms.

1.3 Paper Overview
The rest of the paper is organized as follows. Section

2 provides background for the binary translation system in
our proposed co-designed x86 virtual machine system.
Section 3 performs analysis and modeling to identify
major sources of VM runtime overhead and shows how
they affect VM startup performance. Section 4 proposes
techniques to reduce binary translation overhead. Prelimi-
nary evaluation of the techniques is presented in section 5.
Section 6 concludes the paper.

2 Baseline Co-Designed VM
To study VM startup time in a specific context, we

use a co-designed x86 virtual machine based on a fusible
instruction set [15,16]. The details of the design are
described in a previous paper [16], and in that paper
steady state performance for the SPEC2000 integer
benchmarks is evaluated. In this section we briefly sum-
marize the baseline co-designed VM.

The proposed microarchitecture and ISA coopera-
tively implement macro-op execution [16]. Pairs of
dependent RISC-like micro-ops (the first micro-op gener-
ates a source operand for the second) are fused by VM
software hotspot optimizer into macro-ops. Then, an
enhanced and simplified superscalar microarchitecture
processes the fused macro-ops as single entities through-
out the entire pipeline. The VM hotspot optimizer can
fuse micro-ops that do not belong to the same original x86
instruction (in contrast to other x86 implementations that
regroup operations from the same x86 instruction for the
pipeline frontend stages [9, 12, 18]). By fusing dependent
pairs, the instruction issue logic (scheduler) can be effi-
ciently pipelined, and the operand forwarding network is
significantly simplified. Ignoring clock cycle advantages
(which may be significant), the proposed implementation
achieves an 18% IPC speedup over a conventional super-
scalar pipeline for the SPEC2000 integer benchmarks.
Performance improvements for Windows applications are
less and are given later in this section.

The VM software first decomposes (cracks) x86
instructions into micro-ops and then follows an optimiza-
tion algorithm that reorders and fuses appropriate depend-
ent micro-op pairs into macro-ops [15]. For studying
startup overhead, the details of the optimization process
are not important; what is important is that the optimizing
DBT software has fairly high overhead (it averages over
1000 instructions to translate and optimize each x86
instruction). In addition, the hardware assists proposed in
this paper target the BBT aspect of translation, not the
optimizing aspects. Hence, they can be applied to other
VM implementations, not just the one studied here.

The co-designed VM software consists of four major
components (Fig. 1a). (1) A light-weight basic block
translator (BBT) that generates straightforward transla-
tions for each basic block when it is first executed; (2) An
optimizing hot superblock translator (SBT) that forms and
optimizes dynamic superblocks; (3) Code caches -- con-
cealed VM memory areas for holding BBT and SBT
translations, and (4) the VMM runtime system that orches-
trates the VM execution: it selects between BBT and SBT
for translation, recovers precise program state, manages
the code caches, etc. Fig. 1b shows the flowchart followed
by VM software. When an x86 binary starts execution,
the system enters the VM software (VM mode) and uses
translations generated by BBT for initial emulation (Fig.
1b). Once a hotspot superblock is detected, it is optimized
by the SBT and placed into the code cache. Branches may
either be linked by the VMM runtime system initially via
translation lookup table or eventually chained directly to
the target translation in the code cache. For most applica-
tions, the VM software will find the working set, optimize
it, and then leave the processor executing in the translated
code cache as the steady state, which is defined as the
translated native mode (shaded in Figure 1).

Im p lem e nta t io n
IS A e .g .

F u s ib le IS A

R ea ch H ot
T h resh o ld ?

S ta r t

B B T T ran s la tes
B as ic B lock

T ra n s la tion
L o oku p in

C od e C a che

S B T O pt im izes H o t
S u pe rb lo ck

E xecu te in
C o de C a ch e

P rec ise S ta te M ap p in g – M a y U s e In te rp re te r

Y E S

N
O

Ex
c e

pt
i o

n

N
O

C h a in

N O C h a in

(a) (b)

tex t

tex t

B a s ic B lo ck C o d e C a ch e S u p e r B lo ck C o d e C a ch e

V M M R un tim e
C o n tro lle rB a s ic B lo ck

T ra ns la to r (B B T)
H o t S up erb lock

T ran s la to r (S B T)

S o ftw a re in A rc h ite c te d IS A :
O S , D rive rs , L ib co d e & A p p lica tio n s

C h a in C h a in

C h a in

In te rp re te r

T ran s la te d N ative M o de

V irtua l M a ch ine M o de A rch ite c ted IS A
e .g . x86

H a rd w a re Im p le m e n ta tio n :
P ro c e ss o r(s), M E M sys te m , I /O d e v ic e s

 Figure 1. Staged emulation in the co-designed x86 VM

 In the research reported here, we conduct experi-
ments and evaluations on full-system Windows applica-
tion traces collected from Winstone2004 Business suite
[28]. These applications are more difficult to optimize
than the SPEC2000 integer benchmarks. For these Win-
dows benchmarks our baseline co-designed VM achieves
8% IPC speedup for steady state performance. The lower
IPC speedup (versus SPEC2000 integer) is caused by
different program characteristics between the bench-
marks. The more important are: (1) only 49% of the
dynamic micro-ops are fused into macro-ops versus 57%
in SPEC2000 integer, and (2) larger working sets in the
Winstone applications cause more cache misses that di-
lute IPC performance improvements. Although Winstone
IPC speedups are lower than for SPEC2000 integer, they
are still significant, and the co-designed VM has other
advantages (clock cycle and hardware simplicity).

