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ABSTRACT 
The general problem of verifying coherence for shared-memory 
multiprocessor executions is NP-Complete. Verifying memory 
consistency models is therefore NP-Hard, because memory 
consistency models require coherence for some or all operations. 
However, verifying memory consistency remains NP-Complete 
for executions known to be coherent.  

Categories and Subject Descriptors 
B.8.1 [Hardware]: Performance and Reliability�Reliability, 
Testing, and Fault-Tolerance; F2.2 [Analysis of Algorithms and 
Problem Complexity]: Nonnumerical Algorithms and Prob-
lems�Sequencing and Scheduling.  

General Terms 
Verification, Reliability, Theory, Algorithms. 

Keywords 
Shared Memory, Coherence, Consistency Models. 

1. INTRODUCTION 
Memory coherence is an important feature of shared-memory 
systems. We analyze the problem of determining whether a 
shared-memory system provided coherence for an execution, and 
prove it is NP-Complete.  

Verifying memory coherence remains NP-Complete under a 
number of restrictions. It remains NP-Complete when each 
process is restricted to a small number of memory operations, 
and when values are written only a small number of times. The 
problem becomes tractable if the number of processes is re-
stricted, or additional information such as the order of writes or 
the mapping of reads to writes is provided.  

The NP-Completeness of verifying coherence implies the 
NP-Hardness of verifying adherence to memory consistency 
models that require coherence, including sequential consistency. 
Further, our results extend to consistency models that do not 
require coherence for all operations, but allow the programmer to 
serialize memory operations with special instructions.  

However, the complexity of verifying consistency is not a 

mere consequence of the complexity of verifying coherence. We 
find that verifying sequential consistency is NP-Complete for 
executions known to be coherent. 

2. RELATED WORK 
Gibbons and Korach defined the VSC problem for verifying 
sequential consistency, and characterized its complexity [5,6,7]. 
Since sequential consistency and memory coherence are equiva-
lent for executions that use only one shared variable, some of 
their results apply to memory coherence as well. However, the 
general problem of verifying sequential consistency for one 
location (memory coherence) was left as an open problem in [7]. 

3. PRELIMINARIES 
Similar to prior work, reads are of the form �R(a, d)� and writes 
are denoted �W(a, d)�, where a is the address and d is the value 
read/written. A process history is a sequence of these operations, 
as generated by the execution of a process. We assume that each 
location has initial value dI[a] prior to execution. 

A coherent schedule is an interleaving of single-address 
process histories in which every read returns the value of the last 
write (except reads that precede the first write, which must 
return the initial value dI[a]). A multiprocess execution is 
considered coherent if a coherent schedule exists for each 
location a. 

To reason about the complexity of verifying coherence, we 
define a new decision problem:  
DEFINITION 3.1:  Verifying Memory Coherence (VMC) 

INSTANCE: Value set D, address a, and set H of process 
histories, each consisting of a finite sequence 
of memory operations. 

QUESTION: Is there a coherent schedule S for the opera-
tions of H with address a? 

4. VERIFYING MEMORY COHERENCE 
VMC is NP-Complete. Its NP-Hardness follows from a reduction 
from the known NP-Complete problem SAT [3]. The key idea is 
that the truth assignment of a variable u can be encoded by the 
order in which two writes appear in a schedule S. 
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Given an instance Q of SAT with set U of m variables and set C 
of n clauses, we define a set H of 2m+3 process histories for 
which a coherent schedule S exists if and only if Q is satisfiable. 
We first define two process histories, h1 and h2, each with a write 
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from the pair {W(a, du), W(a, dū)} for each variable u in U. We 
then define two process histories (hu and hū) for each variable to 
test the literals, each reading the unique values in the order that 
corresponds to true for the literal (1). Once h1 or h2 have been 
interleaved in some way in S, only process histories representing 
literals that are true under the corresponding truth assignment 
may be interleaved with them in a coherent schedule S.  

For each clause c (in C) satisfied by a literal l, a write with 
a special value dc is appended to the process history hl. Another 
process history, h3, is defined with reads that return each of these 
values. This process history may be included in S only if each of 
these values was written previously (i.e., each clause satisfied).  

