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Abstract  
A Co-Designed Virtual Machine allows designers to 

implement a processor via a combination of hardware 
and software. Dynamic binary translation converts code 
written for a conventional (legacy) ISA into optimized 
code for an underlying implementation-specific ISA.   
Because translation is done dynamically, an important 
consideration in such systems is the startup time for    
performing the initial translations.  

Beginning with a previously proposed co-designed 
VM that implements the x86 ISA, we study runtime binary 
translation overhead effects. The co-designed x86 virtual 
machine is based on an adaptive translation system that 
uses a basic block translator for initial emulation and a 
superblock translator for hotspot optimization. We ana-
lyze and model VM startup performance via simulation. 
We observe that non-hotspot emulation via basic block 
translation is the major part of the startup overhead.  

To reduce startup translation overhead, we follow 
the co-designed hardware / software philosophy and pro-
pose hardware assists to dramatically accelerate basic 
block translations. By combining hardware assists with 
balanced translation strategies, the co-designed transla-
tion system reduces runtime overhead significantly and 
demonstrates very competitive startup performance when 
compared with conventional processors running a set of 
Windows application benchmarks.    

1 Introduction 
Co-designed virtual machines (VMs) [10, 21, 22] 

provide the processor designer with new opportunities for 
innovation through the combined, close interaction of 
implementation level hardware and software.  The overall 
design supports a conventional (legacy) ISA, but the 
hardware directly supports an implementation ISA that is 
designed for superior performance and/or power effi-
ciency. A concealed layer of software mates the conven-
tional ISA with the new implementation ISA. This layer 
of software not only translates the conventional binary to 
the implementation ISA, but also optimizes the binary 
based on runtime-collected profile information. The hard-

ware and concealed software are developed concurrently, 
i.e., co-designed, as part of a unified design effort. 

Software-implemented dynamic binary translation 
and optimization are base technologies for co-designed 
VMs.  Optimum performance is achieved only after trans-
lation and optimization have been performed, i.e., in the 
steady state.  On the other hand, because optimization is 
performed dynamically, one must also consider the time it 
takes to generate the translated, optimized code, i.e., the 
startup time. If a well-behaved compute-bound program is 
run for a long period of time, then the steady state per-
formance will dominate and startup time is insignificant. 
However, there are situations where the startup time may 
be important, and it is this aspect of co-designed VM   
implementations that is of interest to us in this paper.  Our 
goals are to (1) illustrate how runtime binary translation 
overhead affects co-designed VM startup performance, 
and (2) propose simple hardware mechanisms for reduc-
ing  binary translation overhead. 

To investigate dynamic binary translation, we have 
developed a binary translation system for a specific co-
designed x86 virtual machine. It is an adaptive translator 
that uses a simple basic block translator for initial code 
emulation and a superblock translator/optimizer for emu-
lating hotspot code (frequently executed code segments). 
We first discuss and evaluate co-designed VM perform-
ance under transient (startup) conditions via experimental 
simulations.  These initial results indicate that basic block 
translation overhead is the major component of startup 
overhead, and hotspot optimization overhead can further 
exacerbate startup delays for some applications.  

Then we propose two hardware mechanisms (assists) 
for reducing the startup time; both mechanisms are     
targeted primarily at basic block translation.  The first of 
these hardware assists is a dual mode decoder at the    
pipeline frontend, and the second is a special-purpose 
functional unit added to the superscalar processor 
backend. Using either the frontend or the backend       
approaches can dramatically reduce the startup time. 
Through simulations, we demonstrate that with basic 
hardware support, a co-designed VM system can provide 
competitive startup performance with a conventional   
superscalar processor design. 



 
 

1.1 Co-Designed VMs and Startup Performance 
The traditional ISA used for software binary compila-

tion and distribution is called the architected ISA; the 
most prominent nowadays is the x86 ISA. In a co-
designed VM, a separate ISA, the implementation ISA is 
implemented in the hardware and can be designed in an 
implementation-dependent way to realize performance, 
power and/or efficiency advantages. The mapping from 
the architected ISA to the implementation ISA is per-
formed by a concealed layer of software, the dynamic 
binary translator (DBT).  The DBT is designed along with 
the implementation ISA and the hardware. We sometimes 
refer to the layer of concealed software as the virtual  
machine monitor (VMM).  Because the implementation 
ISA is implemented directly on the hardware, we often 
refer to it as the native ISA, and we refer to the individual 
instructions as micro-ops because of their similarity to the 
micro-ops used in a conventional x86 design. 

As discussed above, a co-designed VM implementa-
tion allows greater flexibility for realizing microarchitec-
ture innovations, leading to high performance and/or   
energy efficient execution of conventional binary code in 
the steady state. However, the VM paradigm also intro-
duces runtime software overhead that can offset perform-
ance gains achieved by the translated code.   

Typically, the overhead of an optimizing DBT for 
each architected ISA instruction is on the order of thou-
sands of instructions. For example, DAISY [10] is      
reported to take more than four thousand operations to 
translate and optimize one PowerPC instruction for its 
VLIW engine. The translation of each Alpha instruction 
to a proposed superscalar-like ILDP ISA takes more than 
one thousand Alpha instructions [19].   Because of the 
heavy DBT optimization overhead, VM systems usually 
employ a staged approach to ISA emulation.   During 
program startup, one-instruction-at-a-time interpretation 
or simple basic block translation are first used. However, 
the emulation speed of an interpreter is typically 10X to 
100X slower than native execution.  An alternative 
(sometimes an addition) to interpretation is simple basic 
block translation (BBT) where code is translated one  
basic block at a time without optimization and is placed in 
a code cache [1, 3, 10] for repeated reuse.  For many 
ISAs,  the translation overhead for simple BBT is gener-
ally not much slower than interpretation,  so most recent 
binary translating systems skip interpretation and imme-
diately begin execution with simple BBT; the Intel IA-32 
EL [3] uses this approach, for example.  In our work, we 
also adopt this approach. 

