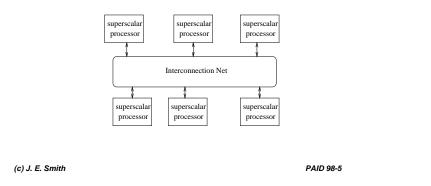

Motivation Modeling Superscalar Processors • For evaluating computer performance simulation is method of choice via Statistical Simulation • For large systems and large problems, clock-cycle-level simulation may be too time consuming and/or difficult to model Analytical methods often over-simplify or are too complicated for closed-form solution June 27, 1998 • Hybrid approach -- statistical simulation Simulate a simple probabilistic model using program statistics Richard Carl • Caveat: This is work in progress James E. Smith Currently modeling/understanding superscalar processors Dept. of Elect. and Comp. Engr. 1415 Johnson Drive Later work will study complex systems and Univ. of Wisconsin applications Madison, WI 53706 jes@ece.wisc.edu http://www.engr.wisc.edu/ece/faculty/smith_james.html (c) J. E. Smith PAID 98-2

Advantages

Model construction simplified

Caches and predictors are probabilistic

Only major instruction types (fewer than 10) are implemented

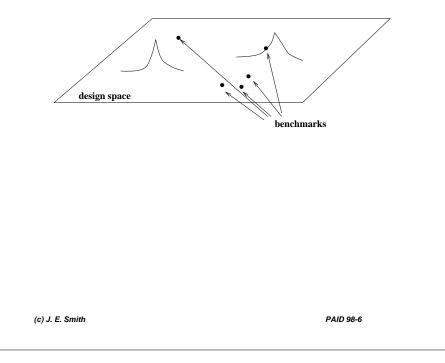

A complex superscalar processor only takes a few hundred lines of code

- Model "simulates" much faster
 - by many orders of magnitude

converges after a few thousand cycles

• Combining 1 & 2:

Large system models can be constructed and simulated with reasonable time and resources



Advantages, contd.

• The design space can be more fully explored

varying prediction/hit rates and instruction stats., not limited to few points that benchmarks allow

designer generates tables that drive simulation

Initial Results

- Comparison with detailed simplescalar simulation determine errors introduced and causes alternatively: what are important statistics?
- First, use real traces to determine errors introduced by probabilistic caches/branches
- Then, use synthetic traces to determine additional error

Real Traces

- A: perfect branch prediction, perfect caches
- error in *compress* caused by memory RAW
- goes away as imperfections slow performance
- B: real branch prediction, perfect caches
- no modeling of wrong speculations
- no modeling of read addresses (forwarding)
- C: perfect branch prediction, real caches
- error due to no contention in memory system,
- D: prob. branch prediction, perfect caches
- E: real branch prediction, prob. caches
- F: prob. branch prediction, prob. caches

Errors in D,E,F are generally caused by program "phases", and "clustering" of miss events -- not modeled in simple model

program	Α	В	С	D	E	F
gcc	+0.1	+2.3	+2.5	+2.3	-68.6	-80.3
compress	-14.5	+2.8	-4.0	+22.7	-1.2	-20.7
go	-0.2	-4.7	+2.6	+2.7	-48.2	-52.4
ijpeg	-0.0	+0.0	-0.0	+0.0	+0.8	-27.2

(c) J. E. Smith

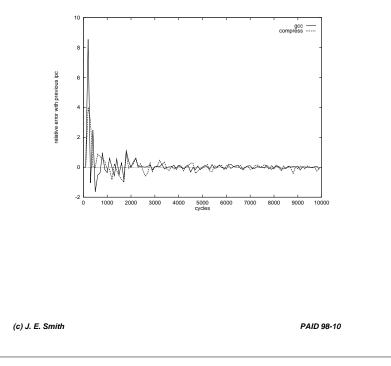
PAID 98-7

(c) J. E. Smith

PAID 98-8

Initial Results, Synthetic Traces

- A: real trace, dependence matrix, perf. branch prediction, perf. caches
- B: synthetic stream, perfect prediction and caches
 - using mixes contributes more error than dependence matrix
- C: synth. stream, prob. prediction, perf. caches
- little additional error introduced
- in fact, compensates for some error
- D: synthetic stream, prob. prediction, prob. caches
 - rel. large errors probably due to clustering of cache misses and branch mispredictions
 - => should look at higher-order models for branches and caches


program	А	В	С	D
gcc	+1.6	-2.0	-2.5	-82.1
compress	-7.4	-20.3	-26.2	-21.7
go	+7.3	-3.5	-3.7	-69.9
ijpeg	+6.4	-14.4	-14.2	-12.8
li	-5.8	-9.3	-19.0	-12.1
m88ksim	+0.0	-18.9	-10.4	-23.7
applu	-2.0	-21.6	-13.2	-13.2
tomcatv	-11.8	-34.2	-10.8	-43.5

(c) J. E. Smith

PAID 98-9

Convergence characteristics

- Consider change in relative performance
- Terminate when change goes below some threshold
- Convergence in a few thousand cycles

Related Work

uses programmed automata to generate synthetic traces • Noonburg and Shen, HPCA '97 target is vector system design trace generated stats, analytical model => simple processors • Agarwal, Horowitz, Hennessy, May '89 TOCs target appears to be processor design analytical cache model could be useful for eliminating implementation Dubey, Adams, and Flynn, April '94 Trans. on • dependence of cache stats. Computers analytical model focuses on dependence modeling target appears to be processor design • Sorin et al., ISCA '98 target is system design analytical model based on mean value analysis processor's memory interface characterized via fast simulation (c) J. E. Smith PAID 98-11 (c) J. E. Smith PAID 98-12

• Smith and Taylor, ICS '92

Future Work

• Work toward greater accuracy

consider clustering of misses/mispredicts deal with problems of consistency in synthetic generation

- Make cache/mispredict behavior more implementation independent
- Consider program phasing
 - as sources of error
 - to implement deterministic sampling
- System simulations
 - independent jobs -- transaction processing
 - parallel jobs -- cache coherence events
- Benchmark characterization

This work was funded by an IBM Partnership Award

PAID 98-13