
The Complexity of Verifying Memory Coherence
Jason F. Cantin Mikko H. Lipasti James E. Smith

University of Wisconsin-Madison
1415 Engineering Drive

Madison, WI. 53706
{ jcantin, lipasti, jes} @ece.wisc.edu

ABSTRACT
The general problem of verifying coherence for shared-memory
multiprocessor executions is NP-Complete. Verifying memory
consistency models is therefore NP-Hard, because memory
consistency models require coherence for some or all operations.
However, verifying memory consistency remains NP-Complete
for executions known to be coherent.

Categories and Subject Descriptors
B.8.1 [Hardware]: Performance and Reliability�Reliability,
Testing, and Fault-Tolerance; F2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Prob-
lems�Sequencing and Scheduling.

General Terms
Verification, Reliability, Theory, Algorithms.

Keywords
Shared Memory, Coherence, Consistency Models.

1. INTRODUCTION
Memory coherence is an important feature of shared-memory
systems. We analyze the problem of determining whether a
shared-memory system provided coherence for an execution, and
prove it is NP-Complete.

Verifying memory coherence remains NP-Complete under a
number of restrictions. It remains NP-Complete when each
process is restricted to a small number of memory operations,
and when values are written only a small number of times. The
problem becomes tractable if the number of processes is re-
stricted, or additional information such as the order of writes or
the mapping of reads to writes is provided.

The NP-Completeness of verifying coherence implies the
NP-Hardness of verifying adherence to memory consistency
models that require coherence, including sequential consistency.
Further, our results extend to consistency models that do not
require coherence for all operations, but allow the programmer to
serialize memory operations with special instructions.

However, the complexity of verifying consistency is not a

mere consequence of the complexity of verifying coherence. We
find that verifying sequential consistency is NP-Complete for
executions known to be coherent.

2. RELATED WORK
Gibbons and Korach defined the VSC problem for verifying
sequential consistency, and characterized its complexity [5,6,7].
Since sequential consistency and memory coherence are equiva-
lent for executions that use only one shared variable, some of
their results apply to memory coherence as well. However, the
general problem of verifying sequential consistency for one
location (memory coherence) was left as an open problem in [7].

3. PRELIMINARIES
Similar to prior work, reads are of the form �R(a, d)� and writes
are denoted �W(a, d)�, where a is the address and d is the value
read/written. A process history is a sequence of these operations,
as generated by the execution of a process. We assume that each
location has initial value dI[a] prior to execution.

A coherent schedule is an interleaving of single-address
process histories in which every read returns the value of the last
write (except reads that precede the first write, which must
return the initial value dI[a]). A multiprocess execution is
considered coherent if a coherent schedule exists for each
location a.

To reason about the complexity of verifying coherence, we
define a new decision problem:
DEFINITION 3.1: Verifying Memory Coherence (VMC)

INSTANCE: Value set D, address a, and set H of process
histories, each consisting of a finite sequence
of memory operations.

QUESTION: Is there a coherent schedule S for the opera-
tions of H with address a?

4. VERIFYING MEMORY COHERENCE
VMC is NP-Complete. Its NP-Hardness follows from a reduction
from the known NP-Complete problem SAT [3]. The key idea is
that the truth assignment of a variable u can be encoded by the
order in which two writes appear in a schedule S.

{ }
()
()

: ,
(,) (,)
(,) (,)

S
u u

S
u u

T U True False
W a d W a d T u True
W a d W a d T u True

 → ⇔ =
 → ⇔ =

a

 (1)

Given an instance Q of SAT with set U of m variables and set C
of n clauses, we define a set H of 2m+3 process histories for
which a coherent schedule S exists if and only if Q is satisfiable.
We first define two process histories, h1 and h2, each with a write

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s).
SPAA�03, June 7-9, 2003, San Diego, California, USA.
ACM 1-58113-661-7/03/0006.

from the pair {W(a, du), W(a, dū)} for each variable u in U. We
then define two process histories (hu and hū) for each variable to
test the literals, each reading the unique values in the order that
corresponds to true for the literal (1). Once h1 or h2 have been
interleaved in some way in S, only process histories representing
literals that are true under the corresponding truth assignment
may be interleaved with them in a coherent schedule S.

For each clause c (in C) satisfied by a literal l, a write with
a special value dc is appended to the process history hl. Another
process history, h3, is defined with reads that return each of these
values. This process history may be included in S only if each of
these values was written previously (i.e., each clause satisfied).

After the reads in h3, we rewrite the values du and dū for
each u such that these values appear in both orders in S. All
remaining process histories may then be interleaved with these
writes, completing the schedule. The complete proof may be
found in [1].

5. RESTRICTED CASES
We find that VMC remains NP-Complete for as few as three
simple operations (reads & writes) per process and values
written only twice. VMC is also NP-Complete with only two
read-modify-writes per process [6], and values written only three
times.