3 Performance Characteristics of Dynamic
Binary Translation Systems
There are many performance implications caused by

VM runtime translation, for example, cycles performing
translation and the addition of code cache to the memory
hierarchy. We first discuss performance for a translation-
based VM system from a unified memory hierarchy per-
spective. Then, we model VM startup behavior and
address some key trade-offs in a VM system featuring
staged translation.

3.1 Performance Dynamics of Translation-based
VM Systems
In a conventional design, when a program is to be

executed, its binary is first loaded from disk into main
memory. Then, the program starts execution. As it exe-
cutes, instructions are moved up and down the memory

hierarchy, based on usage. Instructions are eventually
distributed among the levels of cache, memory, and disk.

In the co-designed VM approach, the binary contain-
ing architected ISA instructions is first loaded from disk
into main memory, just as in a conventional design.
However, the architected ISA instructions must be trans-
lated to implementation ISA instructions before they are
executed. The translated code is held in the code cache
for reuse until it is evicted to make room for other blocks
of translated code. Any evicted translation must then be
re-translated and re-optimized if it again becomes active.
As a program executes, the translated implementation ISA
instructions distribute themselves in the cache hierarchy
in the same way as architected ISA instructions in a con-
ventional system.

To simplify the analysis for co-designed VMs, espe-
cially regarding the effects of translation, we identify four
primary scenarios.

(1) Disk startup. This scenario occurs for initial pro-
gram startup or reloading tasks swapped out – the binary
is loaded from disk for execution. After memory is
loaded, execution proceeds according to scenario 2 below.
That is, scenario 1 is the same as scenario 2 with a disk
load added at the beginning.

(2) Memory startup. This scenario models major con-
text switches (or program phase changes) – If a context
switch is of long duration or there is a major program
phase change to code that has never been executed (or has
not been executed for a very long time), then the required
translated code is not in the code cache. However, the
architected ISA code is in main memory, and will need to
be (re)translated before it can be executed. This transla-
tion time is an additional VM startup overhead which has
a negative effect on performance.

(3) Code cache startup / transient. This scenario
models the situation that occurs after a short context

switch or short duration program phase change. Trans-
lated implementation ISA code is still available in the
main memory code cache, but not in the other levels of
the cache hierarchy. To resume execution after the con-
text switch (or a return to the previous program phase),
there are cache misses as instructions are again fetched.
However, there are no instruction translations.

(4) Steady state. This scenario models the situation
where all the instructions in the current working set have
been translated and placed properly in the cache hierar-
chy. The processor is running at “full” speed.

Clearly, scenario 4 steady state is the good case for a
co-designed VM using DBT. Performance is determined
mainly by processor architecture, and the co-designed
VM fully achieves its intended benefits.

In scenario 3, code cache transient, performance is
similar in both the conventional processor and VM
designs as both schemes fetch instructions through the
cache hierarchy, and no translation is required in the co-
designed VM. Performance differences are mainly caused
by second order cache effects. For example, the translated
code will likely have a larger footprint in main memory,
however, the code restructuring for superblock translation
will lead to better temporal locality and more efficient
instruction fetching.

In contrast, scenario 2 memory startup is the case
where VM startup overhead is most exposed. The transla-
tion from architected ISA code (in memory) into imple-
mentation ISA code (in the code cache) is required and
causes the biggest negative performance impact of binary
translation versus a conventional superscalar design.

As noted earlier, scenario 1 disk startup is similar to
scenario 2, with the added disk access delay. The per-
formance effects of loading from disk are the same in
both the conventional and VM systems. Moreover, the
disk load time, lasting many milliseconds, will be the
dominant part of this scenario. The additional startup time
caused by translation will be less apparent and the relative
slowdown will be much less in scenario 1 than in 2.

Based on the above analysis, we will focus our
startup comparison between co-designed VMs with a
baseline conventional superscalar for scenario 2. That is,
when we analyze startup performance, we will start with a
program binary already loaded from disk, but with the
caches empty, and then track startup performance as
translation and optimization is performed concurrently
with execution.

Figure 2 shows a scenario 2 memory startup per-
formance comparison between a conventional superscalar
processor and the baseline co-designed VM that relies on
software for DBT. Results are given for two staged emu-
lation strategies for the co-designed VM; the first uses
BBT followed by SBT, and the second uses interpretation
followed by SBT. The specific machine configurations
are given later in Table 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.0
0

10
.00

10
0.0

0

1,0
00

.00

10
,00

0.0
0

10
0,0

00
.00

1,0
00

,00
0.0

0

10
,00

0,0
00

.00

10
0,0

00
,00

0.0
0

1,0
00

,00
0,0

00
.00

Time: Cycles

No
rm

al
ize

d
IP

C
(x

86
)

Ref: Superscalar

VM: Interp & SBT

VM: BBT & SBT

VM: Steady state

Figure 2. VM startup performance compared
with a conventional x86 processor

The simulations start with empty caches and run 500-
million x86-instruction traces to track performance. (The
total simulation cycles range from 333-million to 923-
million cycles for the reference superscalar). Results are
averaged for the traces collected from the ten Windows
applications in Winstone2004 Business suite. IPC per-
formance is normalized with respect to the steady state
reference superscalar IPC performance. The horizontal
line across the top of the graph shows the VM steady state
IPC performance gain (8%).

The x-axis shows execution time in cycles on a loga-
rithmic scale. The y-axis shows the harmonic mean of
their aggregate IPC, i.e. the total instructions executed up
to that point divided by the total time. At a given point in
time, the aggregate IPCs reflect the total numbers of
instructions executed, making it easy to visualize the rela-
tive overall performance up to that point in time.

