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ABSTRACT
Cycles per Instruction (CPI) stacks break down processor
execution time into a baseline CPI plus a number of miss
event CPI components. CPI breakdowns can be very help-
ful in gaining insight into the behavior of an application on
a given microprocessor; consequently, they are widely used
by software application developers and computer architects.
However, computing CPI stacks on superscalar out-of-order
processors is challenging because of various overlaps among
execution and miss events (cache misses, TLB misses, and
branch mispredictions).

This paper shows that meaningful and accurate CPI stacks
can be computed for superscalar out-of-order processors. Us-
ing interval analysis, a novel method for analyzing out-of-
order processor performance, we gain understanding into
the performance impact of the various miss events. Based
on this understanding, we propose a novel way of archi-
tecting hardware performance counters for building accurate
CPI stacks. The additional hardware for implementing these
counters is limited and comparable to existing hardware per-
formance counter architectures while being significantly more
accurate than previous approaches.

1. INTRODUCTION
A key role of user-visible hardware performance counters
is to provide clear and accurate performance information
to the software developer. This information provides guid-
ance regarding the kinds of software changes that are nec-
essaryfor improved performance. One intuitiv ely appealing
way of representing the major performance components is
in terms of their contributions to the averagecycles per in-
struction (CPI). However, for out-of-order superscalar pro-
cessors,conventional performance counters do not provide
the type of information from which accurate CPI compo-
nents can be determined. The reason is that performance
counters have historically been constructed in a bottom up
fashion by focusing on the events that a�ect performance,

for example the various cache miss rates, without regard for
how the performance counts should be combined to form an
overall picture of CPI.

In contrast, by viewing performance in a top down manner
with accurate CPI measures as the goal, a set of perfor-
mance counters can be de�ned that do provide basic data
from which an accurate overall picture of CPI can be built.
We have taken such a top down approach, using interval
analysis, a superscalarprocessorperformancemodel we have
developed, as a guide. The performance model gives an in-
depth understanding of the relationships among miss events
and related performance penalties. The insights from the
performance model are usedto design a novel hardware per-
formance counter architecture for computing accurate CPI
components | within a few percent of the components com-
puted by detailed simulations. This is signi�can tly more ac-
curate than previously proposedCPI breakdown approaches
with errors that are higher than 30%. Moreover, the hard-
ware complexity for our counter architecture is limited and
comparable to existing hardware performance counter archi-
tectures.

We �rst revisit the CPI stack and existing approaches to
measuring CPI stacks (section 2). We then use a perfor-
mance model, interval analysis, to determine what the miss
penalties are for the various miss events (section 3). Based
on these insights we subsequently propose our hardware
performance counter mechanism for building accurate CPI
stacks (section 4). Subsequently , the proposed mechanism
is evaluated (section 5) and related work is discussed(sec-
tion 6). Finally , we conclude in section 7.

2. CONSTRUCTING CPI STACKS
The average CPI for a computer program executing on a
given microprocessor can be divided into a base CPI plus
a number of CPI components that reect the `lost' cycle
opportunities becauseof miss events such as branch mispre-
dictions and cache and TLB misses. The breakdown of CPI
into components is often referred to asa CPI `stack' because
the CPI data is typically displayed asstacked histogram bars
where the CPI components stack on top of one another with
the base CPI being shown at the bottom of the histogram
bar. A CPI stack reveals valuable information about how
a given application behaves on a given microprocessorand
gives more insight into an application's behavior than raw
miss rates do.
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Figure 1: Example CPI stac k for the twolf bench-
mark.

Figure 1 shows an example CPI stack for the twolf bench-
mark for a 4-wide superscalarout-of-order processordetailed
in section 5.1. The CPI stack reveals that the base CPI
(in the absenceof miss events) equals 0.3; other substan-
tial CPI components are for the L1 I-cache (0.18), the L2
D-cache (0.56) and the branch predictor (0.16). The overall
CPI equals1.35 which is shown by the top of the CPI stack.
Application developers can use a CPI stack for optimizing
their software. For example, if the intruction cache miss
CPI is relativ ely high, then improving instruction localit y is
the key to reducing CPI and increasing performance. Or,
if the L2 D-cache CPI component is high as is the casefor
the twolf example, changing the data layout or adding soft-
ware prefetching instructions are viable optimizations. Note
that a CPI stack alsoshows what the maximum performance
improvement is for a given optimization. For example for
twolf, improving the L2 D-cache behavior can improve over-
all performance by at most 41%, i.e., the L2 D-cache CPI
component divided by the overall CPI.

Although the basic idea of a CPI stack is simple, computing
accurate CPI stacks on superscalarout-of-order processorsis
challenging becauseof the parallel processingof independent
operations and miss events. A widely used naive approach
for computing the various components in a CPI stack is to
multiply the number of miss events of a given type by an av-
eragepenalty per miss event [1, 10, 11, 17, 20]. For example,
the L2 data cache miss CPI component is computed by mul-
tiplying the number of L2 misseswith the average memory
accesslatency; the branch misprediction CPI contributor is
computed by multiplying the number of branch mispredic-
tions with an averagebranch misprediction penalty. We will
refer to this approach as the naive approach throughout the
paper.

