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Abstract

A dynamic binary trandlation system for a co-designed
virtual machine is described and evaluated. The underly-
ing hardware directly executes an accumulator-oriented
instruction set that exposes instruction dependence chains
(strands) to a distributed microarchitecture containing a
simple instruction pipeline. To support conventional pro-
gram binaries, a source ingtruction set (Alpha in our
study) is dynamically trandated to the target accumulator
instruction set. The binary trandator identifies chains of
inter-instruction dependences and assigns them to de-
pendence-carrying accumulators. Because the underlying
superscalar microarchitecture is capable of dynamic in-
struction scheduling, the binary trandation system does
not perform aggressive optimizations or re-schedule
code; this significantly reduces binary trandation over-
head.

Detailed timing simulation of the dynamically trans-
lated code running on an accumulator-based distributed
microarchitecture shows the overall system is capable of
achieving similar performance to an ideal out-of-order
superscalar processor, ignoring the significant clock fre-
guency advantages that the accumulator-based hardware
is likely to have. As part of the study, we evaluate an
instruction set modification that simplifies precise trap
implementation. This approach significantly reduces the
number of instructions required for register state copying,
thereby improving performance. We also observe that
trandation chaining methods can have substantial impact
on the performance, and we evaluate a number of chain-
ing methods.

1. Introduction

A promising paradigm for processor development is
the co-design of an instruction set architecture (ISA), a
microarchitecture, and a dynamic binary trandation sys-
tem that cooperatively support an existing (virtual) 1SA.
Our research [28,41,42] is targeted at one such co-
designed virtual machine (VM) that provides high per-
formance by using a simple, distributed superscalar proc-
essor that tolerates increasing on-chip wire delays and is
amenable to a very high clock frequency. A key element
of co-designed VMs is dynamic binary trandation (DBT)
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Figure 1. Dynamic binary translation system run-

ning on ILDP processor

from the outwardly visible virtual ISA (V-ISA) to the
implementation 1SA (I-ISA). This paper studies several
aspects of our evolving co-designed VM, with emphasis
on the dynamic binary tranglation system. In our research,
we use the Alpha instruction set as the V-ISA, and an
accumulator-oriented instruction set [28] as the I-I1SA.
Fig. 1 illustrates the overal co-designed VM we are
studying. The following two subsections provide an
overview.
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1.1 Instruction level distributed processing

A microarchitecture trend is toward distributed, modu-
lar designs, containing partitioned issue buffers and clus-
ters of functional units [16,25,29,37,44]. These distrib-
uted microarchitectures are designed to be tolerant of
intra-processor wiring delays and contain small, fast logic
subsystems. Our research is focused on 1SAs and sup-
porting implementations that naturally fit the distributed
design style; i.e, instruction-leve distributed processng
(ILDP) [28,41].

The ISA proposed in [28] is based on hierarchical reg-
ister architecture with a small number of accumulators on
top of a larger general-purpose register (GPR) file. The
use of accumulators naturally partitions the instruction
stream into chains of dependent instructions, strands,
where intra-strand register values are passed through the
accumulators. Inter-strand communication is through the
GPRs.



The microarchitedure cnsists of a pipelined instruc-
tion front-end that feeds multiple, distributed processng
elements (PEs). Only the GPRs are renamed to physicd
registers in a conventional sense. Based on the depend-
ence information expressed in acaimulator numbers, in-
gtructions are steaed to the PEs — a simple form of ac-
cumulator renaming. Each PE contains an instruction
issie FIFO, a locd physicd acamulator, and a locd
copy d the GPRs. Communicaion among PES is as-
sumed to take a small number of clock cycles and is ac-
courted for explicitly. Colledively, the hierarchicd value
communicaion, paralel in-order issue units, and dstrib-
uted implementation provide overall simplicity — likely to
yield a very high clock speed with moderate pipeline
depth while supporting a complexity-effedive form of
superscdar out-of-order issue. A reorder buffer commits
completed instructions in order. For more detail s on the
microarchitecture, refer to [28].