A good measure of startup overhead is the time it
takes a co-designed VM to “catch up” with the reference
superscalar processor. That is, the time at which the
co-designed VM has executed the same number of
instructions (as opposed to the time where the instantane-
ous IPCs are equal, which happens much earlier.) This
crossover, or breakeven, point occurs later than 200-
million cycles for the baseline VM system using staged
BBT followed by SBT. And this co-designed VM system
barely reaches half the steady-state performance gains
(4%) before the traces finish.

For the co-designed VM using interpretation fol-
lowed by SBT, the startup performance is much worse.
A hotspot threshold for switching from interpretation to
SBT is 25 executions (as derived using the method
described below in Section 3.2). After finishing the 500-
million instruction traces, the aggregate performance is
only half that of a conventional superscalar processor.

Clearly, the runtime translation overhead affects VM
startup performance when compared with a conventional
superscalar processor design, especially for a startup peri-
ods less than 100-million cycles (or 50 milliseconds in a
2GHz processor core). At the one-million-cycle point, the

baseline VM system has executed only one fourth the
instructions of the reference superscalar scheme.

3.2 Performance Modeling of Staged Emulation
In a two-stage scheme consisting of BBT and SBT,

emulation starts with simple basic block translation.
Dynamic profiling is used to detect hot code regions.
Once a region of code is found to be “hot”, it is re-
organized into superblock(s) and is optimized. Therefore,
translation overhead is a function of two major items. (1)
The number of static instructions touched by a dynamic
program execution that need to be translated first by BBT
(this number is denoted as MBBT). (2) The number of
static instructions that are identified as hotspot and thus
are optimized by SBT (denoted as MSBT). We use symbols
∆BBT and ∆SBT to represent per x86 instruction translation
overheads for BBT and SBT, respectively. Then, for such
a system, the VM translation overhead is:

Translation overhead = MBBT * ∆BBT + MSBT * ∆SBT
 (Eq.1)

Clearly, MBBT is a basic characteristic of the pro-
gram’s execution and cannot be changed. Thus, a feasible
way to reduce BBT overhead is to reduce ∆BBT, and for
this goal, we propose hardware assists in Section 4.
Regarding the SBT overhead, we argue that good hotspot
optimizations are complex and need the flexibility advan-
tages of software. A hardware implemented optimizer (at
least for the optimizations we consider) would be both
complex and expensive. Fortunately, for most applica-
tions, the hotspot code is a small fraction of the total static
instructions. Moreover, the hotspot size, MSBT, is sensitive
to the hot threshold setting. Therefore, we need to explore
a balanced trade-off regarding the hot threshold setting,
which not only reduces SBT overhead by detecting true
hotspots, but also collects optimized hotspot performance
benefits via good hotspot code coverage.

Our evaluation of this trade-off uses a specialized
version of the model proposed for the Jikes virtual ma-
chine [2]. Let p be the speedup an optimized superblock
can achieve over the simple basic block code. Also let N
be the number of times a given instruction executes and
let tb be the per instruction execution time for code gener-
ated by BBT. Then, to break even, the following equation
holds. (This assumes that the optimizer is written in opti-
mized code and its overhead ∆SBT is measured in terms of
architected ISA instructions.)

N * tb = (N + ∆SBT) * (tb / p) ⇒ N = ∆SBT / (p - 1)
 (Eq.2)

That is, the breakeven point occurs when the number
of times an instruction executes is equal to the translation
overhead divided by the performance improvement. In
practice, at a given point in time, we do not know how
many times an instruction will execute in the future. So,

this equation cannot be applied in an a priori fashion. In
the Jikes system, it is assumed that if an instruction has
already been executed N times, then it will be executed at
least N more, Hence, the value N as given in Equation 2 is
used as the threshold value.

In our VM scheme, we set the hot threshold for trig-
gering SBT translation based on this equation and bench-
mark characteristics. To calculate the hot threshold based
on the equation, we first determine the parameters. For
our VM system, we have measured ∆SBT to be 1152 x86
instructions (say 1200) and p is 1.15 ~ 1.2, i.e. optimized
SBT code runs 15 to 20 percent faster than the code gen-
erated by BBT. Then to break even, Equation 2 suggests
that N should be 1200/.15 = 8000.

To illustrate our reasoning and the motivation for a
relatively high hotspot threshold, we characterized the
chosen Windows benchmarks. We used data averaged
over the traces of length 100-million x86 instructions
collected from the ten Winstone2004 Business suite
applications. The x-axis of Figure 3 is instruction count
(frequency). The left y-axis shows the number of static
x86 instructions that are executed for the number of times
marked on the x-axis. The threshold execution count
(8000) is marked with a vertical line. By using the left
y-axis, we see that only 3K of the static instructions have
exceeded the hotspot threshold at the time 100 million
instructions have been executed. It is clear from the fig-
ure that, for these benchmarks, only a small fraction of
executed static instructions become hotspots.

0

10

20

30

40

50

60

70

80

90

100

1+ 10
+

10
0+

1,0
00

+

10
,00

0+

10
0,0

00
+

1,0
00

,00
0+

10
,00

0,0
00

+

Execution frequency

of

 s
ta

tic
 x

86
 in

st
rs

 (X
 1

00
0)

0

5

10

15

20

25

30

35

40

45

50

Ds
tri

bu
tio

n
(%

)

Static x86 instr exe. freq. Dynamic x86 instr. Freq. Distr.