There are a number of pitfalls to the naive approach, how-
ever. First, the average penalty for a given miss event
may vary acrossprograms, and, in addition, the number of
penalty cycles may not be obvious. For example, previous
work [4] has shown that the branch misprediction penalty
varies widely across benchmarks and can be substantially
larger than the frontend pipeline length | taking the fron-
tend pipeline length asan estimate for the branch mispredic-
tion penalty leadsto a signi�can t underestimation of the real
branch misprediction penalty. Second, the naive approach
doesnot take into consideration that someof the miss event
penalties can be hidden (overlapped) through out-of-order
processingof independent instructions and miss events. For

example, L1 data cache missescan be hidden almost com-
pletely in a balanced, out-of-order superscalar processor. As
another example, two or more L2 data cache misses may
overlap with each other. Not taking these overlapping miss
events into account can give highly skewed estimates of the
CPI components. And �nally , the naive approach makesno
distinction between miss events along mispredicted control
o w paths and miss events along correct control o w paths.
A naive method may count events on both paths, leading to
inaccuracy.

To overcome the latter problem, some processors,such as
the Intel Pentium 4 [18], feature a mechanism for obtaining
nonspeculative event counts. This is achieved by implement-
ing a tagging mechanism that tags instructions as they o w
through the pipeline, and the event counters get updated
only in casethe instruction reaches completion. In casethe
instruction is not completed, i.e., the instruction is from
a misspeculated path, the event counter does not get up-
dated. We will refer to this approach as the naive non spec
approach; this approach di�ers from the naive approach in
that it doesnot count miss events along mispredicted paths.

In responseto someof the above shortcomings, the designers
of the IBM POWER5 microprocessor implemented a dedi-
cated hardware performance counter mechanism with the
goal of computing the CPI stack [12, 13]. And to the best
of our knowledge, the IBM POWER5 is the only out-of-
order processorimplementing a dedicated hardware perfor-
mance counter architecture for measuring the CPI compo-
nents similar to our approach | in fact, other approaches
have beenproposedwhich we discussin section 6. The IBM
POWER5 has hardware performance counters that can be
programmed to count particular completion stall conditions
such as I-cache miss, branch misprediction, L2 D-cache miss,
L1 D-cache miss, etc. The general philosophy for the IBM
POWER5 CPI mechanism is to inspect the completion stage
of the pipeline. And if no instructions can be completed in
a given cycle, the appropriate completion stall counter is in-
cremented. As such, the completion stall counters count the
number of stall cycles for a given stall condition. There are
two primary conditions for a completion stall.

� First, the reorder bu�er (ROB) is empty. There are
two possible causesfor this.

{ First, an I-cache miss, or an I-TLB miss occurred,
and the pipeline stops feeding new instructions
into the ROB. This causes the ROB to drain,
and, eventually , the ROB may become empty.
When the ROB is empty, the POWER5 mech-
anism starts counting lost cycles in the I-cache
completion stall counter until instructions start
entering the ROB again.

{ Second,a branch is mispredicted. When the mis-
predicted branch gets resolved, the pipeline needs
to be ushed and new instructions need to be
fetched from the correct control o w path. At
that point in time, the ROB is empty until newly
fetched instructions have traversed the frontend
pipeline to reach the ROB. The POWER5 mech-
anism counts the number of cycleswith an empty
ROB in the branch misprediction stall counter.
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Figure 2: Basic idea of in terv al analysis: perfor-
mance can be analyzed by dividing time in to in ter-
vals bet ween miss events.

� The second reason for a completion stall is that the
instruction at the head of the ROB cannot be com-
pleted for somereason. The zero-completion cycle can
be attributed to one of the following.

{ The instruction at the head of the ROB is stalled
becauseit su�ered a D-cache miss or a D-TLB
miss. This causesthe D-cache or D-TLB comple-
tion stall counter to be incremented every cycle
until the memory operation is resolved.

{ The instruction at the head of the ROB is an
instruction with latency greater than one cycle,
such asa multiply , divide, or a long latency oating-
point operation, and the instruction has not yet
completed. The long latency completion stall counter
is incremented every cycle until completion can
make progressagain.

These three CPI stack building approaches, the two naive
approachesand the more complex IBM POWER5 approach,
are both built in a bottom up fashion. These bottom up ap-
proachesare inadequate for computing the true performance
penalties due to each of the miss events (as will be shown
in detail in this paper). And as a result, the components in
the resulting CPI stack are inaccurate.

3. UNDERLYING PERFORMANCE MODEL
We usea model for superscalar performance evaluation that
we call interval analysis in our top down approach to de-
signing a hardware performance counter architecture. In-
terval analysis provides insight into the performance of a
superscalar processorwithout requiring detailed tracking of
individual instructions. With interval analysis, execution
time is partitioned into discrete intervals by the disruptiv e
miss events (such as cache misses,TLB missesand branch
mispredictions). Then, statistical processor and program
behavior allows superscalar behavior and performance to be
determined for each interval type. Finally , by aggregating
the individual interval performance, overall performance is
estimated.