During the startup phase, profiling is used to identify 
hotspots, and DBT optimization is only applied to the 
hotspots.  As observed in related projects [1,2,3,10], a 
staged emulation strategy reduces the runtime translation 
overhead, but it still can lead to slow start-up times when 

compared with conventional processors. We provide 
some data in Section 3 to illustrate this effect. 

Clearly, long-running applications with small, stable 
instruction working sets can benefit from the co-designed 
VM scheme even when there is a significant startup over-
head. However, there are important cases where slow 
startup can put a co-designed VM at a disadvantage when 
compared with a conventional processor. For example, 
• Workloads consisting of many short-running pro-

grams or fine-grained cooperating tasks: execution 
may finish before the startup overhead can be fully 
amortized.  

• Real-time applications: real-time constraints can be 
compromised if any real-time code is not translated 
in advance and then has to go through the slow 
startup process.  

• Multitasking server-like systems:  for large working-
set workloads, the slow startup process can be further 
exacerbated by frequent context switches among    
resource-competing tasks. A limited code cache size 
can cause hotspot re-translations when a switched-out 
task resumes.  

• OS boot-up or shut-down: here performance is impor-
tant for many client side platforms such as laptops 
and mobile devices.  

1.2 Related Work 
There are a variety of systems that employ software 

interpretation and/or dynamic binary translation as their 
key enabling technology [1]. The Transmeta Crusoe proc-
essor [21] is a co-designed VM that uses an interpreter to 
emulate x86 code initially. Later versions of the IBM 
DAISY [10] also interpret PowerPC instructions before 
invoking “tree-region” translation. The Transmeta       
Efficeon processors [22, 27] use a staged translation strat-
egy (4-stages including the initial interpretation) to pro-
vide the most performance-efficient optimization on each 
piece of code. In our research, we use a two-stage strat-
egy, employing basic block translation (BBT) and super-
block [17] translation/optimization (SBT). (Terminology: 
DBT is the generic term that includes both BBT and SBT 
as special cases). 

 With regard to special support for binary translation, 
Efficeon designers implemented an execute instruction 
that allows native VLIW instructions to be constructed 
and executed on the fly.  This capability was added to 
improve the performance of the CMS interpreter [22]. 
However, details about the design are not published. In 
contrast, we propose special hardware to accelerate BBT 
and then save the translated code in a code cache for re-
use. The rePLay [24] and PARROT [25] projects employ 
hardware hotspot detector to find program hotspots. Once 
a hotspot is detected, it is optimized via hardware and 
stored in a small on-chip frame/trace cache for optimized 



 
 

hotspot execution. The Instruction Path Coprocessor [6] is 
a programmable coprocessor that optimizes core proces-
sor’s instructions to improve execution efficiency. In this 
work, we explore hardware assists (integrated into pipe-
line) that require simpler hardware than a full-blown   
coprocessor or hardware optimizer; also, in our work 
translated code is held in a main memory code cache.  

On-the-fly profiling is an important part of DBT sys-
tems, both for identifying hotspot code and for assisting 
with certain optimizations. To reduce runtime overhead of 
profiling, there are proposals for hardware support of pro-
filing and/or hotspot detection, An example is ProfileMe 
[7]. Merten et al. [23] proposed a 4K-entry branch behav-
ior buffer (BBB) located after the instruction-retire-stage 
to identify dynamic hotspots. In our VM systems, we rely 
on such a hardware mechanism to detect hotspots and 
reduce initial emulation overhead.  

IA-32 EL [3] is a software approach for supporting 
x86 applications on Intel IPF platforms. It dynamically 
translates x86 instructions into IPF VLIW instructions for 
user mode applications. It is a two-stage translator that 
begins with a simple basic block translator. Once hotspot 
code is detected, an optimizing translator is invoked.    
IA-32 EL is a pure software solution that reports signifi-
cant startup (translation) overhead for Windows applica-
tions such as those represented by SYSmark2000. The 
Digital FX!32 system [5, 14] is an emulation system for 
running x86 Windows applications on DEC Alpha plat-
forms. It initially uses an interpreter that discovers un-
translated code which is then translated and optimized 
offline between program runs. DynamoRIO [4] is a soft-
ware infrastructure for runtime code manipulation. It    
targets user-mode x86 applications on both Linux and 
Windows platforms.  

1.3 Paper Overview 
The rest of the paper is organized as follows. Section 

2 provides background for the binary translation system in 
our proposed co-designed x86 virtual machine system.   
Section 3 performs analysis and modeling to identify  
major sources of VM runtime overhead and shows how 
they affect VM startup performance.  Section 4 proposes 
techniques to reduce binary translation overhead. Prelimi-
nary evaluation of the techniques is presented in section 5. 
Section 6 concludes the paper.  

2 Baseline Co-Designed VM 
To study VM startup time in a specific context, we 

use a co-designed x86 virtual machine based on a fusible 
instruction set [15,16]. The details of the design are    
described in a previous paper [16], and in that paper 
steady state performance for the SPEC2000 integer 
benchmarks is evaluated. In this section we briefly sum-
marize the baseline co-designed VM.  

The proposed microarchitecture and ISA coopera-
tively implement macro-op execution [16].  Pairs of     
dependent RISC-like micro-ops (the first micro-op gener-
ates a source operand for the second) are fused by VM 
software hotspot optimizer into macro-ops. Then, an         
enhanced and simplified superscalar microarchitecture 
processes the fused macro-ops as single entities through-
out the entire pipeline. The VM hotspot optimizer can 
fuse micro-ops that do not belong to the same original x86  
instruction (in contrast to other x86 implementations that 
regroup operations from the same x86 instruction for the 
pipeline frontend stages [9, 12, 18]).  By fusing dependent 
pairs, the instruction issue logic (scheduler) can be effi-
ciently pipelined, and the operand forwarding network is 
significantly simplified.  Ignoring clock cycle advantages 
(which may be significant), the proposed implementation 
achieves an 18% IPC speedup over a conventional super-
scalar pipeline for the SPEC2000 integer benchmarks. 
Performance improvements for Windows applications are 
less and are given later in this section.  