1.2 Dynamic binary trandation

Dynamic binary trandation (DBT) converts instruc-
tions from a source ISA to a target ISA. In the -
designed VM paradigm [1,14,17,24,31], these are the V-
ISA and I-1SA, and only the V-ISA is an existing instruc-
tion set for which conventional software exists. DBT can
be performed either by a host processor [1,2,14,21,

24,26,31,34,46] or spedalized hardware [10,15,18,25,40].

A DBT system can also profile program run-time behav-
ior and dynamicdly optimize blocks of frequently exe-
cuted instructions [3,4,6,8,11,12,15,19,30,35,36,45]. A
key consideration in the design o a DBT system is the
overhead resulting from trandation time; any time spent

trandating is time not spent exeauting the source program.

In our DBT design the focus is on simpli city; becaise
the underlying hardware is dynamic superscdar, it cen be
relied upon to provide code scheduling. The only optimi-
zdion we provide is “code straightening” where basic
blocks are staticdly located in acardance with their most
common dyramic exeaution order (with branch diredions
changed acordingly). This well-known opgimizaion,
similar to static code layout techniques [38,39], captures
much of the low-hanging fruit of dynamic optimization
by improving instruction cache locdity and branch pre-
diction kehavior.

1.3 Related work

Co-designed virtual madcines were studied in the IBM
DAISY [14] and BOA [1,17] projects and are imple-
mented in the Transmeta Crusoe [24,31], al of which
targeted VLIW implementations. Our reseach is targeted
at dynamic superscdar implementations. We believe that
this approach better balances the strengths of hardware
and software, and results in lower overheal hinary trans-
lation. Rather than trying to maximize instruction-level
parallelism on a static VLIW microarchitedure using
aggressve optimization and scheduling techniques, our

DBT system simply identifies inter-instruction depend-
ences and encodes the dependence information as acw-
mulator assgnments withou changing the original pro-
gram order. Maintaining the origina instruction order
gredly simplifies predse trap recovery.

Other work in this area has been targeted at dynamic
binary trandation from one existing instruction set to
another, with code portability being the primary godl
[21,26,46]. Typicdly code optimizaions are imple-
mented, many o them ISA-spedfic, and the performance
“gaa” is one of reducing losss; i.e. to come reasonably
close to native ISA exeaution. Furthermore most of this
work is focused on ABI trandation rather than full ISA
trandation, asisthe cae with co-designed VMs.

Dynamic optimization (without trandation) has also
been studied [3,4,6,8,11,12,15,19,30,35,36,45]. The pri-
mary objedive in this work is performance improvement,
and therefore some of the tedhniques used, e.g. code
straightening and software code cahing, are related to
our DBT work.

2. Accumulator-oriented |-1SAs

2.1BasicISA

The simplest way to describe the acamulator-oriented
I-1SAs is through an example. Fig. 2 shows an Alpha
code sequence trandated into two dfferent acamulator
ISAs. Here we denote the accumulators as Ai and the
GPRs as R . The modified ISA is introduced in Sedion
2.3. In both ISAs, the acamulators link together chains
of dependent instructions. The last conditional branch
instruction is trandated to a combination d a condtional
branch and an unconditional branch for code caining
reason; chaining is explained in Sedion 32 in more detail .

One fedure of the basic ISA, introduced in [2§], is
that eadh instruction only contains one GPR, either as a
source or a destination register. In this form, many in-
structions can be encoded using only 16 bits, reducing the
code footprint. Also, addressng modes perform no ad-
dress computation; this must be done with separate in-
structions.

2.2 Precisetrap recovery in accumulator |-ISAs

The trap recovery mechanism is a fundamental asped
of any co-designed VM because it must provide exadly
the same trap behavior as the V-ISA semantics define.
The initial study in [28] did not consider implementation
of predse traps during DBT. One goal of the reseach
presented here is to consider the performance impad of
implementing predse traps and to evaluate an I-1SA
modified to simplify predse trap implementation.