The basis for the model is that a superscalar processoris de-
signed to stream instructions through its various pipelines
and functional units, and, under optimal conditions, a well-
balanced design sustains a level of performance more-or-less
equal to its pipeline (dispatch/issue) width. For a balanced
processordesignwith a large enoughROB and related struc-
tures for a given processorwidth, the achieved issuerate in-
deedvery closelyapproximates the maximum processorrate.
This is true for the processorwidths that are of practical in-
terest { say 2-way to 6- or 8-way. We are not the �rst to
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Figure 3: An I-cac he miss in terv al.

observe this. Early studies such as by Riseman and Foster []
showed a squared relationship between instruction window
sizeand IPC; this observation was also made in more recent
work, seefor example [] and []. There are exceptions though
where there are very long dependence chains due to loop
carried dependencesand where the loop has relativ ely few
other instructions. These situations are uncommon for the
practical issue widths, however. Nevertheless, our counter
architecture handles these casesas resource stalls or L1 D-
cache misses,as described in section 4.3.

However, the smooth o w of instructions is often disrupted
by miss events. When a miss event occurs, the issuing of
useful instructions eventually stops; there is then a period
when no useful instructions are issueduntil the miss event is
resolved and instructions can onceagain begin o wing. Here
we emphasizeuseful; instructions on a mispredicted branch
path are not considered to be useful.

This interval behavior is illustrated in Figure 2. The number
of instructions issuedper cycle (IPC) is shown on the verti-
cal axis and time (in clock cycles) is on the horizontal axis.
As illustrated in the �gure, the e�ects of miss events divide
execution time into intervals. We de�ne intervals to begin
and end at the points where instructions just begin issuing
following recovery from the preceding miss event. That is,
the interval includes the time period where no instructions
are issuedfollowing a particular miss event. By dividing ex-
ecution time into intervals, we can analyze the performance
behavior of the intervals individually . In particular, we can,
basedon the type of interval (the miss event that terminates
it), describe and evaluate the key performance characteris-
tics. Because the underlying interval behavior is di�eren t
for frontend and backend miss events, we discussthem sep-
arately. Then, after having discussedisolated miss events,
we will discuss interactions between miss events.

3.1 Frontend misses
The frontend missescan be divided into I-cache and I-TLB
misses,and branch mispredictions.

3.1.1 InstructioncacheandTLBmisses
The interval execution curve for an L1 or L2 I-cache miss is
shown in Figure 3 | becauseI-cache and I-TLB missesex-
hibit similar behavior (the only di�erence being the amount
of delay), we analyze them collectively as `I-cache misses'.
This graph plots the number of instructions issued (on the
vertical axis) versus time (on the horizontal axis); this is
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Figure 4: The penalt y due to an L1 instruction cache
miss; the access latency for the L2 cache is 9 cycles.

typical behavior, and the plot has been smoothed for clar-
it y. At the beginning of the interval, instructions begin to
�ll the window at a sustained maximum dispatch width and
instruction issue and commit ramp up; as the window �lls,
the issue and commit rates increase toward the maximum
value. Then, at some point, an instruction cache miss oc-
curs. All the instructions already in the pipeline frontend
must �rst be dispatched into the window before the window
starts to drain. This takes an amount of time equal to the
number of frontend pipeline stages,i.e., the number of clock
cycles equal to the frontend pipeline length. O�setting this
e�ect is the time required to re-�ll the frontend pipeline after
the missedline is accessedfrom the L2 cache (or main mem-
ory). Becausethe two pipeline-length delays exactly o�set
each other, the overall penalty for an instruction cache miss
equals the miss delay. Simulation data veri�es that this is
the casefor the L1 I-cache, seeFigure 4; we obtained similar
results for the L2 I-cache and I-TLB. The L1 I-cache miss
penalty seemsto be (fairly) constant acrossall benchmarks.
In these experiments we assumean L2 accesslatency of 9
cycles. The slight uctuation of the I-cache miss penalty
between 8 and 9 cycles is due to the presenceof the fetch
bu�er in the instruction delivery subsystem.

Our proposed hardware performance counter mechanism,
which will be detailed later, e�ectiv ely counts the miss de-
lay, i.e., it counts the number of cyclesbetweenthe time the
instruction cache miss occurs and the time newly fetched in-
structions start �lling the frontend pipeline. These counts
are then ascribed to either I-cache or I-TLB misses. The
naiveapproach alsocomputes the I-cache (or I-TLB) penalty
in an accurate way multiplying the number of missesby the
miss delay. The IBM POWER5 mechanism, in contrast,
counts only the number of zero-completion cycles due to
an empty ROB; this corresponds to the zero-region in Fig-
ure 3 after the ROB has drained. This meansthat the IBM
POWER5 mechanism doesnot take into account the time to
drain the ROB. This leads to a substantial underestimation
of the real instruction cache (or TLB) miss penalty asshown
in Figure 4. Note that in some cases,the IBM POWER5
mechanism may not ascribe any cycles to the instruction
cache miss. This is the case when the window drain time
takes longer than the miss delay, which can happen in case
a largely �lled ROB needs to be drained and there is low
ILP or a signi�can t fraction long latency instructions.

3.1.2 Branch mispredictions
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Figure 5: In terv al behavior for a branc h mispredic-
tion.
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Figure 6: The average penalt y per mispredicted
branc h.