The VM software first decomposes (cracks) x86       
instructions into micro-ops and then follows an optimiza-
tion algorithm that reorders and fuses appropriate depend-
ent micro-op pairs into macro-ops [15].  For studying 
startup overhead, the details of the optimization process 
are not important; what is important is that the optimizing 
DBT software has fairly high overhead (it averages over 
1000 instructions to translate and optimize each x86     
instruction). In addition, the hardware assists proposed in 
this paper target the BBT aspect of translation, not the 
optimizing aspects. Hence, they can be applied to other 
VM implementations, not just the one studied here. 

The co-designed VM software consists of four major 
components (Fig. 1a).  (1) A light-weight basic block 
translator (BBT) that generates straightforward transla-
tions for each basic block when it is first executed; (2) An 
optimizing hot superblock translator (SBT) that forms and 
optimizes dynamic superblocks; (3) Code caches -- con-
cealed VM memory areas for holding BBT and SBT 
translations, and (4) the VMM runtime system that orches-
trates the VM execution: it selects between BBT and SBT 
for translation, recovers precise program state, manages 
the code caches, etc. Fig. 1b shows the flowchart followed 
by VM software. When an x86 binary starts execution, 
the system enters the VM software (VM mode) and uses 
translations generated by BBT for initial emulation (Fig. 
1b). Once a hotspot superblock is detected, it is optimized 
by the SBT and placed into the code cache. Branches may 
either be linked by the VMM runtime system initially via 
translation lookup table or eventually chained directly to 
the target translation in the code cache. For most applica-
tions, the VM software will find the working set, optimize 
it, and then leave the processor executing in the translated 
code cache as the steady state, which is defined as the 
translated native mode (shaded in Figure 1).  
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    Figure 1.   Staged emulation in the co-designed x86 VM 

    In the research reported here, we conduct experi-
ments and evaluations on full-system Windows applica-
tion traces collected from Winstone2004 Business suite 
[28].  These applications are more difficult to optimize 
than the SPEC2000 integer benchmarks. For these Win-
dows benchmarks our baseline co-designed VM achieves 
8% IPC speedup for steady state performance. The lower 
IPC speedup (versus SPEC2000 integer) is caused by 
different program characteristics between the bench-
marks. The more important are: (1) only 49% of the    
dynamic micro-ops are fused into macro-ops versus 57% 
in SPEC2000 integer, and (2) larger working sets in the 
Winstone applications cause more cache misses that  di-
lute IPC performance improvements. Although Winstone 
IPC speedups are lower than for SPEC2000 integer, they 
are still significant, and the co-designed VM has other 
advantages (clock cycle and hardware simplicity). 

3 Performance Characteristics of Dynamic 
Binary Translation Systems 
There are many performance implications caused by 

VM runtime translation, for example, cycles performing  
translation and the addition of code cache to the memory 
hierarchy. We first discuss performance for a translation-
based VM system from a unified memory hierarchy per-
spective. Then, we model VM startup behavior and      
address some key trade-offs in a VM system featuring 
staged translation.  

3.1 Performance Dynamics of Translation-based 
VM Systems  
In a conventional design, when a program is to be 

executed, its binary is first loaded from disk into main 
memory. Then, the program starts execution. As it exe-
cutes, instructions are moved up and down the memory 

hierarchy, based on usage. Instructions are eventually 
distributed among the levels of cache, memory, and disk.    

In the co-designed VM approach, the binary contain-
ing architected ISA instructions is first loaded from disk 
into main memory, just as in a conventional design.    
However, the architected ISA instructions must be trans-
lated to implementation ISA instructions before they are 
executed.  The translated code is held in the code cache 
for reuse until it is evicted to make room for other blocks 
of translated code. Any evicted translation must then be 
re-translated and re-optimized if it again becomes active. 
As a program executes, the translated implementation ISA 
instructions distribute themselves in the cache hierarchy 
in the same way as architected ISA instructions in a con-
ventional system.   

To simplify the analysis for co-designed VMs, espe-
cially regarding the effects of translation, we identify four 
primary scenarios. 

(1) Disk startup. This scenario occurs for initial pro-
gram startup or reloading tasks swapped out – the binary 
is loaded from disk for execution.  After memory is 
loaded, execution proceeds according to scenario 2 below.  
That is, scenario 1 is the same as scenario 2 with a disk 
load added at the beginning.   

(2) Memory startup. This scenario models major con-
text switches (or program phase changes) – If a context 
switch is of long duration or there is a major program 
phase change to code that has never been executed (or has 
not been executed for a very long time), then the required 
translated code is not in the code cache. However, the 
architected ISA code is in main memory, and will need to 
be (re)translated before it can be executed.  This transla-
tion time is an additional VM startup overhead which has 
a negative effect on performance.  

(3) Code cache startup / transient. This scenario 
models the situation that occurs after a short context 



 
 

switch or short duration program phase change. Trans-
lated implementation ISA code is still available in the 
main memory code cache, but not in the other levels of 
the cache hierarchy. To resume execution after the con-
text switch (or a return to the previous program phase), 
there are cache misses as instructions are again fetched. 
However, there are no instruction translations.   

(4) Steady state. This scenario models the situation 
where all the instructions in the current working set have 
been translated and placed properly in the cache hierar-
chy. The processor is running at “full” speed.   

Clearly, scenario 4 steady state is the good case for a 
co-designed VM using DBT. Performance is determined 
mainly by processor architecture, and the co-designed 
VM fully achieves its intended benefits.     