There ae two major issues in predse trap recovery.
First, the addressof the V-I1SA instruction that generates
trap must be identified. In our DBT system, the archi-
teded program counter is not used for actually executing
the source binary code; rather an implementation pro-
gram courter sequences through trandlated code. The



(a) Alpha assmbly code  (b) Equivalent RTL notation

(c) Basic I-1SA code

(d) Modified I-ISA code

L1:Idbu r3, 0[r16] L1:R3 < - mem[R16] L1: A0 < - mem[R16] L1:R3 (A0) < - mem[R16]
subl rl7, 1, r17 R17<- R17 - 1 Al < - R17 -1 R17(A1)< - R17 - 1
R17<- Al
Ida r16, 1[r1 6] R16<- R16+1 A2 < - R16+1 R16(A2) < - R16+1
R16<- A2
xor rl, r3, r3 R3 < - R1lxorR3 A0 < - AOxorR1 R3 (A0)< - AO xor R3
srlrl, 8, rl R1 < - R1<<8 A3 < - R1<<8 R1(A3)< - R1<<8
and r3, Oxf  f, r3 R3 < - R3and Oxff A0 < - AO and Oxff R3 (AO) < - AO and Oxff
s8addq r3, r0,r3 R3 < - 8*R3+RO A0 < - 8*A0+RO R3 (A0)< - 8*A0+RO
Idq r3, 0[r3] R3 < - mem[R3] A0 < - meml[AO0] R3 (A0) < - meml[AQ]
R3 < - A0
xorr3,rl, r1 R1 < - R3xorR1 A3 < - R3xor A3 R1 (A3)< - R3xor A3
R1 < - A3
bne r17, L1 P<- LL,if(R17!=0) P<- LL,if(Al!=0) P<- L1,if(AL1=0)
L2: L2: P<- L2 P<- L2

Figure 2. Example program segment from SPEC CPU 2000 benchmark 164.gzip

address of the trapping instruction is found by indexing
an address table of patentially excepting instructions
(PEIs) and condtional branch instructions assciated
with a trandation group. The address of the first V-ISA
instruction in atrandation group is embedded in a special
instruction. This I-1SA instruction is always the first in-
gtruction in the translation goup and writes the embed-
ded addressinto a spedal register. This address provides
a base for the PEI table lookup. A similar mechanism is
explained in [36] in greaer detail.

Sewndy, al architeded states must be restored to the
point of the trap. Our DBT system does not reschedule
instruction ader; hence values are produced in the same
order asthe origina program. However, with an acamu-
lator 1SA thisis not sufficient; some source GPR values
are held in an acawmulator and may be overwritten prior
to atrap.

One solution is to add copy-to-GPR instructions
before instructions that overwrite an acaumulator holding
avalue that will belive & a potentia trap location. This
isafairly expensive solution, however, in terms of added
instructions.

2.3 Modified ISA

An dternative to adding explicit copy instructions as
just suggested is to embed GPR updetes into the instruc-
tion set. The modified ISA instructions need more bits to
designate the result GPRs, so some 16-bit instructions are
now 32-bits. Hence, some of the “small footprint” benefit
of having many 16-bit instructions [28] is lost. However,
no copy-to-GPR instructions are necessary and most of
the other advantages of the acamulator instruction set
remain.

With the modified ISA, every instruction produwcing a
result spedfies a destination GPR to maintain architeded
state. This also means that, strictly speging, architected
acamulators are no longer needed. The aacumulator
identifiers beacome strand identifiers, and acawmulators
remain in the implementation. In effed, these strand iden-
tifiers are the dua of the independence bits in the 1A-64

instruction set [23]. Nevertheless we will typicdly refer
to the strand identifiers as “accumulators’.