Figure 5 shows the timing for a branch misprediction in-
terval. At the beginning of the interval, instructions begin
to �ll the window and instruction issue ramps up. Then,
at some point, the mispredicted branch enters the window.
At that point, the window begins to be drained of useful
instructions (i.e., those that will eventually commit). Miss-
speculated instructions following the mispredicted branch
will contin ue �lling the window, but they will not contribute
to the issuing of good instructions. Nor, generally speak-
ing, will they inhibit the issuing of good instructions if it
is assumed that the oldest ready instructions are allowed
to issue �rst. Eventually , when the mispredicted branch is
resolved, the pipeline is ushed and is re-�lled with instruc-
tions from the correct path. During this re-�ll time, there
is a zero-issueregion where no instructions issue nor com-
plete, and, given the above observation, the zero-region is
approximately equal to the time it takes to re-�ll the fron-
tend pipeline.

Based on the above interval analysis, it follows that the
overall performance penalty due to a branch misprediction
equalsthe di�erence betweenthe time the mispredicted branch
�rst enters the window and the time the �rst correct-path
instruction enters the window following discovery of the mis-
prediction. In other words, the overall performance penalty
equalsthe branch resolution time, i.e., the time betweenthe
mispredicted branch entering the window and the branch be-
ing resolved, plus the frontend pipeline length. Eyerman et
al. [4] have shown that the branch resolution time is subject
to the interval length and the amount of ILP in the pro-
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gram; i.e., the longer the interval and the lower the ILP , the
longer the branch resolution time takes. For many bench-
marks, the branch resolution time is the main contributor
to the overall branch misprediction penalty.

Based on the interval analysis it follows that in order to ac-
curately compute the branch misprediction penalty, a hard-
ware performance counter mechanism requires knowledge of
when a mispredicted branch entered the ROB. And this has
to be reected in the hardware performance counter archi-
tecture (as is the casein our proposedarchitecture). None of
the existing approaches, however, employ such an architec-
ture, and, consequently , theseapproachesare unable to com-
pute the true branch misprediction penalty; see Figure 6.
The naive approach typically ascribes the frontend pipeline
length as the branch misprediction penalty which is a sig-
ni�can t underestimation of the overall branch misprediction
penalty. The IBM POWER5 mechanism only counts the
number of zero-completion cycles on an empty ROB as a
result of a branch misprediction. This is even worse than
the naive approach as the number of zero-completion cycles
can be smaller than the frontend pipeline length.

3.2 Backend misses
For backend miss events, we make a distinction between
events of short and long duration. The short backend misses
are L1 data cache misses; the long backend missesare the
L2 data cache missesand D-TLB misses.

3.2.1 Shortmisses
Short (L1) data cache misses in general do not lead to a
period where zero instructions can be issued. Provided that
the processordesign is reasonably well-balanced, there will
be a su�cien tly large ROB (and related structures) so that
the latency of short data cache missescan be hidden (over-
lapped) by the out-of-order execution of independent in-
structions. As such, we consider loads that miss in the L1
data cache in a similar manner as the way we consider in-
structions issued to long latency functional units (see sec-
tion 4.3).

3.2.2 Longmisses
When a long data cache miss occurs, i.e., from the L2 to
main memory, the memory delay is typically quite large |
on the order of a hundred or more cycles. Similar behavior
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Figure 9: Penalt y per long (L2) data cache miss.

is observed for D-TLB misses. Hence, both are handled in
the samemanner.

On an isolated long data cache miss, the ROB eventually
�lls becausethe load blocks the ROB head, then dispatch
stops, and eventually issue and commit cease[8]. Figure 7
shows the performance of an interval that contains a long
data cache miss where the ROB �lls while the missing load
instruction blocks at the head of the ROB. After the miss
data returns from memory, instruction issuing resumes. The
total long data cache miss penalty equals the time between
the ROB �ll and the time data returns from memory.

Next, we consider the inuence of a long D-cache miss that
closely follows another long D-cache miss | we assume
that both L2 data cache misses are independent of each
other, i.e., the �rst load does not feed the secondload. By
`closely' we mean within the W (window size or ROB size)
instructions that immediately follow the �rst long D-cache
miss; these instructions will make it into the ROB before it
blocks. If additional long D-cache missesoccur within the
W instructions immediately following another long D-cache
miss, there is no additional performance penalty because
their miss latencies are essentially overlapped with the �rst.
This is illustrated in Figure 8. Here, it is assumedthat the
second miss follows the �rst by S instructions. When the
�rst load's miss data returns from memory, then the �rst
load commits and no longer blocks the head of the ROB.
Then, S new instructions are allowed to enter the ROB.
This will take approximately S/I cycleswith I being the dis-
patch width | just enough time to overlap the remaining



latency from the secondmiss. Note that this overlap holds
regardlessof S, the only requirement is that S is lessthan or
equal to the ROB size W. A similar argument can be made
for any number of other long D-cache missesthat occur with
W instructions of the �rst long D-cache miss.