Hot th reshold

Figure 3. Winstone2004 instruction execution
frequency profile (100M x86 instruction traces)

The right y-axis shows the distribution function of
total dynamic x86 instructions. For example, the peak
point of the distribution curve shows that 30+% of all
dynamic instructions execute more than 10K times, but
less than 100K times. This curve falls off after 100K only
because the total dynamic instruction counts for the simu-
lations are 100-million. For longer-running programs, this
curve would continue to rise and the peak would shift to
the right toward higher execution frequency (as the arrow
shows). It is clear from the figure that for a hot threshold

on the order of thousands, the hotspot coverage (the per-
centage of instructions executed from the optimized hot-
spot code) is fairly modest. However, the hotspot code
coverage will be significantly improved if benchmarks
run longer as in realistic cases.

Returning now to Equation 1, the average value of
MBBT is 150K static instructions (this can be determined
by adding the data points of the static instruction curve)
and the average value of MSBT is 3K (determined by add-
ing the data points of the static instruction curve that are
to the right of the hot threshold line). Assuming ∆BBT =
105 native instructions (as measured in our baseline VM)
and ∆SBT = 1674 native instructions (equivalent to the
1152 x86 instructions above), then we see that the BBT
component is 105*150K = 15.75M native instructions,
and the SBT component is 1674*3K = 5.02M native in-
structions. Therefore, in our VM system, BBT causes the
major translation overhead, and this is the overhead we
tackle in this paper. Also because it is a simpler operation,
BBT offers more opportunities for hardware assists.

4 Hardware Assists for Binary Translation
We now propose techniques that significantly reduce

VM startup overhead. These new hardware mechanisms
accelerate certain computation intensive parts of the trans-
lation process. However, we continue to employ VMM
software to manage the overall translation process, due to
its flexibility and simplicity. We present two hardware
assists: one is placed in the pipeline frontend, and the
other in the backend.

4.1 Frontend Dual Mode Decoders
In most conventional designs, x86 instructions are

decoded into RISC-style operations called micro-ops
(µops). We leverage this approach by proposing a dual
mode (two-level) decoder (Fig.4) that targets CISC ISAs.
The two-level decoder is similar to the microcode engine
used in the Motorola 68000 [26]. The first level decoder
cracks x86 instructions into “vertical” micro-ops – in the
same 16-bit/32-bit micro-op format that is used in the
baseline co-designed VM implementation ISA [16]. Then,
a second level decoder generates the “horizontal” decoded
control signals used by the pipeline.

μ-op decoder
Opcode

Operand
Designators

Other pipeline
Control signals

x86 μ-ops
decoder

x86 instruction

Fusible
micro-ops

Figure 4. Dual mode x86 decoder

A two-level decoder is especially well suited to a
CISC ISA because complex CISC instructions must both
be decomposed (cracked) into RISC-style micro-ops and
decoded into pipeline control signals.

We then add a direct path into the second level
decoder (Fig.4), which enables the decoder to be used in
two modes. In conventional x86-mode, x86 instructions
are fetched from memory, and both decode levels are used.
In translated native-mode, translated implementation
instructions are fetched from the code cache. These
instructions bypass the first level decoder and only use the
second level decoder. With the dual-mode decoders, both
architected ISA (x86) code and implementation ISA
instructions can be processed by the pipeline. The ability
to support x86 mode eliminates the need for BBT, along
with its translation overhead and any side effects on the
memory hierarchy.

As the processor runs, it switches back and forth
between x86-mode and native-mode, under the control of
VMM software. When executing in x86-mode, the x86
instructions pass through both decode levels (Fig. 5); this
is done when a program starts up, for example. In x86-
mode, performance will be similar to a conventional x86
superscalar implementation.

A side effect of using the dual-mode approach is that
profiling software cannot be embedded into BBT code,
because there is no BBT code. As a consequence, the
design should employ profiling hardware similar to that
used by Merten et al. [23]. This hardware’s sole function
is to detect hotspots. When such a hotspot is detected, the
hardware invokes the VMM software which can then
organize hotspot code into superblock(s), translate, and
optimize it, and place the optimized superblock(s) into the
code cache.

Dual mode decoders are fast and fit well in a conven-
tional superscalar design. The replacement of a single-
level decode table with a two-level decoder may be a
good hardware tradeoff which will likely result in fewer
transistors than a single-level design, as explained by the
Motorola 68000 designers [26]. This approach, extended
to dual mode operation, adds relatively little extra hard-
ware to a conventional implementation -- the bypass path
around the first level decoder. Also, when executing the
optimized hotspot code, the first level decoder is bypassed
and can be powered off.

I-$
Code $

(Impl. ISA)

Memory
Hierarchy

vertical
x86

decoder

horizontal
Implementation ISA

decoder

Rename/
Dispatch

Pipeline
EXE

backend
Issue

buffer

VM
translation/

optimization
software

x86 code
I-$

Code $
(Impl. ISA)

Memory
Hierarchy

vertical
x86

decoder

horizontal
Implementation ISA

decoder

Rename/
Dispatch

Pipeline
EXE

backend
Issue

buffer

VM
translation/

optimization
software

x86 code

Figure 5. Dual mode x86 decoders in a pipeline

4.2 Backend Functional Units
The frontend hardware assist modifies a critical part

of the pipeline and must be able to decode instructions at
full bandwidth. Furthermore, it must be designed to
implement the complete architected ISA (x86). An alter-
native is to implement a hardware assist in the form of a
programmable backend functional unit. This unit is less
intrusive than the frontend unit, does not need to provide
the high bandwidth of the frontend assist, and can target
the common cases, not all cases.

During initial emulation, BBT introduces the major
runtime overhead, and the dominant part of BBT is to
decode and crack x86 instructions into micro-ops. In our
BBT system, an average of 90 out of the 105 micro-ops
used for translating each x86 instruction are associated
with instruction decoding and cracking. Therefore, a func-
tional unit that performs these operations can greatly
speed up BBT translation.