To maintain implementation simplicity in the proces-
sor core, we are studying a microarchitedure where a
separate register file, off the criticd path, is maintained
solely to keep the achiteded GPR state for predse traps.
Only the values nealed for later computation, i.e., com-
munication, are adualy written to “operational” GPRsin
the aiticd path. Effedively, these ae the same writes as
in the implementation described in [28]. This is posshble
becaise the modified 1SA format distinguishes two dif-
ferent types of register writes. Note that this heme
works in a different way from Crusoe’s working/shadow
registers [24,31] where all register writes go to the work-
ingregister file.

In the modified instruction set example in Fig. 2d, the
result registers are eplicitly given and the “acumula
tors” (now strand identifiers) are shown in parentheses.

3. DBT for accumulator-oriented | -1 SAs

In this dion, we discuss DBT for the proposed ac-
cumulator-based ISAs. Subsections discuss the DBT
process including fragment formation and chaining.

3.1 Fragment formation

Our DBT mechanism follows the common two-stage
(1) interpret/profile (2) trand ate/optimize model found in
most existing dyramic optimizers and kinary trandators.

PC R Target fragment ~———~
translation found >
aokup Interpret < Target fragment
table Native
not found .
v execution
4 within
~" Threshold "T"End df superblock;

Next fragment not found | translation

v cache

Original

9 4 End of superblock;
program |- ... pf Translate [ niey fragment fou
binary :4@

VMM/DBT

Figure 3. DBT framework



The basic unit of trandation is the superblock [22]: a
code sequence with a single entry point and multiple exit
points. Following [3,4], the trandlated superblocks placed
in atrandation cade are referred to as fragments.

The fragment formation algorithm is a dightly modi-
fied version d Dynamo’'s Most Recantly Executed Tail
(MRET) heuristic. Our DBT system startsinterpreting the
given V-ISA program. Over the curse of interpretation,
courters are maintained for the following possible trace
start candidate instructions:

e Targets of register indired jumps (JMP/JSR/
RET inthe AlphalSA)

» Targets of backward condtiona branches

» Exit targets of existing fragments

If the number of times a static candidate instruction is
exeauted reaches a predefined threshold, the interpreted
path is followed to generate a fragment. This heuristic, a
form of simple software speaulation, is based onthe ob-
servation that when an instruction becomes “hat”, it is
statisticaly likely that the very next sequence of executed
instructionsis also ha. Fragment ending conditions are:

* Register indired jumps or trap instructions

»  Badkward taken conditional branches

» Alredy colleded instructions are found again (a
cycle)

* A predefined maximum number of instructions
isreated

Currently our DTB agorithm does not perform loop
unrolling. However, there till i s code redundancy inher-
ent in superblock-based tranglation.

A newly trandlated fragment is placel in the transla-
tion cadhe. If later program control flow reaches an exist-
ing fragment, the trandlated instructions in the fragment
are exeauted diredly on the hardware.

One important byproduct of “hot” tracebased optimi-
zaiongtrandations is that dynamic “code straightening”
is automaticdly performed; i.e. basic blocks that com-
monly occur in sequence dynamicdly are placeal together
gtaticdly, enhancing effedive fetch bandwidth.

3.2 Fragment chaining

After atrandated fragment is exeauted, the next frag-
ment must be found (if it exists). In asimple implementa-
tion, the fragment would branch to a “dispatch” code
sequence d a cetain fixed location. This dispatch code
locaes the next fragment starting address using the PC
trandation lookup table in Fig. 3. To limit the number of
these trandation address lookups, a good chaining
mechanism that can provide next addressin a fast and
efficient manner is esential. Furthermore, to supgdement
conventional chaining, using a a-designed VM provides
us the ability to implement speda instructions in the |-
I SA that further reduce the fragment transition overhead.