Based on this analysis, we conclude that the penalty for
an isolated miss as well as for overlapping long data cache
misses, equals the time between the ROB �lling up and
the data returning from main memory. And this is exactly
what our proposed hardware performance counter mecha-
nism counts. In contrast, the naive approach ascribes the
total miss latency to all long backend misses,i.e., the naive
approach doesnot take into account overlapping long back-
end misses. This can lead to severe overestimations of the
real penalties, seeFigure 9. The IBM POWER5 mechanism
on the other hand, makesa better approximation of the real
penalty and starts counting the long data cache misspenalty
as soon as the L2 data cache miss reaches the head of the
ROB. By doing so, the IBM POWER5 ascribesa single miss
penalty to overlapping backend misses. This is a subtle dif-
ference with our mechanism; the IBM POWER5 approach
starts counting as soon as the L2 data cache miss reaches
the head of the ROB, whereasthe method we proposewaits
until the ROB is e�ectiv ely �lled up. As such, our method
does not count for the amount of work that can be done in
overlap with the long D-cache miss, i.e., �lling up the ROB.
This is a small di�erence in practice, however; seeFigure 9.

3.3 Interactions between miss events
Thus far, we have consideredthe various miss event typesin
isolation. However, in practice, miss events do not occur in
isolation; they interact with other miss events. Accurately
dealing with these interactions is crucial for building mean-
ingful CPI stacks sincewe do not want to double-count miss
event penalties. We �rst treat interactions betweenfrontend
miss events. We then discussinteractions between frontend
and backend miss events.

3.3.1 Interactionsbetweenfrontendmissevents
The degree of interaction between frontend pipeline miss
events (branch mispredictions, I-cache misses and I-TLB
misses)is limited becausethe penalties do not overlap. That
is, frontend pipeline miss events serially disrupt the o w of
good instructions so their negative e�ects do not overlap.
The only thing that needs to be considered when building
accurate CPI stacks is that the penalties due to frontend
pipeline miss events along mispredicted control o w paths
should not be counted. For example, the penalty due to an I-
cache miss along a mispredicted path should not be counted
as such. The naive approach does count all I-cache and
I-TLB misses, including misses along mispredicted paths,
which could lead to inaccurate picture of the real penalties.
The naive non specmethod, the IBM POWER5 mechanism
aswell asour method do not count I-cache and I-TLB misses
along mispredicted paths.

3.3.2 Interactionsbetweenfrontendand long back
endmissevents

The interactions between frontend pipeline miss events and
long backend missevents are more complex becausefrontend
pipeline miss events can be overlapped by long backend miss

benchmark input % overlap
bzip2 program 0.12%
crafty ref 1.03%
eon rushmeier 0.01%
gap ref 5.40%
gcc 166 0.93%
gzip graphic 0.04%
mcf ref 0.02%
parser ref 0.43%
perlbmk makerand 1.00%
twolf ref 4.97%
vortex ref2 3.10%
vpr route 0.89%

Table 1: Percen tage cycles for whic h fron tend miss
penalties overlapp ed with long backend miss penal-
ties.

events. The question then is: how do we account for both
miss event penalties? For example, in case a branch mis-
prediction overlaps with a long D-cache miss, do we account
for the branch misprediction penalty, or do we ignore the
branch misprediction penalty, saying that it is completely
hidden under the long D-cache miss? In order to answer
these questions we measured the fraction of the total cycle
count for which overlaps are observed betweenfrontend miss
penalties (L1 and L2 I-cache miss, I-TLB miss and branch
mispredictions) and long backend miss penalties. The frac-
tion of overlapped cycles is generally very small, as shown in
Table 1; no more than 1% for most benchmarks, and only as
much as 5% for a couple of benchmarks. Since the fraction
overlapped cyclesis very limited, any mechanism for dealing
with it will result in relativ ely accurate and meaningful CPI
stacks. Consequently , we opt for a hardware performance
counter implementation that assignsoverlap between fron-
tend and long backend miss penalties to the frontend CPI
component, unless the ROB is full (which triggers count-
ing the long backend miss penalty). This implementation
results in a simple hardware design.

4. COUNTER ARCHITECTURE
In our proposedhardware performancecounter architecture,
we assumeone total cycle counter and 8 global CPI compo-
nent cycle counters for measuring `lost' cycles due to L1
I-cache misses,L2 I-cache misses,I-TLB misses,L1 D-cache
misses, L2 D-cache misses, D-TLB misses, branch mispre-
dictions and long latency functional unit stalls. The idea is
to assign every cycle to one of the global CPI component
cycle counters when possible; the steady-state (baseline) cy-
cle count then equals the total cycle count minus the total
sum of the individual global CPI component cycle counters.
We now describe how the global CPI component cycle coun-
ters can be computed in hardware. We make a distinction
between frontend misses,backend misses,and long latency
functional unit stalls.

