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Abstract 

We study the problem of testing shared memories for violations of memory coherence and 

consistency. We first prove that detecting violations of coherence in an execution is NP-

Complete, and show that it remains NP-Complete for a number of very restricted instances. We 

then use this result to prove that all known consistency models are NP-Hard to verify. Finally, 

we show that the complexity of verifying consistency models is not a mere consequence of 

coherence, and that verifying sequential consistency remains NP-Complete once coherence has 

been verified.  

 

1 Introduction 

Memory coherence and consistency are important features of a shared-memory multiprocessor 

system. Memory coherence requires that operations to a shared location appear to execute in a 

serial order. Memory consistency is defined by memory consistency models, which specify 

serialization requirements for all memory operations. Together with the instruction set, memory 

coherence and consistency form the hardware/software interface of shared-memory 

multiprocessor systems. 
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It is becoming increasingly difficult to design and test modern shared-memory 

multiprocessor systems, with design complexity increasing to achieve higher levels of 

performance. Current systems incorporate cache hierarchies, multiple networks, distributed 

memory controllers, and various protocol optimizations to improve performance. To make 

matters worse, shrinking transistor dimensions and rising power dissipation in digital integrated 

circuits are increasing the susceptibility of hardware to errors. Yet, there is a lack of work 

addressing the problem of practically testing shared memories for violations of coherence and 

consistency and the problem of detecting protocol hardware errors. Traditional approaches have 

focused only on the detection of data corruption and computation errors [1, 2]. 

We are researching techniques to detect violations of memory coherence and 

consistency dynamically, to develop techniques that could be used for hardware error detection 

or in simulations to evaluate and debug memory system designs. This paper presents a 

theoretical investigation into the complexity of the problem, carried out as a first step. First, 

�verifying memory coherence� for an execution is stated formally as a decision problem 

(VMC). The problem is then proven NP-Complete, and analyzed under a number of important 

restrictions to characterize the problem. We find VMC to be NP-Complete for executions with 

as few as three memory operations per process and at most two writes of each data value, or 

executions with as few as two read-modify-write operations per process and values written by 

at most three read-modify-write operations.  

All memory consistency models either provide memory coherence, or allow the 

programmer to force a serialization with special instructions. Therefore, the NP-Completeness 

of VMC directly implies the NP-Hardness of verifying adherence to a memory consistency 

model. Finally, we show that the complexity of verifying adherence to a memory consistency 
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model is not a mere consequence of requiring coherence, because verifying sequential 

consistency remains NP-Complete once coherence has been verified. 

The rest of this paper is organized as follows. Important related work is discussed in 

Section 2. Section 3 defines important terminology and relations used in the rest of this paper. 

Section 4 proves that verifying coherence is NP-Complete with a reduction from SAT. Section 

5 presents a collection of results for restricted cases of verifying memory coherence. Section 6 

extends the complexity results for coherence to memory consistency models, and presents a 

proof that verifying sequential consistency is NP-Complete for coherent executions. This is 

followed by a discussion of  future work in Section 7. Finally, Section 8 concludes the paper. 

 

2 Related Work 

The most relevant work in this area was that of Gibbons and Korach on analyzing the 

complexity of detecting violations of sequential consistency and linearizability [3, 4, 5, 6]. 

They defined the Verifying Sequential Consistency (VSC) and Verifying Linearizability (VL) 

problems, and proved they were NP-Complete. They presented a collection of results for 

restricted cases, characterizing the complexity of the problems. 

Our interpretation of memory coherence is equivalent to sequential consistency when 

restricted to one location, so some of the results of Gibbons and Korach also apply to memory 

coherence. However, the complexity of verifying sequential consistency for one location was 

not fully explored, and the general case was left as an open problem in [6]. This paper 

addresses this problem, with new results that apply to all consistency models. 
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Very recently, Gontmakher, Polyakov, and Schuster analyzed the complexity of 

verifying Java consistency (the Java memory model) [7]. This work is similar to that of 

Gibbons and Korach on sequential consistency, except the Java consistency model is weaker 

and relaxes many of the ordering requirements.  However, because this model requires memory 

coherence, the NP-Hardness follows trivially from the results in this paper. This paper shall be 

the final word on the complexity of testing shared memory consistency. 