Direa branches, either condtional or unconditional,
are relatively easy to handle becaise their (taken) target
addresses do nd change during program exeaution. Un-
condtional dired branches are ather smply removed by
code straightening (if they do not save return addresses)
or are changed to spedal save-V-ISA-return-address in-
structions (if they save return addreses). If a condtional
branch is taken at trandation time, its condtion is re-
versed to allow continuous fetching. If the superblock
exit target (that is, the path na followed at trandation
time) is not foundin the trandation cade, a spedal call-
trandator-if-condition-is-met instruction is generated for
the branch. If the target instruction becomes hot and is
later trandated, the DBT system replaces the call-
trandator-if-condition-is-met instruction with a normal
condtional branch instruction—a “patch” is performed.

To save lookup overheal for ead and every indired
jump, most dynamic optimizers/translators implement a
form of software based jump target prediction. In
[3,4,14,35], a sequence of instructions compares the indi-
red target addressheld in a register against an embedded
trandation-time target address A match indicaes a or-
red “prediction” and the inlined target instructions can be
exeauted; if nat, the code branches to stub code & the end
of the fragment, finally reading the shared dispatch code.

Even though software jump target prediction is often
corred, it till adds overhead of additional compare-and-
branch code. Worsg, if the prediction fails, the dispatch
code nedls to be exeauted, anyway. Bruening et al. [6]
identify this as the highest overhead and report that an
indired jump lookup takes 15 instructions, while the
compare-and-branch code sequence takes 6 instructions
in the x86 ISA. In our DBT, threeinstructions sufficefor
the mmpare-and-branch code, utilizing a spedal load-
embedded-target-address instruction. The dispatch code
takes 20 instructions.

Return instructions pose the most serious problem be-
cause their target addresses can change more frequently
than ather indired jumps. The DAISY system [14] cuts
performance losses by alowing multiple mmpare-and-
branch codes for a single return instruction. Most modern
procesors contain a hardware return address sadk (RAS)
medhanism [27], which cean predict a return instruction’s
target addressvery acarately. With dyramic tracebased
DBT like ours, however, a onventional hardware return
address $adk canna be utili zed becaise it does nat tradk
the V-ISA return addresses.

We propcse a speddized hardware RAS mecdhanism
that contains pairs of V-ISA return addresses and their
corresponding 1-1SA return addresses. When a return
instruction is fetched, the next fetch addressis predicted
by the popped trandated return address The V-ISA ad-
dressis chedked against to the instruction’ s register value.
If they match, the prediction was succesdul. If they don't,
control is redireded to the dispatch code by an uncondi-
tional branch following the return instruction. Note that
the semantics of return instructions are slightly changed



from the conventional definition — a traditional return
instruction always jumps to the target atomicdly. To
push the return addresspair, a speda push-dual-address-
RAS ingtruction is generated for a V-ISA instruction
(BSRand JSRin Alpha | SA) to save return addresses.

3.3DBT algorithm

The mgjor function o the trandation processis identi-
fying strands and re-mapping intra-strand communication
values to accumulators. Because of the nature of dynami-
cdly constructed traces, there is no neal for graph-
traversing dependence analysis usualy found in static
compilers. Below is the high-level outline of the tranda-
tion agorithm. Althoughthe agorithm appears to contain
multi ple passes of sequential scans, they can be combined
to asingle pass

Dependence/usage identification: when a hot code se-
guence is found by interpretation, an instruction’s de-
pendences on previous instructions in the same super-
block are identified. In addition, the usage of input and
output registers is examined to determine the “global-
ness of their values. Globa values are placed in the
globally visible GPRs. Foll owing are the important usage
caegories.

*  No user: an output register value is not used be-
fore being overwritten. An instruction whose
output value isnot used naturally ends a strand.

e Local: an ouput register value used orly once
before being overwritten in the same superblock.
These ae @ndidates for assgnment to acaimu-
lators.

* Temp: values passd between two decompased
instructions (e.g., conditional moves). These are
asdgned to acamulators.