4.1 Frontend misses
4.1.1 Initial design:FMT

To measure lost cycles due to frontend miss events, we pro-
posea hardware table, called the frontend miss event table
(FMT), that is implemented as shown in Figure 10. The
FMT is a circular bu�er and has as many rows as the pro-
cessorsupports outstanding branches. The FMT also has
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Figure 10: (a) shows the FMT, and (b) shows the sFMT for computing fron tend miss penalties.

three pointers, the fetch pointer, the dispatch head pointer,
and the dispatch tail pointer. When a new branch instruc-
tion is fetched and decoded, an FMT entry is allocated by
advancing the fetch pointer and by initializing the entire
row to zeros. When a branch dispatches, the dispatch tail
pointer is advanced to point to that branch in the FMT,
and the instruction's ROB ID is inserted in the `ROB ID'
column. When a branch is resolved and turns out to be a
misprediction, the instruction's ROB ID is usedto locate the
corresponding FMT entry , and the `mispredict' bit is then
set. The retirement of a branch causesthe dispatch head
pointer to increment which de-allocates the FMT entry .

The frontend miss penalties are then calculated as follows.
Any cycle in which no instructions are fed into the pipeline
due to an L1 or L2 I-cache miss or an I-TLB miss causesthe
appropriate local counter in the FMT entry (the one pointed
to by the fetch pointer) to be incremented. For example, an
L1 I-cache miss causesthe local L1 I-cache miss counter in
the FMT (in the row pointed to by the fetch pointer) to
be incremented every cycle until the cache miss is resolved.
By doing so, the miss delay computed in the local counter
corresponds to the actual I-cache or I-TLB miss penalty
(according to interval analysis).

For branches, the local FMT `branch penalty' counter keeps
track of the number of lost cycles caused by a presumed
branch misprediction. Recall that the branch misprediction
penalty equals the number of cycles between the mispre-
dicted branch entering the ROB and new instructions along
the correct control o w path entering the ROB after branch
resolution. Becauseit is unknown at dispatch time whether
a branch is mispredicted, the proposed method computes
the number of cycles each branch residesin the ROB. That
is, the `branch penalty' counter is incremented every cycle
for all branches residing in the ROB, i.e., for all branches
between the dispatch head and tail pointers in the FMT.
This is done unless the ROB is full | we will classify cy-
cles with a full ROB as long backend missesor long latency
misses; this is the easiest way not to double-count cycles
under overlapping miss events.

The global CPI component cycle counters are updated when
a branch instruction completes: the local L1 I-cache, L2 I-
cache and I-TLB counters are added to the respective global
cycle counters. In casethe branch is incorrectly predicted,
then the value in the local `branch penalty' counter is added

to the global branch misprediction cycle counter. And from
then on, the global branch misprediction cycle counter is in-
cremented every cycle until new instructions enter the ROB.
The resolution of a mispredicted branch alsoplacesthe FMT
dispatch tail pointer to point to the mispredicted branch en-
try and the FMT fetch pointer to point to the next FMT
entry .

4.1.2 Improveddesign:sFMT
The above design using the FMT makes a distinction be-
tween I-cache and I-TLB misses past particular branches,
i.e., the local I-cache and I-TLB counters in the FMT are
updated in the FMT entry pointed to by the fetch pointer
and the fetch pointer is advanced as each branch is fetched.
This avoids counting I-cache and I-TLB miss penalties past
branch mispredictions. The price paid for keepingtrack of I-
cache and I-TLB miss penalties along mispredicted paths is
an FMT that requires on the order of a few hundred bits for
storing this information. The simpli�ed FMT design, which
is called the shared FMT or sFMT, has only one shared
set of local I-cache and I-TLB counters; seeFigure 10. The
sFMT requires that an `I-cache/I-TLB miss' bit be provided
with every entry in the ROB | this is also done in the Intel
Pentium 4 and IBM POWER5 for tracking I-cache misses
in the completion stage. Since there are no per-branch I-
cache and I-TLB counters in the sFMT, the sFMT only
requires a fraction of storage bits compared to the FMT.
The sFMT operates in a similar fashion as the FMT: the lo-
cal I-cache and I-TLB counters get updated on I-cache and
I-TLB misses. The completion of an instruction with the
`I-cache/I-TLB miss' bit set (i) adds the local I-cache and
I-TLB counters to the respective global counters, (ii) resets
the local I-cache and I-TLB counters, and (iii) resets the `I-
cache/I-TLB miss' bits of all the instructions in the ROB. In
casea mispredicted branch is completed, the local `branch
penalty' counter is added to the global branch misprediction
cycle counter and the entire sFMT is cleared (including the
local I-cache and I-TLB counters).

Clearing the sFMT on a branch misprediction avoids count-
ing I-cache and I-TLB miss penalties along mispredicted
paths. However, when an I-cache or I-TLB miss is followed
by a mispredicted branch that in turn is followed by an I-
cache or I-TLB miss, then the sFMT incurs an inaccuracy
becauseit then counts I-cache and I-TLB penalties along
mispredicted control o w paths. However, given the fact
that I-cache missesand branch mispredictions typically oc-



ROB 128 entries
LSQ 64 entries
processorwidth decode, dispatch and commit 4 wide

fetch and issue8 wide
latencies load (2), mul (3), div (20)
L1 I-cache 8KB direct-mapp ed
L1 D-cache 16KB 4-way set-assoc, 2 cycles
L2 cache uni�ed, 1MB 8-way set-assoc, 9 cycles
main memory 250 cycle accesstime
branch predictor hybrid bimodal/gshare predictor
frontend pipeline 5 stages

Table 2: Pro cessor mo del assumed in our exp eri-
men tal setup.

cur in bursts, the number of caseswhere the above scenario
occurs is very limited. As such, the additional error that we
observe for sFMT compared to FMT, is very small, as will
be shown later in the evaluation section.