 Alur, McMillan, and Peled studied the problems of verifying that a system 

provides serializability, linearizability, and sequential consistency, and proved that these 

problems are in PSPACE, in EXPSPACE, and undecidable for arbitrary protocols, respectively 

[8]. They accomplished this by showing that you can encode the halting problem for an 

arbitrary two-counter automaton as the sequential consistency of a finite state machine. The key 

to the reduction is the clever way to hide the unbounded state of the counters in the unbounded 

amount of logical time by which processors can be out of sync, while still being sequentially 

consistent. Condon and Hu identified a restricted (and more realistic) class of protocols for 

which verifying sequential consistency is decidable in [9], and together with Bingham 

improved on this work with a broader class of protocols in [10]. Qadeer developed a decidable 

model-checking technique based on the properties of causality and data independence that 

practical protocols typically satisfy [11]. This requires that the logical order of write events to a 

location match the temporal order, which is true of the write-invalidate protocols 

predominantly used today. The decidability of verifying that memory coherence is maintained 

by a protocol remains unknown. 

Unlike our work and that of Gibbons and Korach, which focuses on the results of a 

single execution, this is the broader and more difficult problem of design verification. 
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Papadimitriou studied concurrency control for database transactions, and proved that 

verifying view-serializability is NP-Complete [12]. Similar to sequential consistency, view-

serializability requires that transactions appear serialized (where a transaction is a set of 

operations meant to execute atomically). In contrast, the input to this problem is a schedule of 

the operations, and the task is to show that the schedule yields the same results as a serial 

schedule. 

Taylor studied synchronization in concurrent programs using the rendezvous 

mechanism [13]. That is, determining if it is possible for two tasks to synchronize at a 

particular point in each (via an entry call and an accept statement). Though more relevant to 

software verification, this has similarities to our problem. An analogous question might be �Is it 

possible for a read to be mapped to a particular write?� However, not all write operations need 

to be observed in an execution for coherence, whereas accept statements in Ada are blocking. 

There has been considerable work in the area of multiprocessor job scheduling, 

including precedence-constrained scheduling problems. This is similar in that we need to 

determine the order in which to execute jobs on a finite resource, based on certain dependences. 

However, many write operations might write the value needed by a read, but a precedence 

relation need only hold for one in a schedule. Much of this work is summarized in [14]. 

 

3 Preliminaries 

Similar to previous work, memory read operations are of the form �R(a, d)�, and write 

operations are of the form �W(a, d)�. The address of the operation is represented by a, and d 

represents the data read/written by the operation. When all memory operations have the same 
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address, we use the shorthand notation �R(d)�, and �W(d)�. Atomic read-modify-write 

operations are denoted �RW(a, dr, dw)�, or simply �RW(dr, dw)�; where dr is the data read and 

dw is the data written. For simplicity, assume that all memory operations are aligned word 

accesses. 

A process history is a sequence of memory operations from the execution of a process, 

in program order, including the values read/written by each operation. Here, the memory 

operations in a process history will be written vertically, from top to bottom in program order. 

Prior to program execution, every location in a shared memory is in some state. We 

refer to this as the initial value of the location, and denote it dI[a]. Similarly, every memory 

location is in some state after a program has executed, and we refer to this as the final value 

(dF[a]). 

  A coherent schedule is an interleaving of single-address process histories, where every 

read operation returns the value written by the immediately preceding write operation (the 

exception being reads that precede the first write, which must return the initial value dI). The 

last write in the schedule must write the final value for the location. A multiprocessor execution 

is considered coherent if a coherent schedule exists for each address. 