* Livein global: input register valuesthat are live
on superblock entry; assgned to GPRs.

e Live-out global: output register values live on
superblock exit; assgned to GPRs.

e Communication global: register values used
more than once before being overwritten in the
same superblock; assgned to GPRs.

* Spill global: &) If an instruction has two locd
inpu registers, one is made a spill globa be-
cause the |-1SA does not allow two different ac-
cumulators in the same instruction. b) If a strand
has to be terminated to freean acaimulator (see
below), a locd vaue is converted to a spill
global.

Strand for mation: based ondependence andinpu regis-
ter usage patterns, instructions are scanned and a strand
number is asdgned to each instruction. The transator
uses an urlimited number of strands that are later as-
signed to a finite number of acamulators. Here temp

usage is treaed the same way as locd. If an instruction
has:

e Zerolocd inpu registers: astrand is garted and
a new strand number is assgned to it. Further-
more, instructions with two gobal inpu regis-
ters are broken into two acamulator instructions
— a copy-from-GPR instruction and a trandated
source instruction that uses the (locd) result of
the copy as an inpu. The copy instruction initi-
ates a strand, and the source instruction nov has
one locd inpu register (and is handled accord-
ingly).

e One locd inpu register: asdgned the same
strand number as the instruction producing the
locd value.

e Two locd input registers: a heuristic is needed
to dedde which strand number to assgn. If one
of the input registers is a temp, then the temp
producer’s drand number is assigned. Otherwise
the number asdgned corresponds to the longer
strand W to that point (length is determined by
instruction count).

Accumulator assignment: The strand numbers are n-
verted to finite acamulator numbers. Instead of using a
traditional graph coloring heuristic to assgn acamulator
numbers to strands, a simple linea-scan heuristic is used.
When the trandator runs out of acaimulators, a live
strand is chosen for termination and the acamulator is
fread. Thisisdore by inserting a copy-to-GPR instruction
a the strand termination point, and a copy-from-GPR
instruction before the resumption pant.

4. Evaluation
4.1 M ethodology

Our aim is to evaluate performance impad of the pro-
posed I-1SAs on the ILDP microarchitedure. In ared co-
designed VM, the DBT itself (and all the other VM soft-
ware) would exeaute the I-1SA. In our current simulation-
based environment this is impradicd. Consequently, the
DBT system iswritten in C and is compil ed to execute on
the simulation datform (SimpleScdar 3.0C [7] running
on Intel clusters). Nevertheless the simulated DBT sys-
tem does perform all interpretation and binary translation
in the same sequence a it would in a a-designed VM.

Ancther simulation constraint is that the benchmarks
we run have relatively short exeautions times compared
with red applicaions. Consequently, the interpretation
and trandation owrheas, athoughsmall, are still dis
proportionately large for some of the benchmarks. In
other systems [3,14], interpretation and trandatior/ op-
timizaions overheal have been found to be very small.

With resped to interpretation, we do nahing spedal.
The same tedhniques as used by others [3,5,14,32,33] wil |
suffice, and the interpretation overhead should be aout



the same. If an ingtruction is interpreted 50 times (the
threshold value) and ead interpretation takes about 20
instructions, this is a total of abou 1,000 target instruc-
tions per sourceinstruction.

Typicdly, binary trandation owerhead is an order of
magnitude higher than interpretation; that is, thousands of
instructions per trandlated source instruction [14]. As
pointed out ealier, the trandation overheal for our pro-
posed system should be relatively low, and we evaluate
this overheal in Sedion 42.

To evaluate performance, we focus on cetailed simula-
tion d al trandated code, including all chaining code.
Our smulation system does switch between interpretation,
trandation, and exeaution modes, however. When the
simulated program control flow reades a previously
trandated fragment, the simulator begins detail ed timing
simulation. Here the timing simulation starts with an ini-
tialy empty pipeline. Similarly if an exit condition from
the timing simulator is met (i.e., a target fragment was
not found in trandation cache, indicaed by a call-
tranglator instruction), the mode is changed to interpreta-
tion after the last instruction in the pipeline is committed.
Overall performance is then measured as V-1SA instruc-
tions per cycle (IPC) for execution o al trandated (and
chained) instructions.