In scenario 3, code cache transient, performance is 
similar in both the conventional processor and VM       
designs as both schemes fetch instructions through the 
cache hierarchy, and no translation is required in the co-
designed VM. Performance differences are mainly caused 
by second order cache effects. For example, the translated 
code will likely have a larger footprint in main memory, 
however, the code restructuring for superblock translation 
will lead to better temporal locality and more efficient 
instruction fetching.   

In contrast, scenario 2 memory startup is the case 
where VM startup overhead is most exposed.  The transla-
tion from architected ISA code (in memory) into imple-
mentation ISA code (in the code cache) is required and 
causes the biggest negative performance impact of binary 
translation versus a conventional superscalar design.   

As noted earlier, scenario 1 disk startup is similar to 
scenario 2, with the added disk access delay. The per-
formance effects of loading from disk are the same in 
both the conventional and VM systems. Moreover, the 
disk load time, lasting many milliseconds, will be the 
dominant part of this scenario. The additional startup time 
caused by translation will be less apparent and the relative 
slowdown will be much less in scenario 1 than in 2.    

Based on the above analysis, we will focus our 
startup comparison between co-designed VMs with a 
baseline conventional superscalar for scenario 2.  That is, 
when we analyze startup performance, we will start with a 
program binary already loaded from disk, but with the 
caches empty, and then track startup performance as 
translation and optimization is performed concurrently 
with execution.   

Figure 2 shows a scenario 2 memory startup per-
formance comparison between a conventional superscalar 
processor and the baseline co-designed VM that relies on 
software for DBT.  Results are given for two staged emu-
lation strategies for the co-designed VM; the first uses 
BBT followed by SBT, and the second uses interpretation 
followed by SBT.  The specific machine configurations 
are given later in Table 2. 
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Figure 2.  VM startup performance compared 
with a conventional x86 processor 

The simulations start with empty caches and run 500-
million x86-instruction traces to track performance.  (The 
total simulation cycles range from 333-million to 923-
million cycles for the reference superscalar).  Results are 
averaged for the traces collected from the ten Windows 
applications in Winstone2004 Business suite. IPC per-
formance is normalized with respect to the steady state 
reference superscalar IPC performance. The horizontal 
line across the top of the graph shows the VM steady state 
IPC performance gain (8%).   

The x-axis shows execution time in cycles on a loga-
rithmic scale. The y-axis shows the harmonic mean of 
their aggregate IPC, i.e. the total instructions executed up 
to that point divided by the total time.  At a given point in 
time, the aggregate IPCs reflect the total numbers of    
instructions executed, making it easy to visualize the rela-
tive overall performance up to that point in time. 

A good measure of startup overhead is the time it 
takes a co-designed VM to “catch up” with the reference 
superscalar processor.  That is, the time at which the     
co-designed VM has executed the same number of      
instructions (as opposed to the time where the instantane-
ous IPCs are equal, which happens much earlier.)  This 
crossover, or breakeven, point occurs later than 200-
million cycles for the baseline VM system using staged 
BBT followed by SBT.  And this co-designed VM system 
barely reaches half the steady-state performance gains 
(4%) before the traces finish.   

For the co-designed VM using interpretation fol-
lowed by SBT,  the startup performance is much worse.   
A hotspot threshold for switching from interpretation to 
SBT is 25 executions (as derived using the method      
described below in Section 3.2).   After finishing the 500-
million instruction traces, the aggregate performance is 
only half that of a conventional superscalar processor. 

Clearly, the runtime translation overhead affects VM 
startup performance when compared with a conventional 
superscalar processor design, especially for a startup peri-
ods less than 100-million cycles (or 50 milliseconds in a 
2GHz processor core). At the one-million-cycle point, the 



 
 

baseline VM system has executed only one fourth the 
instructions of the reference superscalar scheme.   

3.2 Performance Modeling of Staged Emulation   
In a two-stage scheme consisting of BBT and SBT, 

emulation starts with simple basic block translation.    
Dynamic profiling is used to detect hot code regions.  
Once a region of code is found to be “hot”, it is re-
organized into superblock(s) and is optimized.  Therefore, 
translation overhead is a function of two major items. (1) 
The number of static instructions touched by a dynamic 
program execution that need to be translated first by BBT 
(this number is denoted as MBBT).  (2) The number of 
static instructions that are identified as hotspot and thus 
are optimized by SBT (denoted as MSBT). We use symbols 
∆BBT and ∆SBT to represent per x86 instruction translation 
overheads for BBT and SBT, respectively. Then, for such 
a system, the VM translation overhead is:  

Translation overhead = MBBT * ∆BBT + MSBT * ∆SBT   
      (Eq.1) 

Clearly, MBBT is a basic characteristic of the pro-
gram’s execution and cannot be changed. Thus, a feasible 
way to reduce BBT overhead is to reduce ∆BBT, and for 
this goal, we propose hardware assists in Section 4.     
Regarding the SBT overhead, we argue that good hotspot 
optimizations are complex and need the flexibility advan-
tages of software. A hardware implemented optimizer (at 
least for the optimizations we consider) would be both 
complex and expensive. Fortunately, for most applica-
tions, the hotspot code is a small fraction of the total static 
instructions. Moreover, the hotspot size, MSBT, is sensitive 
to the hot threshold setting. Therefore, we need to explore 
a balanced trade-off regarding the hot threshold setting, 
which not only reduces SBT overhead by detecting true 
hotspots, but also collects optimized hotspot performance 
benefits via good hotspot code coverage.   

Our evaluation of this trade-off uses a specialized 
version of the model proposed for the Jikes virtual ma-
chine [2].  Let p be the speedup an optimized superblock 
can achieve over the simple basic block code. Also let N 
be the number of times a given instruction executes and 
let tb be the per instruction execution time for code gener-
ated by BBT. Then, to break even, the following equation 
holds. (This assumes that the optimizer is written in opti-
mized code and its overhead ∆SBT is measured in terms of 
architected ISA instructions.) 