4.2 Long backend misses
Hardware performance counters for computing lost cycles
due to long backend misses,such as long D-cache missesand
D-TLB misses,are fairly easyto implement. Thesecounters
start counting when the ROB is full and if the instruction
blocking the ROB is a L2 D-cache miss or D-TLB miss, re-
spectively. For every cycle that these two conditions hold
true, the respective cycle counters are incremented. Note
that by doing so, we account for the long backend miss
penalty as explained from interval analysis.

4.3 Long latency unit stalls
The hardware performance counter mechanism also allows
for computing resource stalls under steady-state behavior.
Recall that steady-state behavior in a balanced processor
design implies that performance roughly equivalent to the
maximum processorwidth is achieved in the absenceof miss
events, and that the ROB needs to be �lled to achieve the
steady state behavior. Based on this observation we can
compute resourcestalls due to long latency functional unit
instructions (including short L1 data cache misses). If the
ROB is �lled and the instruction blocking the head of the
ROB is an L1 D-cache miss, we count the cycle as an L1
D-cache miss cycle; or, if the instruction blocking the head
of a full ROB is another long latency instruction, we count
the cycle as a resourcestall.

5. EVALUATION
5.1 Experimental setup
We used SimpleScalar/Alpha v3.0 in our validation experi-
ments. The benchmarks used, along with their referencein-
puts, are taken from the SPEC CPU 2000benchmark suite,
seeTable 1. The binaries of these benchmarks were taken
from the SimpleScalar website. In this paper, we only show
results for the CPU2000 integer benchmarks. We collected
results for the oating-p oint benchmarks as well; however,
the CPI stacks for the oating-p oint benchmarks are less
interesting than the CPI stacks for the integer benchmarks.
Nearly all the oating-p oint benchmarks show very large
L2 D-cache CPI components; only a few benchmarks ex-
hibit signi�can t L1 I-cache CPI components and none of
the benchmarks show substantial branch misprediction CPI
components. The baseline processormodel is given in Ta-
ble 2.

5.2 Results
This section evaluates the proposed hardware performance
counter mechanism. We compare our two hardware imple-
mentations, FMT and sFMT, against the IBM POWER5
mechanism, the naive and naive non spec approaches and
two simulation-based CPI stacks.

The simulation-based CPI stacks will serve asa referencefor
comparison. We use two simulation-based stacks becauseof
the di�cult y in de�ning what a standard `correct' CPI stack
should look lik e. In particular, there will be cyclesthat could
reasonably be ascribed to more than one miss event. Hence,
if we simulate CPI values in a speci�c order, we may get
di�eren t numbers than if they are simulated in a di�eren t
order. To account for this e�ect, two simulation-based CPI
stacks are generated as follows. We �rst run a simulation
assuming perfect branch prediction and perfect caches, i.e.,
all branches are correctly predicted and all cache accesses
are L1 cache hits. This yields the number of cycles for the
baseCPI. We subsequently run a simulation with a real L1
data cache. The additional cycles over the �rst run (which
assumesa perfect L1 data cache) gives the CPI component
due to L1 data cache misses. The next simulation run as-
sumesa real L1 data cache and a real branch predictor; this
computes the branch misprediction CPI component. For
computing the remaining CPI components, we consider two
orders. The �rst order is the following: L1 I-cache, L2 I-
cache, I-TLB, L2 D-cache and D-TLB; the second order,
called the `inverseorder', �rst computes the L2 D-cache and
D-TLB components and then computes the L1 I-cache, L2
I-cache and I-TLB CPI components. Our simulation results
show that the order in which the CPI components are com-
puted only has a small e�ect on the overall results. This
follows from the small percentages of cycles that process
overlapping frontend and backend miss event penalties, as
previously shown in Table 1.

Figure 11 shows normalized CPI stacks for the SPECint2000
benchmarks for the simulation-based approach, the naive
and naive non specapproach, the IBM POWER5 approach,
and the proposed FMT and sFMT approaches. Figure 12
summarizestheseCPI stacks by showing the maximum CPI
component errors for the various CPI stack building meth-
ods.

Figure 11 shows that the naive approach results in CPI
stacks that are highly inaccurate (and not even meaning-
ful) for some of the benchmarks. The sum of the miss
event counts times the miss penalties is larger than the to-
tal cycle count; this causesthe baseCPI, which is the total
cycle count minus the miss event cycle count, to be neg-
ativ e. This is the case for a number of benchmarks, such
as gap, gcc, mcf, twolf and vpr, with gcc the most notable
example. The reason the naive approach fails in building
accurate CPI stacks is that the naive approach does not
adequately deal with overlapped long backend misses,does
not accurately compute the branch misprediction penalty,
and in addition, it counts I-cache (and I-TLB) missesalong
mispredicted paths. However, for benchmarks that have
very few overlapped backend misses and very few I-cache
misses along mispredicted paths, the naive approach can
be fairly accurate, see for example eon and perlbmk. The
naive non spec approach which does not count miss events
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Figure 11: Normalized CPI breakdo wns for the SPECin t2000 benchmarks: the sim ulation-based approac h,
the in verse order sim ulation-based approac h, the naiv e approac h, the naiv e non spec approac h, the IBM
PO WER5 approac h and the FMT and sFMT approac hes.

along mispredicted paths, is more accurate than the naive
approach, however, the CPI stacks are still not very accurate
compared to the simulation-based CPI stacks.