To evaluate performance we use three DBT/simulators
as well as a dightly modified superscdar simulator (re-
ferred to as “origina” in later sedions). Two of these
perform trandation from Alpha to basic and modified
acamulator 1SAs, respedively. The third converts an
Alphabinary to a mde-straightened version o Alpha and
simulates the same superscdar microarchitecture & the
“origina”; this is for isolating the effeds of code
gstraightening and fragment chaining from other DBT
performance dfeds. This third DBT/simulator tod is
referred to as the “code-straightening-only” simulator in
later subsedions. Table 1 lists microarchitedure parame-
ters of two hardware platforms simulated. Modifications
to the superscdar processor simulator are marked with *.

To collea datistics, we use the SFEC CPU2000inte-
ger benchmarks [20] compiled for Alpha EV6 ISA at the
base optimizaion level (—arch ev6 —non_shared
—fast ). The —fast option includes —O3 optimization
level, even for base optimizaion. The compiler flags are
same & those reported for Compag AlphaServer ES40
SFEC CPU2000 kenchmark results. DEC C++ V.6.1-027
(for 252.e0n) and C V.5.9-005 (for the rest) compilers
were used on Digital UNIX 4.0-1229. The test input
set was used for all benchmarks except for 253.perlbmk,
where one of the train  input set (- I./lib dif f-
mail.pl 2 550 15 2 4 23100 ) was used. All
benchmarks were run up to completion or 4.3 hilli on in-
structions. Skipping the initiaizaion phase and simulat-
ing orly part of program using ref inpu sets, asis fre-
quently done in microarchitecture research, would likely
have exaggerated the benefits of DBT.

For trandation, we use amaximum superblock size of
200 and a threshold of 50. We dso experimented with
superblock size of 50 and found it is nat large enough to
provide performance benefits from code straightening.
We use only four logicd acaimulators (as opposed to
eight used in [28]). We found that four acawmulators are
generdly sufficient, and few strands must be prematurely
terminated to freeup an acawmulator. Four logicd aca-
mulators are used throughout the evaluation except where
noted.

In this gudy, we use an unlimited number of counters
for superblock start candidates. For programs the size of
the SFEC benchmarks, however, the number of counters
isrelatively small. Also, the static code size of the SFEC
benchmarks (all are lessthan IMbytes except 176.gcc at
2.3Mbytes) means that they would comfortably fit into a
reasonably sized trandlation cache. Thus trandation cade
management is not required; however, other reseach
indicates that this overhea is generaly negligible [4]. In
fad, there may be a performance cost in not occasionally
flushing trandation cace entries. Some fragments may
be sub-optimal because once a fragment is constructed

Table 1. Microarchitecture parameters

straightening-only simulators)

Out-of-order superscdar (for original and code-

ILDP microarchitecture (basic and modified accumulator
ISAS)

16K entry, 12-hit global history g-share predictor, 8-entry RAS, 512-entry, 4-way set-asoc. BTB

Branch prediction 3-cyclefetch redirection latencies for both misfetch and misprediction

I-cadhe 128-byte line size, direct-mapped, 32-KB size, LRU replacement; up to 3 sequential basic blocks*

D-cache 64-byte line size, 4-way set-asoc., 32-KB size Same as |eft or 64-byte line size, 2-way setassoc 8-KB sizg
2-cycle latency, random replacement 2-cycle latency, random replacement; replicated acossPES

L2 cade 128-byte line size, 4-way set-asc., 1-MB size, 8-cycle latency, random replacement