A sequentially consistent schedule is a schedule of the memory operations from an 

execution that demonstrates sequential consistency [15] was provided. In other words, a 

schedule of all the memory operations (from all addresses), in which every read returns the 

value written by the immediately preceding write with the same address. This is equivalent to 

the legal schedule used in [3, 4, 5, 6]. 
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4 Verifying Memory Coherence 

To reason about the complexity of verifying memory coherence, we first define a new decision 

problem �Verifying Memory Coherence� (VMC).  

 

DEFINITION 4.1: Verifying Memory Coherence 

INSTANCE: Data value set D, address a, and finite set H of process histories, each 

consisting of a finite sequence of read and write operations. 

QUESTION:  Is there a coherent schedule S for the operations of H with address a? 

 

The VMC problem is NP-Complete. This can be proven with a reduction from the seminal NP-

Complete problem SAT [14]. Given an instance Q of SAT with variable set U and collection of 

clauses C, we construct an instance V of VMC such that V has a coherent schedule S if and only 

if Q has satisfying truth assignment T.  

The key idea is that two unique data values (du and dū) can encode the truth assignment 

T of each variable u in U. The truth of u corresponds to the order in which these values are 

written in a schedule S (4.1). We create two process histories h1 and h2, each writing one of 

these data values for each variable u, so that their interleaving sets T for U. The literals for each 

variable u (u and ū) are represented by two process histories (hu and hū), which each read the 

data values in the order that corresponds to true for the literal. Once h1 and h2 have been 

interleaved into a schedule S, only the process histories representing literals true under T may 

be included in S.  
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A clause is satisfied by a truth assignment if at least one of its literals is true under the 

assignment. All clauses in C must be simultaneously satisfied under some truth  assignment T 

for the instance Q to be satisfiable. For each clause c in C a write of a special value dc is 

appended to each process history hu/hū for each literal that appears in c, such that dc may be 

written in S only if c is satisfied under T. 

Another process history h3 is defined with read operations that return each value dc. 

This process history may be added to S only if each value has been written (i.e., T satisfies C). 

After all the reads in h3, we append a second set of writes of the values du and dū that represent 

each variable u. If T satisfies C, we can include h3 in S, and schedule these writes so that the 

unique data values appear in both orders in a schedule S, and the remaining process histories 

(for false-literals) may be included in S. 

  The complete reduction is illustrated in Figure 4.1, with a general SAT instance in the 

top portion and the corresponding VMC instance in the bottom portion. For a SAT instance 

with m variables and n clauses, the corresponding VMC instance has 2m+3 process histories 

and O(mn) operations. It is easy to see that this reduction may be performed in polynomial 

time. 



 10

Cleanup

Conjoin 
satisfied 
clausesSatisfy 

clauses 
with literal

Test 
literal

)(

)(
)(

m

2

1

u

u

u

dW

dW
dW

M
)(

)(
)(

m

2

1

u

u

u

dW

dW
dW

M

|])[|(

])[(
)(
)(

ii

i

i

i

uu

u

u

u

DDW

1DW
dR
dR

M
|])[|(

])[(
)(
)(

ii

i

i

i

uu

u

u

u

DDW

1DW
dR
dR

M

1

2

1

1

( )
( )

( )
( )

( )
( )

( )
( )

n

m

m

c

c

c

u

u

u

u

F

R d
R d

R d
W d

W d
W d

W d
W d

M

M

M

1h 2h
iuh

iuh 3h

Truth Assignment

Clause Evaluation
(1 process per literal, 1≤ i ≤ m)

SAT:
{ }
{ }n21

m21

cccC
uuuU

,,,
,,,

K

K

≡
≡

1 2 nQ c c c= ∧ ∧ ∧L

VMC:

{ }
{ }

{ }

1 1

1 11

1 2 3, , , , , , , ,

, , , , , , , , , ,

 An ordered list of values ,  such that  and ,

m m

m nm

i j

u u u u

u u c c I Fu u

l c i j i i i

H h h h h h h h

D d d d d d d d d

D d l c l u u

≡

≡

≡ ∈ ∈

K K

K K K

 