The IBM POWER5 approach clearly is an improvement
compared to the naive approaches. For the benchmarks
where the naive approachesfailed, the IBM POWER5 mech-
anism succeedsin producing meaningful CPI stacks. How-
ever, compared to the simulation-based CPI stacks, the IBM
POWER5 CPI stacks are still inaccurate, see for exam-
ple crafty, eon, gap, gzip, perlbmk and vortex. The rea-
son the IBM POWER5 approach falls short is that the
IBM POWER5 mechanism underestimates the I-cache miss
penalty as well as the branch misprediction penalty.

The FMT and sFMT CPI stacks track the simulation-based
CPI stacks very closely. Whereas both the naive and IBM
POWER5 mechanisms show high errors for several bench-
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marks, the FMT and sFMT architectures show signi�can tly
lower errors for all benchmarks. All maximum CPI compo-
nent errors are less than 4%, see Figure 12. The average
error for FMT and sFMT is 2.5% and 2.7%, respectively.

6. RELATED WORK
The Intel Itanium processor family provides a rich set of
hardware performancecounters for computing CPI stacks [7].
These hardware performance monitors e�ectiv ely compute
the number of lost cyclesunder various stall conditions such
as branch mispredictions, cache misses, etc. The Digital
Contin uous Pro�ling Infrastructure (DCPI) [2] is another
example of a hardware performance monitoring tool for an
in-order architecture. Computing CPI stacks for in-order
architectures, however, is relativ ely easy compared to com-
puting CPI stacks on out-of-order architectures.

Besidesthe IBM POWER5 mechanism, other hardware pro-
�ling mechanisms have been proposed in the recent past
for out-of-order architectures. However, the goal for those
methods is quite di�eren t from ours. Our goal is to build
simple and easy-to-understand CPI stacks, whereasthe goal
for the other approaches is detailed per-instruction pro�l-
ing. For example, the ProfileMe framework [3] randomly
samples individual instructions and collects cycle-level in-
formation on a per-instruction basis. Collecting aggregate
CPI stacks can be done using the Pro�leMe framework by
pro�ling many randomly sampled instructions and by ag-
gregating all of their individual latency information. An in-
herent limitation with this approach is that per-instruction
pro�ling does not allow for modeling overlap e�ects. The
Pro�leMe framework partially addressesthis issue by pro-
�ling two potentially concurrent instructions. Shotgun pro-
�ling [5] tries to model overlap e�ects between multiple in-
structions by collecting miss event information within hot
spots using specialized hardware performance counters. A
postmortem analysis then determines, based on a simple
processor model, the amount of overlaps and interactions
betweeninstructions within thesehot spots. Per-instruction
pro�ling has the inherent limitation of relying on (i) sam-
pling which may intro duce inaccuracy, (ii) per-instruction
information for computing overlap e�ects, and (iii) inter-
rupts for communicating miss event information from hard-
ware to software which may lead to overhead and/or per-
turbation issues.

A number of researchers have looked at superscalar proces-
sor models [9, 14, 15, 16, 19], but there are three primary
e�orts that led to the interval model. First, Michaud et
al. [14] focusedon performance aspects of instruction deliv-
ery and modeled the instruction window and issue mecha-
nisms. Second,Karkhanis and Smith [9] extended this type
of analysis to all types of miss events and built a complete
performance model, which included a sustained steady state
performance rate punctuated with gaps that occurred due
to miss events. Independently , Taha and Wilson [19] broke
instruction processinginto intervals (which they call `macro
blocks'). However, the behavior of macro blocks was not
analytically modeled, but was based on simulation. Inter-
val analysis combines the Taha and Wilson approach with
the Karkhanis and Smith approach to miss event modeling.
The interval model represents an advance over the Karkha-
nis and Smith `gap' model becauseit handles short inter-

val behavior in a more straightforw ard way. The mechanis-
tic interval model presented here is similar to an empirical
model of Hartstein and Puzak [6]; however, being an empir-
ical model, it cannot be used as a basis for understanding
the mechanisms that contribute to the CPI components.

7. CONCLUSION
Computing CPI stacks on out-of-order processorsis chal-
lenging becauseof various overlap e�ects between instruc-
tions and miss events. Existing approaches fail in comput-
ing accurate CPI stacks, the main reasonbeing the fact that
these approaches build CPI stacks in a bottom up fashion
by counting miss events without regard on how these miss
events a�ect overall performance. A top down approach on
the other hand, starts from a performance model, interval
analysis, that gives insight into the performance impacts
of miss events. These insights then reveal how the hard-
ware performance counter architecture should look lik e for
building accurate CPI stacks. This paper proposed such a
hardware performance counter architecture that is compara-
ble to existing hardware performancecounter mechanisms in
terms of complexity, yet it achieves much greater accuracy.
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