After the reads in h3, we rewrite the values du and dū for 
each u such that these values appear in both orders in S. All 
remaining process histories may then be interleaved with these 
writes, completing the schedule. The complete proof may be 
found in [1]. 

5. RESTRICTED CASES 
We find that VMC remains NP-Complete for as few as three 
simple operations (reads & writes) per process and values 
written only twice. VMC is also NP-Complete with only two 
read-modify-writes per process [6], and values written only three 
times.  

If the memory system is augmented to provide the order in 
which writes were performed (i.e., the write-order [5,6,7]), VMC 
has an O(n2) time algorithm for n total operations. It follows from 
prior work that VMC is tractable if every process is allowed only 
one operation, or values are written only once (i.e., the read-
map) [6]. The problem is also tractable when the number of 
processes is restricted. With n total memory operations, k 
processes and c addresses, VSC can be solved in O(nkkc) time 
[7]. Since all instances of VMC are instances of VSC in which 
c=1, the complexity of VMC is O(knk), which is polynomial for 
constant k. Similarly, all instances of VMC with only read-
modify-writes and a constant number of processes have O(nk) 
time complexity [7].  

For only two simple memory operations per process, the 
complexity is unknown. The case for read-modify-writes in 
which data values are written at most twice is also an open 
problem. Table 1 summarizes the results, proofs may be found 
in [1].  

 
Table 1. Complexity results for coherence. New results 

shaded. 
Simple Reads/Writes Read-Modify-Writes

1 Operation/Process O(nlg(n)) O(n2)
2 Operations/Process ? NP-Complete
3+ Operations/Process NP-Complete NP-Complete
Constant Processes O(nk) O(nk)
1 Write/Value O(n) O(nlg(n))
2 Writes/Value NP-Complete ?
3+ Writes/Value NP-Complete NP-Complete
Write-order Given O(n2) O(n)  
6. VERIFYING MEMORY CONSISTENCY 
All hardware-implemented consistency models in the literature 
reduce to memory coherence for executions that access only one 
shared location [4]. Therefore, they are NP-Hard to verify.  

Though there are models that relax the coherence require-
ment (e.g., Lazy Release Consistency [2]), these models provide 
special instructions with which the programmer can explicitly 
serialize memory operations. We can therefore modify our 
reductions for these models by adding these special instructions. 
For LRC, we place acquire and release operations around each 
operation in the original reduction. As long as there is a way to 
serialize memory operations, a SAT reduction should be possi-
ble. 

However, the NP-Hardness of verifying consistency models 
is not a mere consequence of the NP-Completeness of verifying 
coherence. We find that verifying sequential consistency remains 
NP-Complete when it is known that coherence was provided. 
This follows from a reduction similar to the one used previously 
for VMC, modified such that H is always coherent for each 
individual location a. 

Given an instance Q of SAT, we define H as follows: There 
are two process histories, h1 and h2, each with one of a pair of 
writes to a unique address au for each variable u in U. The truth 
of u corresponds to the order in which these writes appear in a 
schedule S (2). Two process histories (hu and hū) are defined for 
the literals of each variable u, each reading the values dX and dY 
in the order that corresponds to true for the literal. Once the 
writes have been ordered in some way, only one of these two 
histories may be interleaved with them in a coherent schedule S. 
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For each clause c (in C) satisfied by a literal l, a write to a 
special location ac is appended to the process history hl. Another 
process history, h3, is defined with reads that return the value 
written to each location ac. This process history may be included 
in a schedule S if and only if each of location has been written. 

After a special location, a∆, is written at the end of h3, each 
location au is rewritten by h1 and h2 such that the values dX and 
dY appear in both orders in S. All remaining process histories 
may then be interleaved with this last set of writes, completing 
the schedule. The complete proof may be found in [1]. 

7. CONCLUDING REMARKS 
The results in this paper and prior work [5,6,7], suggest that 
verifying coherence and consistency are inherently difficult 
problems. Further, though verifying coherence may itself be of 
practical utility, it may not simply the verification of consistency. 
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