We propose such a backend functional unit that is
accessed through a new instruction in the implementation
ISA. Table 1 briefly describes the new instruction
XLTx86. XLTx86 accesses the 128-bit F registers that are
architected for mapping the x86 FP/media states. Addi-
tionally, XLTx86 operates on a special flag/status register
CSR that is explained below.

Table 1: Hardware accelerator -- new instruction

NEW INSTRUCTION: XLTX86 FSRC, FDST

BRIEF DESCRIPTION: Decode an x86 instruction
aligned at the beginning of the 128-bit Fsrc register,
and generate 16b/32b micro-ops into the Fdst register.
This instruction affects CSR status register

Figure 6a illustrates the kernel loop used by the

VMM for hardware accelerated BBT (in the implementa-
tion ISA assembly language). Rx86pc is the implementa-
tion register holding the architected x86 PC value; this
register points to an instruction in the x86 instruction
memory.

To be more specific, x86 instructions are fetched by a
LD (load) operation into register Fsrc. Because x86
instructions are from one byte to seventeen bytes long
(and very few are more than eleven bytes in real code),
the Fsrc register holds at least one x86-instruction. The
fetched x86 instruction is aligned at the beginning of the
Fsrc register. The next instruction, XLTx86, then decodes
and cracks the x86-instruction into micro-op(s). The input
to XLTx86 is the Fsrc register. The output micro-ops are
placed in the Fdst register and flags are set in the CSR
status register. The format of the flag status register CSR
is shown in Figure 6b. The 4-bit x86_ilen field returns the
length of the x86 instruction. The 4-bit µops_bytes field
returns the length of the generated micro-op(s) in the

implementation ISA. The Flag_cmplx bit is set if the x86-
instruction being decoded is too complex for the hardware
decoder. This mechanism keeps the hardware assist
simple and fast by off-loading complicated cases to soft-
ware; for example, if the x86 instruction should happen to
be more than 16 bytes (the size of the Fsrc register). The
Flag_cti flag bit is set if the x86-instruction being proc-
essed is a control transfer instruction (which requires spe-
cial handling). After decoding, most x86-instructions are
cracked into micro-ops of no more than 16 bytes. Note
that the 16-bit/32-bit implementation ISA design implies
that, only in a few rare cases, the 128b Fdst is too short to
hold result micro-ops; this is another case that is flagged
as a complex instruction. Native micro-ops in Fdst are
written back to the code cache by a store operation. The
rest of the loop does bookkeeping (in the figure, :: indi-
cates the two micro-ops are fused as a macro-op [15.16]).

0. HAloop:
1. LD Fsrc, [Rx86pc]
2. XLTx86 Fdst, Fsrc
3. Jcpx complex_x86code
4. Jcti branch_handler
5. ST Fdst, [Rcode$]
6. MOV Rt0, CSR
7. AND Rt1, Rt0, 0x0f :: ADD Rx86pc, Rt1
8. AND.x Rt2, Rt0, 0xf0 :: ADD Rcode$, Rt2
9. JMP HAloop

(a). Code for the HW assisted fast BBT loop

Flag_cmplx µops_bytes (4-bit)Flag_cti x86_ilen (4-bit)

(b). CSR, control & status register format for XLTx86

Figure 6. HW accelerated basic block translator

For microarchitecture design, the new functional unit

is located in the FP/media part of the processor core
because it uses F registers to hold long x86 instructions
and multiple micro-ops (see Figure 7). If implemented in
a superscalar style microarchitecture such as that pro-
posed in [16], the XLTx86 instruction will be dispatched
to the FP/media instruction queue(s) and issued to the
new functional unit via a FP/media issue port. XLTx86
can take multiple cycles to execute as do many other
FP/media instructions. In our research, we assume
XLTx86 takes four cycles. The x86 instruction bytes are
supplied to the functional unit via streaming buffer and
the generated micro-ops are written back to memory
directly without going through the data cache.

Fetch

Align/Fuse

Decode

Rename

Dispatch

TO
 G

P
, I

nt
eg

er
 b

ac
ke

nd

FP/MM ISSUE Q FP/MM Register File 128b X 32

F/M - ADD Functional
Unit(s) to

Assist VMM

F/M–MUL
DIV and

Other
long-lat

ops

LD/ST

Figure 7. Hardware Accelerator µ-architecture

For circuit design, the functional unit for XLTx86 is

essentially a simplified, one instruction wide, x86 decoder
relocated to the execution stage of the FP / media core.

The new instruction, XLTx86, speeds up BBT by
accelerating the dominant part of fetch/decode/crack
(from tens of cycles to only a few cycles). Meanwhile,
because it is an instruction that provides a primitive
operation (from the translation perspective), it offers the
VMM flexibility and simplicity beyond the frontend dual
mode decoders.

5 Evaluation
5.1 Evaluation Methodology

The experimental infrastructure is based on the
co-designed x86 virtual machine [16] summarized in
Section 2. The staged translation software is developed as
part of the concealed VMM runtime software. The
co-designed processor is modeled via a microarchitecture
timing simulator.

To compare startup performance with conventional
superscalar designs and to illustrate how VM system
startup performance can be improved by the proposed
hardware assists, we simulate the following machine
configurations. Detailed configuration settings are pro-
vided in Table 2.

• Ref: superscalar: The conventional superscalar
microarchitecture serves as the baseline/reference.

• VM.soft: A conventional co-designed VM scheme,
with software-only BBT and SBT dynamic binary
translators.

• VM.be: The co-designed x86 VM, equipped with
pipeline backend functional units.