Figure 4.1: General SAT to VMC Reduction 

 

As an example, consider the VMC instance depicted in Figure 4.2. This instance corresponds to 

the SAT instance Q=u, with one variable, u, and a unit clause c consisting of the literal u. The 

reader may verify that a coherent schedule may be constructed if and only if the write operation 

W(du) precedes the write operation W(dū) in that schedule. 
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Figure 4.2: Example VMC Instance for SAT Instance Q = u 

 

THEOREM 4.2: VMC is NP-Complete 

Proof: 

1. Membership in NP:  

A certificate for VMC is a coherent schedule of the memory operations. We can easily determine 

whether a given schedule S is a coherent schedule for a given instance V of VMC. We first scan 

S to see if it contains all the memory operations from V, in their respective program orders. 

While scanning, we keep track the last value written and ensure that subsequent read operations 

return that value. 

 

2. NP-Hardness: 

Let Q be an arbitrary instance of SAT, and V the corresponding VMC instance from Figure 4.1.  

 

LEMMA 4.3: V is coherent if and only if Q is satisfiable  

Proof: 
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1) Suppose V is coherent. By definition, there exists a coherent schedule S for H. For 

each variable u, the write operations W(du) and W(dū) from h1 and h2 appear in S in some 

order. This corresponds to a truth assignment T for U.  

For each clause c, there is a read operation R(dc) in h3 that forces a write operation 

W(dc) to precede it. However, a write operation W(dc) only appears in the process 

histories that represent literals that appear in c. In order for the write operations of a 

process history representing a literal to precede the writes of h3 in S, the read operations 

at the beginning of the history must precede the writes of h3 in S. Besides h3, the only 

other process histories that write the values read by this process history representing the 

literals are h1 and h2, and these write each value only once. This means that h1 and h2 are 

interleaved in such a way in S that the corresponding literal is true under the assignment 

T. Hence, the truth assignment T is such that for every clause c in C, at least one of the 

literals in c is true under T. Therefore, T satisfies C and Q is satisfiable. 

 

2) To prove the converse is true, suppose Q is satisfiable. There is a satisfying truth 

assignment T for C. Use T to interleave h1 and h2 as defined. The set of literals assigned 

true under T correspond to the set of process histories that may be interleaved with h1 and 

h2 to form a schedule S.  

The process history for each literal contains a write operation W(dc) for each of 

the clauses c it appears in, which may precede the writes of h3 in S if and only if the 

corresponding literal is true under T. Since T satisfies C, all clauses are satisfied, and at 

least one literal per clause c is true. Hence, at least one of the process histories containing 

each write operation W(dc) may precede the write operations of h3 in S.  
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There is a read operation R(dc) for every clause c before the write operations. 

Each may be paired with one of the writes W(dc). Hence, it is possible to construct a 

schedule S that includes h3.  

The write operations from h3 can provide data for the read operations in the 

process histories representing literals that are false under T, allowing all the remaining 

process histories to be added to S. Therefore, a coherent schedule S exists, and V is 

coherent. 

 

It follows that there is a coherent schedule S for H if and only if Q is satisfiable. Since VMC is in 

NP, and SAT reduces to VMC in polynomial time, VMC is NP-Complete. □ 

 

5 Restricted / Augmented Cases of Verifying Memory Coherence 

In this section we discuss the complexity of the VMC problem under a number of restrictions. 

Specifically, we restrict the number of memory operations per process, and the number of times 

a data value is written. We also consider executions in which only read-modify-write operations 

are allowed (it was observed that under some circumstances all memory operations may be 

treated as read-modify-writes [6]). In addition, we consider the case in which the memory system 

has been augmented to provide the order in which write operations were executed.  

