
.

Modeling Superscalar Processors

via Statistical Simulation

June 27, 1998

Richard Carl

James E. Smith

Dept. of Elect. and Comp. Engr.
1415 Johnson Drive
Univ. of Wisconsin
Madison, WI 53706

jes@ece.wisc.edu
http://www.engr.wisc.edu/ece/faculty/smith_james.html

Motivation

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� For evaluating computer performance
simulation is method of choice

� For large systems and large problems,
clock-cycle-level simulation may be too
time consuming and/or difficult to model

� Analytical methods often over-simplify
or are too complicated for closed-form solution

� Hybrid approach -- statistical simulation

Simulate a simple probabilistic model
using program statistics

� Caveat: This is work in progress

Currently modeling/understanding superscalar
processors

Later work will study complex systems and
applications

(c) J. E. Smith PAID 98-2



Approach

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Step 1: Simulate program(s) and collect statistics

Program related stats:
- instruction mixes,
- dependence relationships

gathered by simple functional simulation

Implementation related stats:
- cache miss rates,
- branch misprediction rates

gathered by simple trace-driven cache
and branch predictor simulations

Ideally, minimize implementation-related stats

� Step 2: Simulate implementation with synthetic
traces and statistical caches/predictors

� Run until results converge

(c) J. E. Smith PAID 98-3

The Big Picture

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Instruction
Dynamic

Trace

Analyzer
Trace

Cache Stats.

Branch Stats.

Create
Synthetic

Trace

Simplified

Simulator

Results

Matrix

Stats.
Mix

Dependence

Processor

(c) J. E. Smith PAID 98-4



Advantages

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Model construction simplified

Caches and predictors are probabilistic

Only major instruction types (fewer than 10) are
implemented

A complex superscalar processor only takes a
few hundred lines of code

� Model "simulates" much faster

by many orders of magnitude

converges after a few thousand cycles

� Combining 1 & 2:

Large system models can be constructed and
simulated with reasonable time and resources

superscalar
processor

superscalar
processor

superscalar
processor

superscalar
processor

superscalar
processor

superscalar
processor

Interconnection Net

(c) J. E. Smith PAID 98-5

Advantages, contd.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� The design space can be more fully explored

varying prediction/hit rates and instruction stats.,
not limited to few points that benchmarks allow

designer generates tables that drive simulation

design space

benchmarks

(c) J. E. Smith PAID 98-6



Initial Results

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Comparison with detailed simplescalar simulation

determine errors introduced and causes

alternatively: what are important statistics?

� First, use real traces to determine errors
introduced by probabilistic caches/branches

� Then, use synthetic traces to determine
additional error

(c) J. E. Smith PAID 98-7

Real Traces

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A: perfect branch prediction, perfect caches
- error in compress caused by memory RAW
- goes away as imperfections slow performance

B: real branch prediction, perfect caches
- no modeling of wrong speculations
- no modeling of read addresses (forwarding)

C: perfect branch prediction, real caches
- error due to no contention in memory system,

D: prob. branch prediction, perfect caches

E: real branch prediction, prob. caches

F: prob. branch prediction, prob. caches

Errors in D,E,F are generally caused by program
"phases", and "clustering" of miss events -- not
modeled in simple model

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

program A B C D E F

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

gcc +0.1 +2.3 +2.5 +2.3 -68.6 -80.3
compress -14.5 +2.8 -4.0 +22.7 -1.2 -20.7
go -0.2 -4.7 +2.6 +2.7 -48.2 -52.4
ijpeg -0.0 +0.0 -0.0 +0.0 +0.8 -27.2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(c) J. E. Smith PAID 98-8



Initial Results, Synthetic Traces

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A: real trace, dependence matrix, perf. branch
prediction, perf. caches

B: synthetic stream, perfect prediction and caches
- using mixes contributes more error
than dependence matrix

C: synth. stream, prob. prediction, perf. caches
- little additional error introduced
- in fact, compensates for some error

D: synthetic stream, prob. prediction, prob. caches
- rel. large errors probably due to clustering
of cache misses and branch mispredictions

=> should look at higher-order models
for branches and caches

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

program A B C D

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

gcc +1.6 -2.0 -2.5 -82.1
compress -7.4 -20.3 -26.2 -21.7
go +7.3 -3.5 -3.7 -69.9
ijpeg +6.4 -14.4 -14.2 -12.8
li -5.8 -9.3 -19.0 -12.1
m88ksim +0.0 -18.9 -10.4 -23.7
applu -2.0 -21.6 -13.2 -13.2
tomcatv -11.8 -34.2 -10.8 -43.5

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

(c) J. E. Smith PAID 98-9

Convergence characteristics

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Consider change in relative performance

� Terminate when change goes below some thres-
hold

� Convergence in a few thousand cycles

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

re
la

tiv
e 

er
ro

r 
w

ith
 p

re
vi

ou
s 

ip
c

cycles

gcc
compress

(c) J. E. Smith PAID 98-10



Related Work

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Noonburg and Shen, HPCA ’97

trace generated stats,

analytical model => simple processors

target appears to be processor design

� Dubey, Adams, and Flynn, April ’94 Trans. on
Computers

analytical model

focuses on dependence modeling

target appears to be processor design

� Sorin et al., ISCA ’98

target is system design

analytical model based on mean value analysis

processor’s memory interface characterized via
fast simulation

(c) J. E. Smith PAID 98-11

� Smith and Taylor, ICS ’92

uses programmed automata to generate syn-
thetic traces

target is vector system design

� Agarwal, Horowitz, Hennessy, May ’89 TOCs

analytical cache model

could be useful for eliminating implementation
dependence of cache stats.

(c) J. E. Smith PAID 98-12



Future Work

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Work toward greater accuracy

consider clustering of misses/mispredicts

deal with problems of consistency in synthetic
generation

� Make cache/mispredict behavior more implemen-
tation independent

� Consider program phasing

as sources of error

to implement deterministic sampling

� System simulations

- independent jobs -- transaction processing

- parallel jobs -- cache coherence events

� Benchmark characterization

This work was funded by an IBM Partnership Award

(c) J. E. Smith PAID 98-13