N * tb = (N + ∆SBT) * ( tb  / p) ⇒  N = ∆SBT / (p - 1)  
     (Eq.2) 

That is, the breakeven point occurs when the number 
of times an instruction executes is equal to the translation 
overhead divided by the performance improvement.  In 
practice, at a given point in time, we do not know how 
many times an instruction will execute in the future. So, 

this equation cannot be applied in an a priori fashion. In 
the Jikes system, it is assumed that if an instruction has 
already been executed N times, then it will be executed at 
least N more, Hence, the value N as given in Equation 2 is 
used as the threshold value.  

In our VM scheme, we set the hot threshold for trig-
gering SBT translation based on this equation and bench-
mark characteristics. To calculate the hot threshold based 
on the equation, we first determine the parameters. For 
our VM system, we have measured ∆SBT to be 1152 x86 
instructions (say 1200) and p is 1.15 ~ 1.2, i.e. optimized 
SBT code runs 15 to 20 percent faster than the code gen-
erated by BBT. Then to break even, Equation 2 suggests 
that N should be 1200/.15 = 8000.   

To illustrate our reasoning and the motivation for a 
relatively high hotspot threshold, we characterized the 
chosen Windows benchmarks. We used data averaged 
over the traces of length 100-million x86 instructions  
collected from the ten Winstone2004 Business suite    
applications. The x-axis of Figure 3 is instruction count 
(frequency).  The left y-axis shows the number of static 
x86 instructions that are executed for the number of times 
marked on the x-axis. The threshold execution count 
(8000) is marked with a vertical line. By using the left    
y-axis, we see that only 3K of the static instructions have 
exceeded the hotspot threshold at the time 100 million 
instructions have been executed.  It is clear from the fig-
ure that, for these benchmarks, only a small fraction of 
executed static instructions become hotspots. 
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Figure 3.  Winstone2004 instruction execution 
frequency profile (100M x86 instruction traces) 

The right y-axis shows the distribution function of  
total dynamic x86 instructions. For example, the peak 
point of the distribution curve shows that 30+% of all 
dynamic instructions execute more than 10K times, but 
less than 100K times.  This curve falls off after 100K only 
because the total dynamic instruction counts for the simu-
lations are 100-million. For longer-running programs, this 
curve would continue to rise and the peak would shift to 
the right toward higher execution frequency (as the arrow 
shows). It is clear from the figure that for a hot threshold 



 
 

on the order of thousands, the hotspot coverage (the per-
centage of instructions executed from the optimized hot-
spot code) is fairly modest. However, the hotspot code 
coverage will be significantly improved if benchmarks 
run longer as in realistic cases. 

Returning now to Equation 1, the average value of 
MBBT is 150K static instructions (this can be determined 
by adding the data points of the static instruction curve) 
and the average value of MSBT is 3K (determined by add-
ing the data points of the static instruction curve that are 
to the right of the hot threshold line).  Assuming ∆BBT = 
105 native instructions (as measured in our baseline VM) 
and ∆SBT = 1674 native instructions (equivalent to the 
1152   x86 instructions above), then we see that the BBT 
component is 105*150K = 15.75M native instructions, 
and the SBT component is 1674*3K = 5.02M native in-
structions. Therefore, in our VM system, BBT causes the 
major translation overhead, and this is the overhead we 
tackle in this paper. Also because it is a simpler operation, 
BBT offers more opportunities for hardware assists.   

4 Hardware Assists for Binary Translation 
We now propose techniques that significantly reduce 

VM startup overhead.  These new hardware mechanisms 
accelerate certain computation intensive parts of the trans-
lation process.  However, we continue to employ VMM 
software to manage the overall translation process, due to 
its flexibility and simplicity.  We present two hardware 
assists: one is placed in the pipeline frontend, and the 
other in the backend.      

4.1 Frontend Dual Mode Decoders  
In most conventional designs, x86 instructions are 

decoded into RISC-style operations called micro-ops 
(µops). We leverage this approach by proposing a dual 
mode (two-level) decoder (Fig.4) that targets CISC ISAs.  
The two-level decoder is similar to the microcode engine 
used in the Motorola 68000 [26].  The first level decoder 
cracks x86 instructions into “vertical” micro-ops – in the 
same 16-bit/32-bit micro-op format that is used in the 
baseline co-designed VM implementation ISA [16].  Then, 
a second level decoder generates the “horizontal” decoded 
control signals used by the pipeline.  

μ-op decoder
Opcode

Operand
Designators 

Other pipeline 
Control signals 

x86 μ-ops
decoder

x86 instruction

Fusible
micro-ops  

Figure 4.   Dual mode x86 decoder 

A two-level decoder is especially well suited to a 
CISC ISA because complex CISC instructions must both 
be decomposed (cracked) into RISC-style micro-ops and 
decoded into pipeline control signals. 

We then add a direct path into the second level        
decoder (Fig.4), which enables the decoder to be used in 
two modes. In conventional x86-mode, x86 instructions 
are fetched from memory, and both decode levels are used. 
In translated native-mode, translated implementation    
instructions are fetched from the code cache.  These     
instructions bypass the first level decoder and only use the 
second level decoder. With the dual-mode decoders, both 
architected ISA (x86) code and implementation ISA     
instructions can be processed by the pipeline.  The ability 
to support x86 mode eliminates the need for BBT, along 
with its translation overhead and any side effects on the 
memory hierarchy.  

As the processor runs, it switches back and forth    
between x86-mode and native-mode, under the control of 
VMM software. When executing in x86-mode, the x86 
instructions pass through both decode levels (Fig. 5); this 
is done when a program starts up, for example. In x86-
mode, performance will be similar to a conventional x86 
superscalar implementation.   