The VMC problem is equivalent to the VSC problem [3, 4, 5, 6] for executions that use 

only one shared variable. Consequently, some results for restricted cases of VMC were already 

obtained by, or logically follow from results obtained in previous work. In the interest of space, 

we only present reductions for new results, and summarize all known results at the end. 
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5.1 Restricted Cases 

We find that the VMC problem remains NP-Complete for as few as three simple operations 

(reads and writes) per process, and data values written at most twice. Figure 5.1 depicts a 

reduction from 3SAT [14] to a VMC instance meeting these constraints. The VMC problem is 

also NP-Complete with only two read-modify-write operations per process (previously 

known [5]) and data values written at most three times (Figure 5.2).  

It follows from previous work that the VMC problem is tractable if every process history 

has only one operation, or data values are written at most once (i.e., the read-map is known) [5]. 

The problem is also tractable when the number of process histories is restricted to a constant 

number. With n total memory operations, k process histories and c addresses, the VSC problem 

can be solved in O(nkkc) time [6]. All instances of VMC are instances of VSC in which c=1. 

Thus, the complexity of verifying coherence for n total operations and k process histories is 

O(knk), which is polynomial for constant k. Similarly, instances of VMC with only read-modify-

write operations and a constant number of process histories are instances of the corresponding 

VSC problem with only one location, which has O(nk) time complexity [6]. Therefore, VMC 

with n total read-modify-write operations and k process histories has O(nk) time complexity.  

The case for VMC with only two simple memory operations per process remains an open 

problem. In addition, the time complexity of the case with only read-modify-write operations and 

data values written at most twice is also unknown. 
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Figure 5.1 3SAT to VMC, 3 Memory Operations Per Process, Values Written At Most Twice 
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Figure 5.2 3SAT to VMC, Two Read-Modify-Writes, Values Written At Most Three Times 

 

5.2 Supplying the Order of Writes 

We find that VMC becomes tractable if the memory system is provides the order in which write 

operations were executed (i.e., the write-order [3, 4, 5, 6]). VMC has an O(n2) time algorithm for 

n total operations, and an O(n) time algorithm if all the operations read-modify-writes.  

To construct a schedule, we use the write-order as a starting point, and try to insert the read 

operations. For each read x, we first check to see if the data value of the last operation from the 

same process history y matches that of x, and if so insert x right after y in the schedule. 

Otherwise, we scan forward from y to the next write operation from the same process history (if 

x is the first operation from the history, we begin scanning from the beginning of the schedule 
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and the initial value). If while scanning, a write of the same data value is found, we insert x right 

after it. Note that in the special case where all operations are read-modify-write operations, the 

write-order is in fact a total order, and we can simply check that the read component of each 

read-modify-write returns the value of the write-component of the preceding read-modify-write. 

 

5.3 Summary 

The complexity results for verifying memory coherence are summarized in Figure 5.3. Here, n 

denotes the total number of memory operations and k the number of process histories. The 

shaded entries indicate new results. Cases for which the complexity is not known have a question 

mark in the corresponding table entry. For simplicity we have listed the restrictions individually, 

though the problem remains NP-Complete when restricting both the number of operations per 

process history and the number of writes of each value, as shown above. Other results were 

either obtained in, or follow from, previous work. 

 

Simple Reads/Writes Read-Modify-Writes
1 Operation/Process O(nlg(n)) O(n2)
2 Operations/Process ? NP-Complete
3+ Operations/Process NP-Complete NP-Complete
Constant Processes O(nk) O(nk)
1 Write/Value (Read-map) O(n) O(nlg(n))
2 Writes/Value NP-Complete ?
3+ Writes/Value See above NP-Complete
Write-order Given O(n2) O(n)  

Figure 5.3: Summary of Complexity Results for Memory Coherence. 
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6 Verifying Memory Consistency 

The NP-Completeness of verifying coherence implies the NP-Hardness of verifying adherence to 

memory consistency models, including sequential consistency. However, verifying coherence 

first does not necessarily simplify the problem of verifying consistency. We also show that 

verifying sequential consistency remains NP-Complete for executions that are coherent. 

