Modeling Superscalar Processors

via Statistical Simulation

June 27, 1998

Richard Carl
James E. Smith

Dept. of Elect. and Comp. Engr.
1415 Johnson Drive
Univ. of Wisconsin
Madison, WI 53706

jes@ece.wisc.edu
http://www.engr.wisc.edu/ece/faculty/smith_james.html

Motivation

e For evaluating computer performance
simulation is method of choice

e For large systems and large problems,
clock-cycle-level simulation may be too
time consuming and/or difficult to model

e Analytical methods often over-simplify
or are too complicated for closed-form solution

e Hybrid approach -- statistical simulation

Simulate a simple probabilistic model
using program statistics

e Caveat: This is work in progress

Currently modeling/understanding superscalar
processors

Later work will study complex systems and
applications

(c) J. E. Smith PAID 98-2

Approach

e Step 1: Simulate program(s) and collect statistics

Programrelated stats:
- instruction mixes,
- dependence relationships

gathered by simple functional simulation

Implementation related stats:
- cache miss rates,
- branch misprediction rates

gathered by simple trace-driven cache
and branch predictor simulations

Ideally, minimize implementation-related stats

e Step 2: Simulate implementation with synthetic
traces and statistical caches/predictors

e Run until results converge

(c) J. E. Smith PAID 98-3

TheBig Picture

Mix
Stats.
Create
Synthetic
Trace
ependence
Matrix

-

—

Dynamic /
Instruction
Trace
Trace Branch Stats. Simplified
—| Analyzer H@ - | Processor
Simulator
\Cachesta/

(c) J. E. Smith PAID 98-4

Advantages

e Model construction simplified
Caches and predictors are probabilistic

Only major instruction types (fewer than 10) are
implemented

A complex superscalar processor only takes a
few hundred lines of code

e Model "simulates” much faster
by many orders of magnitude
converges after a few thousand cycles

e Combining 1 & 2:

Large system models can be constructed and
simulated with reasonable time and resources

superscalar| superscalar superscalar|

processor processor processor
Interconnection Net

superscalar| superscalar| superscalar|

processor processor processor

(c) J. E. Smith PAID 98-5

Advantages, contd.

e The design space can be more fully explored

varying prediction/hit rates and instruction stats.,
not limited to few points that benchmarks allow

designer generates tables that drive simulation

J\J\

L]
. Q
design space \

benchmarks

(c) J. E. Smith PAID 98-6

Initial Results

e Comparison with detailed simplescalar simulation
determine errors introduced and causes
alternatively: what are important statistics?

e First, use real traces to determine errors
introduced by probabilistic caches/branches

e Then, use synthetic traces to determine
additional error

(c) J. E. Smith PAID 98-7

Real Traces

A: perfect branch prediction, perfect caches

- error in compress caused by memory RAW
- goes away as imperfections slow performance

B: real branch prediction, perfect caches
- no modeling of wrong speculations
- no modeling of read addresses (forwarding)

C: perfect branch prediction, real caches
- error due to no contention in memory system,

D: prob. branch prediction, perfect caches

E: real branch prediction, prob. caches
F: prob. branch prediction, prob. caches

Errors in D,E,F are generally caused by program
"phases”, and "clustering" of miss events -- not

modeled in simple model

program A B C D E F

gce +0.1 +2.3 +2.5 +2.3 -68.6 -80.3

compress -14.5 +2.8 -4.0 +22.7 -1.2 -20.7

go -0.2 -4.7 +2.6 +2.7 -48.2 -52.4

ijpeg -0.0 +0.0 -0.0 +0.0 +0.8 -27.2
(c) J. E. Smith PAID 98-8

Initial Results, Synthetic Traces

A: real trace, dependence matrix, perf. branch
prediction, perf. caches

B: synthetic stream, perfect prediction and caches
- using mixes contributes more error
than dependence matrix

C: synth. stream, prob. prediction, perf. caches
- little additional error introduced
- in fact, compensates for some error

D: synthetic stream, prob. prediction, prob. caches
- rel. large errors probably due to clustering
of cache misses and branch mispredictions

=> should look at higher-order models
for branches and caches

program A B C D
gcc +1.6 -2.0 -2.5 -82.1
compress -7.4 -20.3 -26.2 -21.7
go +7.3 -3.5 -3.7 -69.9
ijpeg +6.4 -14.4 -14.2 -12.8
li -5.8 -9.3 -19.0 -12.1
m88ksim +0.0 -18.9 -10.4 -23.7
applu -2.0 -21.6 -13.2 -13.2
tomcatv -11.8 -34.2 -10.8 -43.5
(c) J. E. Smith PAID 98-9

Convergence characteristics

e Consider change in relative performance

e Terminate when change goes below some thres-
hold

e Convergence in a few thousand cycles

10

compress

relative error with previous ipc

2
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
cycles

(c) J. E. Smith PAID 98-10

Related Work

e Noonburg and Shen, HPCA '97
trace generated stats,
analytical model => simple processors
target appears to be processor design
e Dubey, Adams, and Flynn, April '94 Trans. on
Computers
analytical model
focuses on dependence modeling
target appears to be processor design

e Sorinetal., ISCA’'98
target is system design
analytical model based on mean value analysis

processor's memory interface characterized via
fast simulation

(c) J. E. Smith PAID 98-11

e Smith and Taylor, ICS '92

uses programmed automata to generate syn-
thetic traces

target is vector system design

e Agarwal, Horowitz, Hennessy, May '89 TOCs
analytical cache model

could be useful for eliminating implementation
dependence of cache stats.

(c) J. E. Smith PAID 98-12

Future Work

e Work toward greater accuracy
consider clustering of misses/mispredicts

deal with problems of consistency in synthetic
generation

e Make cache/mispredict behavior more implemen-
tation independent

e Consider program phasing
as sources of error

to implement deterministic sampling

e System simulations
- independent jobs -- transaction processing
- parallel jobs -- cache coherence events

e Benchmark characterization

This work was funded by an IBM Partnership Award

(c) J. E. Smith PAID 98-13