A side effect of using the dual-mode approach is that 
profiling software cannot be embedded into BBT code, 
because there is no BBT code.  As a consequence, the 
design should employ profiling hardware similar to that 
used by Merten et al. [23].  This hardware’s sole function 
is to detect hotspots.  When such a hotspot is detected, the 
hardware invokes the VMM software which can then   
organize hotspot code into superblock(s), translate, and 
optimize it, and place the optimized superblock(s) into the 
code cache.  

Dual mode decoders are fast and fit well in a conven-
tional superscalar design.  The replacement of a single-
level decode table with a two-level decoder may be a 
good hardware tradeoff which will likely result in fewer 
transistors than a single-level design, as explained by the 
Motorola 68000 designers [26]. This approach, extended 
to dual mode operation, adds relatively little extra hard-
ware to a conventional implementation -- the bypass path 
around the first level decoder. Also, when executing the 
optimized hotspot code, the first level decoder is bypassed 
and can be powered off. 
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Figure 5.   Dual mode x86 decoders in a pipeline 



 
 

4.2 Backend Functional Units  
The frontend hardware assist modifies a critical part 

of the pipeline and must be able to decode instructions at 
full bandwidth.  Furthermore, it must be designed to   
implement the complete architected ISA (x86).  An alter-
native is to implement a hardware assist in the form of a 
programmable backend functional unit.   This unit is less 
intrusive than the frontend unit, does not need to provide 
the high bandwidth of the frontend assist, and can target 
the common cases, not all cases. 

During initial emulation, BBT introduces the major 
runtime overhead, and the dominant part of BBT is to 
decode and crack x86 instructions into micro-ops.  In our 
BBT system, an average of 90 out of the 105 micro-ops 
used for translating each x86 instruction are associated 
with instruction decoding and cracking. Therefore, a func-
tional unit that performs these operations can greatly 
speed up BBT translation.   

We propose such a backend functional unit that is    
accessed through a new instruction in the implementation 
ISA. Table 1 briefly describes the new instruction 
XLTx86. XLTx86 accesses the 128-bit F registers that are 
architected for mapping the x86 FP/media states. Addi-
tionally, XLTx86 operates on a special flag/status register 
CSR that is explained below.   

Table 1:  Hardware accelerator -- new instruction 

NEW INSTRUCTION:   XLTX86 FSRC, FDST 

BRIEF DESCRIPTION:   Decode an x86 instruction 
aligned at the beginning of the 128-bit Fsrc register, 
and generate 16b/32b micro-ops into the Fdst register. 
This instruction affects CSR status register 

 
Figure 6a illustrates the kernel loop used by the 

VMM for hardware accelerated BBT (in the implementa-
tion ISA assembly language). Rx86pc is the implementa-
tion register holding the architected x86 PC value; this 
register points to an instruction in the x86 instruction 
memory.  

To be more specific, x86 instructions are fetched by a 
LD (load) operation into register Fsrc. Because x86    
instructions are from one byte to seventeen bytes long 
(and very few are more than eleven bytes in real code), 
the Fsrc register holds at least one x86-instruction. The 
fetched x86 instruction is aligned at the beginning of the 
Fsrc register. The next instruction, XLTx86, then decodes 
and cracks the x86-instruction into micro-op(s). The input 
to XLTx86 is the Fsrc register. The output micro-ops are 
placed in the Fdst register and flags are set in the CSR 
status register. The format of the flag status register CSR 
is shown in Figure 6b. The 4-bit x86_ilen field returns the 
length of the x86 instruction. The 4-bit µops_bytes field 
returns the length of the generated micro-op(s) in the  

implementation ISA. The Flag_cmplx bit is set if the x86-
instruction being decoded is too complex for the hardware 
decoder. This mechanism keeps the hardware assist    
simple and fast by off-loading complicated cases to soft-
ware; for example, if the x86 instruction should happen to 
be more than 16 bytes (the size of the Fsrc register). The 
Flag_cti flag bit is set if the x86-instruction being proc-
essed is a control transfer instruction (which requires spe-
cial handling). After decoding, most x86-instructions are 
cracked into micro-ops of no more than 16 bytes. Note 
that the 16-bit/32-bit implementation ISA design implies 
that, only in a few rare cases, the 128b Fdst is too short to 
hold result micro-ops; this is another case that is flagged 
as a complex instruction.  Native micro-ops in Fdst are 
written back to the code cache by a store operation. The 
rest of the loop does bookkeeping (in the figure, :: indi-
cates  the two micro-ops are fused as a macro-op [15.16]). 

 

0. HAloop:  
1. LD   Fsrc, [Rx86pc] 
2. XLTx86 Fdst,  Fsrc                  
3. Jcpx  complex_x86code 
4. Jcti branch_handler 
5. ST   Fdst, [Rcode$] 
6. MOV  Rt0, CSR 
7. AND  Rt1, Rt0, 0x0f :: ADD   Rx86pc, Rt1    
8. AND.x  Rt2, Rt0, 0xf0 :: ADD   Rcode$, Rt2    
9. JMP HAloop 

(a). Code for the HW assisted fast BBT loop  

Flag_cmplx µops_bytes (4-bit)Flag_cti x86_ilen (4-bit)
 

(b). CSR, control & status register format for XLTx86 

Figure 6.   HW accelerated basic block translator 

 
For microarchitecture design, the new functional unit 

is located in the FP/media part of the processor core    
because it uses F registers to hold long x86 instructions 
and multiple micro-ops (see Figure 7).  If implemented in 
a superscalar style microarchitecture such as that pro-
posed in [16], the XLTx86 instruction will be dispatched 
to the FP/media instruction queue(s) and issued to the 
new functional unit via a FP/media issue port. XLTx86 
can take multiple cycles to execute as do many other 
FP/media instructions. In our research, we assume 
XLTx86 takes four cycles. The x86 instruction bytes are 
supplied to the functional unit via streaming buffer and 
the generated micro-ops are written back to memory   
directly without going through the data cache.  
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Figure 7. Hardware Accelerator µ-architecture 

 
For circuit design, the functional unit for  XLTx86  is 

essentially a simplified, one instruction wide, x86 decoder 
relocated to the execution stage of the FP / media core.   