If the memory system is augmented to provide the order in
which writes were performed (i.e., the write-order [5,6,7]), VMC
has an O(n2) time algorithm for n total operations. It follows from
prior work that VMC is tractable if every process is allowed only
one operation, or values are written only once (i.e., the read-
map) [6]. The problem is also tractable when the number of
processes is restricted. With n total memory operations, k
processes and c addresses, VSC can be solved in O(nkkc) time
[7]. Since all instances of VMC are instances of VSC in which
c=1, the complexity of VMC is O(knk), which is polynomial for
constant k. Similarly, all instances of VMC with only read-
modify-writes and a constant number of processes have O(nk)
time complexity [7].

For only two simple memory operations per process, the
complexity is unknown. The case for read-modify-writes in
which data values are written at most twice is also an open
problem. Table 1 summarizes the results, proofs may be found
in [1].

Table 1. Complexity results for coherence. New results

shaded.
Simple Reads/Writes Read-Modify-Writes

1 Operation/Process O(nlg(n)) O(n2)
2 Operations/Process ? NP-Complete
3+ Operations/Process NP-Complete NP-Complete
Constant Processes O(nk) O(nk)
1 Write/Value O(n) O(nlg(n))
2 Writes/Value NP-Complete ?
3+ Writes/Value NP-Complete NP-Complete
Write-order Given O(n2) O(n)
6. VERIFYING MEMORY CONSISTENCY
All hardware-implemented consistency models in the literature
reduce to memory coherence for executions that access only one
shared location [4]. Therefore, they are NP-Hard to verify.

Though there are models that relax the coherence require-
ment (e.g., Lazy Release Consistency [2]), these models provide
special instructions with which the programmer can explicitly
serialize memory operations. We can therefore modify our
reductions for these models by adding these special instructions.
For LRC, we place acquire and release operations around each
operation in the original reduction. As long as there is a way to
serialize memory operations, a SAT reduction should be possi-
ble.

However, the NP-Hardness of verifying consistency models
is not a mere consequence of the NP-Completeness of verifying
coherence. We find that verifying sequential consistency remains
NP-Complete when it is known that coherence was provided.
This follows from a reduction similar to the one used previously
for VMC, modified such that H is always coherent for each
individual location a.

Given an instance Q of SAT, we define H as follows: There
are two process histories, h1 and h2, each with one of a pair of
writes to a unique address au for each variable u in U. The truth
of u corresponds to the order in which these writes appear in a
schedule S (2). Two process histories (hu and hū) are defined for
the literals of each variable u, each reading the values dX and dY
in the order that corresponds to true for the literal. Once the
writes have been ordered in some way, only one of these two
histories may be interleaved with them in a coherent schedule S.

{ }

()
()

: ,
(,) (,)
(,) (,)

S
u X u Y

S
u Y u X

T U True False
W a d W a d T u True
W a d W a d T u True

 → ⇔ =
 → ⇔ =

a

 (2)

For each clause c (in C) satisfied by a literal l, a write to a
special location ac is appended to the process history hl. Another
process history, h3, is defined with reads that return the value
written to each location ac. This process history may be included
in a schedule S if and only if each of location has been written.

After a special location, a∆, is written at the end of h3, each
location au is rewritten by h1 and h2 such that the values dX and
dY appear in both orders in S. All remaining process histories
may then be interleaved with this last set of writes, completing
the schedule. The complete proof may be found in [1].

7. CONCLUDING REMARKS
The results in this paper and prior work [5,6,7], suggest that
verifying coherence and consistency are inherently difficult
problems. Further, though verifying coherence may itself be of
practical utility, it may not simply the verification of consistency.

8. ACKNOWLEDGEMENTS
This research was supported by NSF grant CCR-0083126, IBM,
and fellowships from the NSF and the UW Foundation.

9. REFERENCES
[1] Cantin, J. The Complexity of Verifying Memory Coherence.

Technical Report ECE-03-1, UW-Madison, 2003.
[2] Keleher, P., Cox, A., and Zwaenepoel, W. Lazy Release

Consistency for Software Distributed Shared Memory. Proc.
of the 19th Int�l Symp. on Computer Architecture, 1992.

[3] Garey, M., and Johnson, D. Computers and Intractability: A
Guide to the Theory of NP-Completeness. NY, W.H. Free-
man and Co., 1979: 38-39, 95-107, 259.

[4] Gharachorloo, K. Memory Consistency Models for Shared-
Memory Multiprocessors. WRL Research Report. 1995.

[5] Gibbons, P., and Korach, E. The Complexity of Sequential
Consistency. Proceedings of the 4th IEEE Symposium on
Parallel and Distributed Processing, 1992:317-325.

[6] Gibbons, P., and Korach, E. Testing Shared Memories.
SIAM Journal of Computing, Aug. 1997:1208-1244.

[7] Gibbons, P., and Korach, E. New Results on the Complexity
of Sequential Consistency, Tech. Report, AT&T Bell Labs,
Murray Hill, NJ. Sep. 1993.