 

6.1 Sequential Consistency 

To verify that sequential consistency was maintained during an execution, we can find a 

sequentially consistent schedule for all the memory operations. This decision problem (6.1) was 

defined and proven to be NP-Complete in [3, 4, 5, 6]. Note that the VSC problem, as defined, is 

only useful for reasoning about sequential consistency (other models are a different problem). 

 

DEFINITION 6.1: Verifying Sequential Consistency (VSC) 

INSTANCE: Data value set D, address set A, finite set H of process histories, each 

consisting of a finite sequence of read and write operations. 

QUESTION:  Is there a sequentially consistent schedule S for H? 

 

Though the complexity of VSC is already known from previous work, it is interesting to observe 

that the complexity of VSC also follows from our results with coherence. Because every instance 

of VMC is an instance of VSC, the NP-Hardness of VMC implies the NP-Hardness of VSC. It is 

easy to see that VSC is in the class NP, so the proof follows by restriction. 
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6.2 Other Consistency Models 

In addition to sequential consistency, many other consistency models exist, most of which have 

more relaxed ordering requirements for performance. These include the models from Sun: Total 

Store Order (TSO), Partial Store Order (PSO), and Relaxed Memory Ordering (RMO); models 

implemented by Intel: Processor Consistency (PC), and Release Consistency (RC); IBM models 

such as the PowerPC model [16]; the Alpha model; and academic models such as CRF [17], just 

to name a few. A fairly complete list of hardware-implemented models with references can be 

found in [18]. 

All of the hardware-implemented memory consistency models in the literature reduce to 

memory coherence for executions that access only one shared location [18]. For these models, 

verifying consistency is at least as difficult as verifying coherence, and hence they are NP-Hard 

to verify. However, it remains to be shown whether verifying adherence to these consistency 

models is in NP. A new decision problem would be needed for each model, with a consistent 

schedule defined under that model. In some cases, consistent schedules are not straightforward to 

define and may be too awkward to work with, necessitating the use of dependence graphs.   

The reductions presented here do not directly apply to consistency models that relax the 

coherence requirement (e.g., Lazy Release Consistency [19]). However, these consistency 

models (like other weak models) provide special instructions with which the programmer can 

override such relaxations when necessary. We can therefore extend our reductions to these 

models by using these instructions to enforce a serial order for some address. For LRC, we 

modify the reduction in Figure 4.1 by placing acquire and release operations around each 

memory operation (Figure 6.1). As long as memory operations to some address must appear 
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serialized, either by implicit consistency model requirements or explicit synchronization, the 

reductions presented here apply. 

It is worth noting that memory consistency models can be quite arbitrarily defined, and 

some may relax the coherence requirement without providing the programmer with primitives 

for explicit synchronization. However, software for such a consistency model would be 

extremely difficult if not impossible to develop, and no implementations are known to exist. 
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Figure 6.1 VMC Instance of Figure 4.1, with Synchronization 

 

6.3 Consistency with Coherence 

Verifying coherence does not necessarily simplify the problem of verifying consistency. It is NP-

Complete to verify that sequential consistency was provided for an execution even when it is 

known that coherence was provided. 
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The problem of verifying sequential consistency for executions that are coherent is 

defined below. Since there is currently not an efficient way to verify that an arbitrary instance is 

coherent, this is not a decision problem but rather a promise problem. 

 

DEFINITION 6.2: Verifying Sequential Consistency with Coherence (VSCC)  

INSTANCE: Data value set D, address set A, finite set H of process histories, each consisting of 

a finite sequence of read and write operations.  

PROMISE: For each address a in A, there exists a coherent schedule. 

QUESTION: Is there a sequentially consistent schedule S for H? 

 

A SAT instance Q with m variables and n clauses may be reduced to a VSCC instance V with 

2m+3 processes and m+n+1 shared locations. The reduction is very similar to the one used for 

VMC. A unique address au is used to represent the truth assignment of a variable u. The truth of 

u corresponds to the order in which two values (dX and dY) are written to au in a schedule S (6.1). 