The new instruction, XLTx86, speeds up BBT by    
accelerating the dominant part of fetch/decode/crack 
(from tens of cycles to only a few cycles). Meanwhile, 
because it is an instruction that provides a primitive    
operation (from the translation perspective), it offers the 
VMM flexibility and simplicity beyond the frontend dual 
mode decoders.    

5 Evaluation  
5.1 Evaluation Methodology  

The experimental infrastructure is based on the      
co-designed x86 virtual machine [16] summarized in  
Section 2. The staged translation software is developed as 
part of the concealed VMM runtime software. The        
co-designed processor is modeled via a microarchitecture 
timing simulator.  

To compare startup performance with conventional 
superscalar designs and to illustrate how VM system 
startup performance can be improved by the proposed 
hardware assists, we simulate the following machine   
configurations. Detailed configuration settings are pro-
vided in Table 2.  

• Ref: superscalar:  The conventional superscalar  
microarchitecture serves as the baseline/reference. 

• VM.soft:  A conventional co-designed VM scheme, 
with software-only BBT and SBT dynamic binary 
translators.  

• VM.be:  The co-designed x86 VM, equipped with 
pipeline backend functional units.  

• VM.fe:   The co-designed x86 VM, equipped with 
dual mode decoders at the pipeline frontend.   
The hot threshold in VM systems is determined by 

Equation 2 and benchmark characteristics. For the 
benchmarks used in this paper, all VM models VM.soft, 
VM.be and VM.fe, use a threshold of 8K. Note that the 
VM.fe and the Ref: superscalar schemes have a longer 
pipeline frontend due to the x86 decoders.  

To stress startup performance and other transient 
phases for a binary translation based VM system, we run 
short traces collected from the ten Windows applications 
taken from the Winstone2004 Business benchmarks. For 
studies focused on accumulated values such as benchmark 
characteristics, we simulate 100-million x86 instructions. 
For studies focused on time variations, such as variation 
in IPC over time, we simulate 500-million x86 instruc-
tions and express time on a logarithmic scale.  All simula-
tions are set up for testing the memory startup scenario 
(Scenario 2 described in Section 3.1) to stress VM spe-
cific runtime overhead.   

We first show how the proposed hardware assists 
speed up VM runtime translation by comparing the VM 
system startup performance with that of a conventional 
superscalar processor model. Then, we conduct perform-
ance and energy analysis for the hardware assists inte-
grated into the VM system.  

5.2 Performance Evaluation of the VM Systems  
Figure 8 shows the same startup performance com-

parisons as Figure 2. Additionally Figure 8 shows startup 
performance for the VMs containing the proposed hard-
ware assists. As before, the normalized IPC (harmonic 
mean) for the VM steady state is about 8% higher than the 
baseline superscalar when it is in steady state.  

The VM system equipped with dual mode decoders 
at the pipeline frontend (VM.fe) shows practically a zero 
startup overhead; performance follows virtually the same 
startup curve as the baseline superscalar because they 
have very similar pipelines for cold code execution. Once 
a hotspot is detected and optimized, the VM scheme starts 
to reap performance benefits. VM.fe reaches half the 
steady-state performance gains (4%) in 100M cycles. 

The VM scheme equipped with a backend functional 
unit decoder (VM.be) also demonstrates good startup  
performance. However, compared with the baseline    
superscalar, VM.be lags behind for the initial several    
millions of cycles. The breakeven point occurs at around            
10-million cycles and the half performance gain point 
happens after 100-million cycles. After that, VM.be     
performs very similarly to the VM.fe scheme.   



 
 

Table 2. Machine Configurations 

 Ref: superscalar VM.soft VM.be VM.fe  

Cold x86 code    Hardware x86 decoders 
No optimization 

Simple software 
BBT, no opts 

BBT assisted by the 
backend HW decoder.  

Hardware Dual-mode 
decoders 

Hotspot x86 code  Hardware x86 decoders 
No optimization 

Software hotspot 
optimizations  

Perform the same hotspot optimization as in 
VM.soft, with simple HW assists.  

ROB, Issue buffer 36 issue queue slots, 128 ROB entries, 32 LD queue slots, 20 ST queue slots 

Physical Register File 128 entries, 8 Read 
ports, 5 Write ports 

128 entries, 8 Read and 8 Write ports (2 Read & 2 Write ports are 
reserved for the 2 memory ports). 

Pipeline width 16B fetch width, 3-wide decode, rename, issue and retire.   

Cache Hierarchy L1 I-cache: 64KB, 2-way, 64B lines, Latency: 2 cycles.  L1 D-cache, 64KB, 8-way, 64B lines, 
Latency: 3 cycles.  L2 cache: 2MB, 8-way, 64B lines, Latency: 12 cycles 

Memory Latency Main memory latency: 168 CPU-cycles. 1 memory cycle is 8 CPU core cycles. 
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   Figure 8.  Startup performance comparison 
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Figure 9. Breakeven points for individual traces  

  

Figure 9 shows, for each individual benchmark, the 
number of cycles a particular translation scheme needs to 
first reach the breakeven point with the reference super-
scalar. We label bars that are higher than 200-million  
cycles (to break even) with their actual values. Otherwise, 
a bar that is higher than 200-million cycles means its VM 
model did not break even within the 500-million x86-
instruction trace simulation.  