• VM.fe: The co-designed x86 VM, equipped with
dual mode decoders at the pipeline frontend.
The hot threshold in VM systems is determined by

Equation 2 and benchmark characteristics. For the
benchmarks used in this paper, all VM models VM.soft,
VM.be and VM.fe, use a threshold of 8K. Note that the
VM.fe and the Ref: superscalar schemes have a longer
pipeline frontend due to the x86 decoders.

To stress startup performance and other transient
phases for a binary translation based VM system, we run
short traces collected from the ten Windows applications
taken from the Winstone2004 Business benchmarks. For
studies focused on accumulated values such as benchmark
characteristics, we simulate 100-million x86 instructions.
For studies focused on time variations, such as variation
in IPC over time, we simulate 500-million x86 instruc-
tions and express time on a logarithmic scale. All simula-
tions are set up for testing the memory startup scenario
(Scenario 2 described in Section 3.1) to stress VM spe-
cific runtime overhead.

We first show how the proposed hardware assists
speed up VM runtime translation by comparing the VM
system startup performance with that of a conventional
superscalar processor model. Then, we conduct perform-
ance and energy analysis for the hardware assists inte-
grated into the VM system.

5.2 Performance Evaluation of the VM Systems
Figure 8 shows the same startup performance com-

parisons as Figure 2. Additionally Figure 8 shows startup
performance for the VMs containing the proposed hard-
ware assists. As before, the normalized IPC (harmonic
mean) for the VM steady state is about 8% higher than the
baseline superscalar when it is in steady state.

The VM system equipped with dual mode decoders
at the pipeline frontend (VM.fe) shows practically a zero
startup overhead; performance follows virtually the same
startup curve as the baseline superscalar because they
have very similar pipelines for cold code execution. Once
a hotspot is detected and optimized, the VM scheme starts
to reap performance benefits. VM.fe reaches half the
steady-state performance gains (4%) in 100M cycles.

The VM scheme equipped with a backend functional
unit decoder (VM.be) also demonstrates good startup
performance. However, compared with the baseline
superscalar, VM.be lags behind for the initial several
millions of cycles. The breakeven point occurs at around
10-million cycles and the half performance gain point
happens after 100-million cycles. After that, VM.be
performs very similarly to the VM.fe scheme.

Table 2. Machine Configurations

 Ref: superscalar VM.soft VM.be VM.fe

Cold x86 code Hardware x86 decoders
No optimization

Simple software
BBT, no opts

BBT assisted by the
backend HW decoder.

Hardware Dual-mode
decoders

Hotspot x86 code Hardware x86 decoders
No optimization

Software hotspot
optimizations

Perform the same hotspot optimization as in
VM.soft, with simple HW assists.

ROB, Issue buffer 36 issue queue slots, 128 ROB entries, 32 LD queue slots, 20 ST queue slots

Physical Register File 128 entries, 8 Read
ports, 5 Write ports

128 entries, 8 Read and 8 Write ports (2 Read & 2 Write ports are
reserved for the 2 memory ports).

Pipeline width 16B fetch width, 3-wide decode, rename, issue and retire.

Cache Hierarchy L1 I-cache: 64KB, 2-way, 64B lines, Latency: 2 cycles. L1 D-cache, 64KB, 8-way, 64B lines,
Latency: 3 cycles. L2 cache: 2MB, 8-way, 64B lines, Latency: 12 cycles

Memory Latency Main memory latency: 168 CPU-cycles. 1 memory cycle is 8 CPU core cycles.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 10 10
0

1,0
00

10
,00

0

10
0,0

00

1,0
00

,00
0

10
,00

0,0
00

10
0,0

00
,00

0
Fin

ish

Time: Cycles

No
rm

ali
ze

d
IP

C
(x

86
) P

er
fo

rm
an

ce Ref: Superscalar

VM.soft
VM.be
VM.fe
VM.steady-state

 Figure 8. Startup performance comparison

0

20

40

60

80

100

120

140

160

180

200

Ac
ces

s
Ex

cel

Fro
nt

Pa
ge IE

Nort
on

Outlo
ok

Po
werP

oin
t

Pro
jec

t

Winz
ip

Word

M
illi

on
 c

yc
les

 to
 b

re
ak

ev
en

VM.soft VM.be VM.fe

255402

Figure 9. Breakeven points for individual traces

Figure 9 shows, for each individual benchmark, the
number of cycles a particular translation scheme needs to
first reach the breakeven point with the reference super-
scalar. We label bars that are higher than 200-million
cycles (to break even) with their actual values. Otherwise,
a bar that is higher than 200-million cycles means its VM
model did not break even within the 500-million x86-
instruction trace simulation.

It is clear from the figure that, in most cases, using
either the frontend or the backend assists can significantly
reduce the VM startup overhead and enable VM schemes
to break even with the reference superscalar within 50-
million cycles. However, for the Project benchmark, the
VM schemes cannot break even within the tested runs,
though they do follow performance of the reference
superscalar closely (within 5%). Further investigation
indicates that the VM steady state performance for Project
is only 3% better than the superscalar baseline, thus the
VM schemes take a longer time to collect enough hotspot
performance gains to compensate for the performance
loss due to initial emulation and translation.

5.3 Performance and Energy Analysis
It is straightforward to explain the startup perform-

ance improvement for VM.fe because its x86-mode execu-
tion is very similar to the execution of a baseline super-
scalar. On the other hand, the VM.be scheme translates
cold code in a co-designed way that still involves VM
software. Consequently, we consider how VM software
overhead is reduced after being assisted by the XLTx86
instruction. The software-only baseline VM (VM.soft) is
measured to spend on average 9.9% of its runtime per-
forming BBT translation, for the first 100-million
dynamic x86 instructions.