Two process histories (hu and hū) are defined for each variable u to represent the literals, each 

reading the values dX and dY in the order that corresponds to true for the literal. Once the values 

have been written, only the process histories representing literals that are true under the 

corresponding truth assignment may be included in S.  
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For each clause c satisfied by a literal, a write operation of value dZ to a special location with 

address ac is appended to the process history that represents the literal. Another process history, 

h3, is defined with read operations that return the value dZ from each location ac. This history 

may be included in a schedule S only if each of these locations has been written. 

After a special location (a∆) is written at the end of h3, the locations corresponding to 

each variable are rewritten by h1 and h2. This allows the values to appear in both orders in a 

schedule S, so that the process histories corresponding to literals that are false under the 

assignment may be included. The reduction is summarized in Figure 6.2, the full proof may be 

found in [20].  
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Figure 6.2 SAT to VSCC 

 

The memory operations of the constructed VSCC instance are separated by address in Figure 6.3. 

A coherent schedule is indicated for each address. Depending on the address, we have one of 

three cases. The first case (top) consists of the memory operations used to assign the truth of a 
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variable. We can construct a coherent schedule by interleaving the uncomplemented literal�s 

history with h1, interleaving the complemented literal�s history with h2, and concatenate the 

resulting schedules. In the other cases (middle and bottom), only one value is written to the 

location, so we may trivially schedule all the reads after all the writes. Thus, the instance is 

coherent by construction.  
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Figure 6.3 VSCC Instance, Separated By Address 

 

Furthermore, we can constrain the problem such that coherence may be efficiently verified. 

Recall that VMC is in P when the order in which write operations were executed is provided. 

With the write-order, the VSCC problem is reduced to a decision problem in which we can 



 24

verify coherence in polynomial time. However, it was proven by Gibbons and Korach that the 

VSC problem remains NP-Complete when the write-order is provided for each location [3,4,5,6]. 

Thus, VSCC not only remains NP-Complete for coherent executions, but also when information 

is provided to efficiently verify coherence. 

Going still further, we can use the schedules constructed while verifying coherence as 

input to the VSC problem. Encoded in a coherent schedule is a serial order for all the write 

operations, and a mapping from the read operations to write operations. It was shown previously 

that this information can be used to generate a sequentially consistent schedule in O(nlgn) time 

(the VSC-Conflict problem) [3, 4, 5, 6]. The catch is that this is achieved by treating the coherent 

schedules as a constraint. There may be many different sets of coherent schedules for an 

execution, yet only one set that can be merged into a sequentially consistent schedule. Hence, the 

failure to find a sequentially consistent schedule may only mean that the wrong set of coherent 

schedules was produced when verifying coherence. Like all NP-Complete problems, VSC is 

resistant to divide-and-conquer approaches.   

 

7 Future Work 

In this paper we have only dealt with the problem of testing shared memories for coherence. An 

important question is whether we can verify that a protocol maintains coherence beforehand. 

While it has been shown that verifying protocols maintain sequential consistency can be 

undecidable, the complexity (or even decidability) of verifying that a protocol maintains 

coherence remains unknown. This would be an important result with implications for all memory 

consistency models and the protocols that implement them. 
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A few open problems remain in the area of verifying memory coherence. The complexity 

of verifying memory coherence for the case of only two memory operations per process is 

unknown. In addition, the case for read-modify-writes where values are written at most twice 

remains an open problem. It might also be useful to obtain tighter bounds for the cases with 

polynomial time algorithms, if possible. 

 

8 Concluding Remarks 

Verifying memory coherence and consistency are inherently difficult problems. The results in 

this paper, along with those of the previous work [3, 4, 5, 6], suggest that practical methods do 

not exist for verifying coherence and consistency without significant additional information from 

the system. Practical offline verification with software or online error detection with hardware 

will be difficult to implement.  

Further, though verifying coherence may itself be of practical utility, doing so does not 

necessarily simplify the problem of verifying consistency. Consistency remains difficult to verify 

despite additional information that makes verifying coherence tractable.  
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