It is clear from the figure that, in most cases, using  
either the frontend or the backend assists can significantly 
reduce the VM startup overhead and enable VM schemes 
to break even with the reference superscalar within 50-
million cycles. However, for the Project benchmark, the 
VM schemes cannot break even within the tested runs, 
though they do follow performance of the reference    
superscalar closely (within 5%). Further investigation 
indicates that the VM steady state performance for Project 
is only 3% better than the superscalar baseline, thus the 
VM schemes take a longer time to collect enough hotspot 
performance gains to compensate for the performance 
loss due to initial emulation and translation.  

5.3 Performance and Energy Analysis  
It is straightforward to explain the startup perform-

ance improvement for VM.fe because its x86-mode execu-
tion is very similar to the execution of a baseline super-
scalar. On the other hand, the VM.be scheme translates 
cold code in a co-designed way that still involves VM 
software. Consequently, we consider how VM software 
overhead is reduced after being assisted by the XLTx86 
instruction. The software-only baseline VM (VM.soft) is 
measured to spend on average 9.9% of its runtime per-
forming BBT translation, for the first 100-million       
dynamic x86 instructions.  
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Figure 10. BBT translation overhead & emulation 

cycle time (100M x86 instruction traces) 

 Figure 10 shows how VM cycles (for the VM.be 
scheme) are spent. For each benchmark, the lower bars 
(BBT overhead) represent the percentage of VM cycles 
spent for BBT translation and the upper bars (BBT emu.) 
indicate the percentage of cycles the VM.be model exe-
cutes basic block translation. The rest of the cycles are 
mostly spent for SBT translation and emulation with the 
optimized hotspot code. To stress startup overhead, the 
data is collected for the first 100M x86 instructions for 
each benchmark.    

It is evident from Figure 10 that after adding the new 
XLTx86 instruction at the pipeline backend, the average 
BBT translation overhead is reduced to 2.7%; about 5% at 
worst. Further measurements indicate that the software-
only BBT spends 83 cycles to translate each x86-
instruction (including all BBT overhead, such as chaining 
and searching the translation lookup table). In contrast, 
VM.be needs only 20 cycles to do the same operations. 

After BBT translation, the VM.be scheme spends 
35% of its total cycles (BBT.emu bars in Fig. 10) execut-
ing BBT translations. The execution of BBT translations 
is less efficient than that of SBT translations. However, 
this BBT emulation does not lose much performance  
because the BBT translations run fairly efficiently (On 
average 82~85% IPC performance of SBT optimized 
code).  This IPC performance is only slightly less than the 
baseline superscalar design. And for program startup tran-
sient, cache misses dilute CPU IPC performance.   

The rest of the VM.be cycles (VM.fe is similar) are 
spent in SBT translation (3.2%) and emulation via SBT 
translations (59%).  The optimized SBT translations im-
prove overall performance by covering 63% of the 100M 
x86 instructions. For 500-million x86 instructions runs, 
the hotspot coverage rises to 75+% on average and is pro-
jected to be higher for full program runs.  

A software-based co-designed VM does not require 
complex x86 decoders in the pipeline as in conventional 
x86 processors. This can provide significant energy sav-
ings (one of the motivations for the Transmeta designs). 
However, when hardware x86 decoder(s) are added as 

assists, they consume energy. Nevertheless, this energy 
consumption can be mitigated by powering off the hard-
ware assists when they are not in use.  

To estimate the energy consumption, we measure the 
activity of the hardware x86 decoding logic. The activity 
is defined as the percentage of cycles the decoding logic 
needs to be turned on. Figure 11 shows the activity for the 
four machine configurations. The x-axis shows the cycle 
time on logarithmic scale and the y-axis shows the aggre-
gate decoding logic activity.  

For conventional x86 processors, x86 decoders are 
always on (except Pentium 4 [13]). In contrast, for the 
VM.be scheme, the hardware assist activity quickly     
decreases after the first 10,000 cycles.  It becomes negli-
gible after 100-million cycles. Considering that only one 
decoder is needed to implement XLTx86 in the VM.be 
scheme, energy consumption due to x86 decoding is miti-
gated.   For the VM.fe model, the dual mode decoders at 
the pipeline frontend need to be active if the VM is not 
executing optimized hotspot code. The decoders’ activity 
also decreases quickly, but later than a VM.be scheme as 
illustrated in the figure.    
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Figure 11.   Activity of HW assists  

6 Conclusions and Future Directions 
To understand runtime overhead in co-designed 

VMs, we investigated a co-designed x86 VM using fused 
micro-ops. Runtime overhead can be caused by emulation 
of non-hotspot code.  This is especially a problem for the 
CISC x86 whether using an interpreter or BBT.  Dynamic 
hotspot optimization overhead can also be detrimental to 
startup performance. Runtime overhead not only   affects 
startup performance, but also system performance consis-
tency and predictability.  

In our exploration of VM startup performance, we 
first reduce baseline VM translation overhead by employ-
ing a staged translation strategy and simple, but efficient, 
BBT translation as in many current VM systems. Then, 
we analyze and model VM startup performance from a 



 
 

memory hierarchy perspective. We observe that non-
hotspot emulation causes the major translation overhead 
and hotspot optimization can further exacerbate the VM 
startup curve for some applications. We propose an over-
all strategy to reduce VM startup time. To reduce transla-
tion overhead for non-hotspot code emulation, we propose 
hardware assists. These assists significantly reduce (or 
eliminate) BBT runtime overhead.  

After applying the strategy and integrating the accel-
erated binary translators into the baseline co-designed x86 
virtual machine, we show that the VM system startup 
performance is significantly improved for the Windows 
application benchmarks. Considering the fact the virtual 
machine design enables a novel efficient microarchitec-
ture, the overall system performance is improved without 
sacrificing design complexity.  

For future research, we anticipate that the combina-
tion of the adaptive translation strategies with simple 
hardware accelerators is not limited to the co-designed 
virtual machine paradigm. The ideas can be applied to 
speed up other dynamic binary translation systems, thus 
enabling other attractive system features and capabilities.   
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