0

10
20
30
40

50
60
70
80

90
100

Acc
es

s
Exce

l

Fro
nt

Pag
e IE

Nort
on

Outl
oo

k

Pow
erP

oin
t

Proj
ec

t

Winz
ip

Word

Ave
rag

e

Pe
rc

en
ta

ge
 o

f C
yc

le
s

BBT overhead BBT emu.

Figure 10. BBT translation overhead & emulation

cycle time (100M x86 instruction traces)

 Figure 10 shows how VM cycles (for the VM.be
scheme) are spent. For each benchmark, the lower bars
(BBT overhead) represent the percentage of VM cycles
spent for BBT translation and the upper bars (BBT emu.)
indicate the percentage of cycles the VM.be model exe-
cutes basic block translation. The rest of the cycles are
mostly spent for SBT translation and emulation with the
optimized hotspot code. To stress startup overhead, the
data is collected for the first 100M x86 instructions for
each benchmark.

It is evident from Figure 10 that after adding the new
XLTx86 instruction at the pipeline backend, the average
BBT translation overhead is reduced to 2.7%; about 5% at
worst. Further measurements indicate that the software-
only BBT spends 83 cycles to translate each x86-
instruction (including all BBT overhead, such as chaining
and searching the translation lookup table). In contrast,
VM.be needs only 20 cycles to do the same operations.

After BBT translation, the VM.be scheme spends
35% of its total cycles (BBT.emu bars in Fig. 10) execut-
ing BBT translations. The execution of BBT translations
is less efficient than that of SBT translations. However,
this BBT emulation does not lose much performance
because the BBT translations run fairly efficiently (On
average 82~85% IPC performance of SBT optimized
code). This IPC performance is only slightly less than the
baseline superscalar design. And for program startup tran-
sient, cache misses dilute CPU IPC performance.

The rest of the VM.be cycles (VM.fe is similar) are
spent in SBT translation (3.2%) and emulation via SBT
translations (59%). The optimized SBT translations im-
prove overall performance by covering 63% of the 100M
x86 instructions. For 500-million x86 instructions runs,
the hotspot coverage rises to 75+% on average and is pro-
jected to be higher for full program runs.

A software-based co-designed VM does not require
complex x86 decoders in the pipeline as in conventional
x86 processors. This can provide significant energy sav-
ings (one of the motivations for the Transmeta designs).
However, when hardware x86 decoder(s) are added as

assists, they consume energy. Nevertheless, this energy
consumption can be mitigated by powering off the hard-
ware assists when they are not in use.

To estimate the energy consumption, we measure the
activity of the hardware x86 decoding logic. The activity
is defined as the percentage of cycles the decoding logic
needs to be turned on. Figure 11 shows the activity for the
four machine configurations. The x-axis shows the cycle
time on logarithmic scale and the y-axis shows the aggre-
gate decoding logic activity.

For conventional x86 processors, x86 decoders are
always on (except Pentium 4 [13]). In contrast, for the
VM.be scheme, the hardware assist activity quickly
decreases after the first 10,000 cycles. It becomes negli-
gible after 100-million cycles. Considering that only one
decoder is needed to implement XLTx86 in the VM.be
scheme, energy consumption due to x86 decoding is miti-
gated. For the VM.fe model, the dual mode decoders at
the pipeline frontend need to be active if the VM is not
executing optimized hotspot code. The decoders’ activity
also decreases quickly, but later than a VM.be scheme as
illustrated in the figure.

0

10

20

30

40

50

60

70

80

90

100

1 10 10
0

1,0
00

10
,00

0

10
0,0

00

1,0
00

,00
0

10
,00

0,0
00

10
0,0

00
,00

0
Fin

ish

Time: Cycles

Ha
rd

wa
re

 A
ss

ist
 A

ct
ivi

ty
 (%

) Superscalar

VM.soft

VM.be

VM.fe

Figure 11. Activity of HW assists

6 Conclusions and Future Directions
To understand runtime overhead in co-designed

VMs, we investigated a co-designed x86 VM using fused
micro-ops. Runtime overhead can be caused by emulation
of non-hotspot code. This is especially a problem for the
CISC x86 whether using an interpreter or BBT. Dynamic
hotspot optimization overhead can also be detrimental to
startup performance. Runtime overhead not only affects
startup performance, but also system performance consis-
tency and predictability.

In our exploration of VM startup performance, we
first reduce baseline VM translation overhead by employ-
ing a staged translation strategy and simple, but efficient,
BBT translation as in many current VM systems. Then,
we analyze and model VM startup performance from a

memory hierarchy perspective. We observe that non-
hotspot emulation causes the major translation overhead
and hotspot optimization can further exacerbate the VM
startup curve for some applications. We propose an over-
all strategy to reduce VM startup time. To reduce transla-
tion overhead for non-hotspot code emulation, we propose
hardware assists. These assists significantly reduce (or
eliminate) BBT runtime overhead.

After applying the strategy and integrating the accel-
erated binary translators into the baseline co-designed x86
virtual machine, we show that the VM system startup
performance is significantly improved for the Windows
application benchmarks. Considering the fact the virtual
machine design enables a novel efficient microarchitec-
ture, the overall system performance is improved without
sacrificing design complexity.

For future research, we anticipate that the combina-
tion of the adaptive translation strategies with simple
hardware accelerators is not limited to the co-designed
virtual machine paradigm. The ideas can be applied to
speed up other dynamic binary translation systems, thus
enabling other attractive system features and capabilities.

Acknowledgements
We appreciate the contributions of Mikko Lipasti and

Ilhyun Kim regarding fused architectures and Wooseok
Chang’s help with Windows workloads and trace collec-
tion. This work was supported by NSF CCR-0311361 and
the Intel Corporation.

References
1 E. R. Altman, et al., “Advances and Future Challenges in

Binary Translation and Optimization”, Proc. of the IEEE,
Special Issue on Microprocessor Architecture and Com-
piler Technology, pp. 1710-1722, Nov. 2001.

2 M. Arnold, et al., “Adaptive Optimization in the Jalapeño
JVM” ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA '00), pp. 47-65, Oct. 2000.

3 L. Baraz, et al. “IA-32 Execution Layer: a two phase
dynamic translator designed to support IA-32 applications
on Itanium-based systems”, Proc. of the 36th Int’l Symp.
on Microarchitecture,, pp. 191-204, Dec. 2003.

4 D. Bruening, et al., “An infrastructure for adaptive dynamic
optimization”. Proc. of the 1st Int’l Symp. on Code Genera-
tion and Optimization, pp. 265-275, March 2003.

5 A. Chernoff, et al, “FX!32: A Profiler-Directed Binary
Translator”, IEEE Micro (18), March/April 1998.

6 Y. Chou, J. P. Shen. “Instruction Path Coprocessors”, Proc.
of the 27th Int’l Symp. on Computer Architecture, pp. 270-
281, June 2000.

7 J. Dean, et al. “ProfileMe: Hardware Support for Instruc-
tion-Level Profiling on Out-of-Order Processors”, Proc. of
the 27th Int’l Symp. on Computer Architecture, pp. 316-
325, Jun. 2000.

8 J. C. Dehnert, et al. “The Transmeta Code Morphing Soft-
ware: Using Speculation, Recovery, and Adaptive Retrans-
lation to Address Real-Life Challenges”, Proc. of the 1st

Int’l Symp. on Code Generation and Optimizations, pp. 15-
24, Mar. 2003.

9 K. Diefendorff “K7 Challenges Intel” Microprocessor
Report. Vol.12, No. 14, Oct. 25, 1998

10 K. Ebcioglu, E.. Altman, “DAISY: Dynamic Compilation
for 100% Architectural Compatibility”, Proc. of the 24th
Int’l Symp. on Computer Architecture, pp.26-37, Jun. 1997.

11 K. Ebcioglu et al., “Dynamic Binary Translation and Opti-
mization”, IEEE Transactions on Computers, Vol. 50, No.
6, pp. 529-548. June 2001.

12 S. Gochamn et al., “The Intel Pentium M Processor:
Microarchitecture and Performance”, Intel Technology
Journal, vol7, issue 2, pp. 21-36, 2003.

13 G. Hinton et al. “The Microarchitecture of the Pentium 4
Processor”, Intel Technology Journal. Q1, 2001.

14 R. J. Hookway, M. A. Herdeg, “Digital FX!32: Combining
Emulation and Binary Translation”, Digital Technical
Journal, vol. 9, No. 1, Jan. 1997.

15 S. Hu, J. E. Smith, “Using Dynamic Binary Translation to
Fuse Dependent Instructions”, Proc. of the 2nd Int’l Symp.
on Code Generation and Optimization, pp. 213-224, Mar.
2004.

16 S. Hu, et al., “An Approach for Implementing Efficient
Superscalar CISC Processors”, Proc. of the 12th Int’l Symp.
on High Performance Computer Architecture, pp. 40-51,
Feb. 2006.

17 W. W. Hwu et al., “The Superblock: An Effective Tech-
nique for VLIW and Superscalar Compilation”, The Jour-
nal of Supercomputing, 7(1-2), pp. 229-248, 1993.

18 C. N. Keltcher, et al., “The AMD Opteron Processor for
Multiprocessor Servers”, IEEE MICRO, pp. 66-76, Mar.-
Apr. 2003.

19 H.-S. Kim, J. E. Smith, “Dynamic Binary Translation for
Accumulator-Oriented Architectures”, Proc. of the 1st Int’l
Symp. on Code Generation and Optimization, pp. 25-35,
Mar. 2003.

20 H.-S. Kim, J. E. Smith, “Hardware Support for Control
Transfers in Code Cache”. Proc. of the 36th Int’l Symp. on
Microarchitecture pp. 253-264, Dec. 2003

21 A. Klaiber, “The Technology Behind Crusoe Processors”,
Transmeta Technical Brief, 2000.

22 K. Krewell, "Transmeta Gets More Efficeon" Microproces-
sor report. v.17, October 2003

23 M. C. Merten, et al. “An Architectural Framework for Run-
time Optimization”, IEEE transactions on Computers, Vol.
50, No.6, pp. 567-589, Jun. 2001.

24 S. J. Patel, S. S. Lumetta, “rePLay: a hardware framework
for dynamic optimization”, IEEE, Transactions on Com-
puters, pp. 590-680, Jun. 2001.

25 R. Rosner, et al. “Power Awareness through Selective
Dynamically Optimized Traces”, Proc. of the 31st Int’l
Symp. on Computer Architecture, pp. 162-175, Jun. 2004.

26 E. P. Stritter, et al., “Microprogrammed Implementation of
a Single Chip Microprocessor”, Proc. of the 11th Annual
Microprogramming Workshop, pp. 8-16, Nov. 1978.

27 Transmeta Corporation. Transmeta Efficeon Processor,
http://www.transmeta.com/efficeon

28 VeriTest, PC Magazine, “Business WinStone Benchmark”,
http://www.veritest.com/benchmarks/bwinstone/