Memory 72-cycle latency, 64-bit wide, 4-cycle burst

Reorder buffer size 128 Alphainstructions

128 ILDP instructions

Decode/retire bandwidth | 4 Alphainstructions

4 ILDPinstructions

Issue window size 128 (same as the reorder buffer size)

4/6/8 (FIFO heads)

Issue bandwidth 4

4/6/8

Execution resources 4 fully symmetric functional units

4/6/8 fully symmetric functional units

Misc. No communication latency, oldest-first issue*

2 or 0 cycle global communication latency




there is no seaond chance for forming diff erent fragment
starting from the same addressin ou current implementa-
tion. In Dynamo, for example, the fragment cade is
flushed when there is change of program phase (indicated
by abrupt increase of fragment generation rate) thereby
evicting infrequent fragments from the cate and all ow-
ing rew fragment formation.

4.2 Trandation over head

To measure the trandation overhead, we compiled the
DBT/simulator tool onto the Alpha ISA and built an in-
strumented version with Atom tools on an Alpha 21164
system running Tru64 51A. The instrumented version
was then run with the same SPEC benchmarks. The num-
ber of dynamic instructions (in Alpha) is reported for
ead procedure. Averaging the total number of instruc-
tions exeauted in trandation-related procedures with the
number of trandated instructions gives the average num-
ber of DBT instructions required to trandate asingle in-
struction.

On average, 1,125 Alphainstructions were exeauted to
trandate asingle Alpha instruction. Table 1 in Sedion
4.4 contains per-benchmark results. This number is about
a quarter of the 4,000+ PowerPC instructions nealed to
trandate aPowerPC instruction into VLIW architedure,
as reported in [14]. Of course, most of this reduction
comes from the simple nature of our DBT — no aggres-
sive optimizationis performed.

Our DBT code in its current form was written for
flexibility of simulation, not for trandation speed. For
example, on average, 20% of the instructions are spent
copying high-level data structures that represent trans-
lated instructions to the translation cade structure, field
by field. We fed that with optimizations for trandation
speed we can reduce the number of instructions per trans-
lated instruction to well below 1,000.

4.3 Evaluation of fragment chaining methods

We used the code-straightening-only simulator to
evaluate the effed of fragment chaining. Chained frag-
ments dow different branch/jump prediction behavior
from the origina source binary. For example, a single
register-indired jump in the sourceis now replaced with
a mmpare-and-branch sequence plus optional dispatch
code (contains another jump). That is, the number and
type of control-transfer instructions are dhanged by frag-
ment chaining. To estimate the performance dfed of
different fragment chaining options, we tested three dif-
ferent implementations against the “original” simulator.
In Fig. 4, predictor performance is measured as the num-
ber of branch/jump mispredictions per 1,000 instructions.

In the first implementation no_pred, software predic-
tion is naot used; a branch to a shared dispatch code is
always generated for a register indired jump. The dis-

original W no_pred EJsw_pred.no_ras Csw_pred.ras

Figure 4. Number of mispredictions per 1,000
instructions

patch code performs a PC trand ation table lookup to find
the next fragment. Target address prediction rate of the
indired jump at the end d the dispatch code is expeded
to be very poor because dl indired jumps lead to the
same dispatch code and asingle BTB entry is required to
provide al the target addresspredictions.

The semnd implementation, sw_pred.no_ras, uses
conventional software prediction as found in [3,4,14,35].
This reduces mispredictions substantially by reducing the
probability of executing the shared dispatch code. Al-
thoughthe number of mispredictions was reduced to al-
most half of the no_pred, it is gill 45% more than the
original Alpha cde. This gows the inherent limit of the
simple trang ation-time prediction.

The final implementation, sw_red.ras, uses a spedal-
ized dual-address hardware RAS described at the end o
Sedion 32. This method achieves nealy the same num-
ber of mispredictions as the origina Alpha code. This
implementation is used as basdline in later simulations.
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Figure 5. Relative instruction count

Fig. 5 shows instruction count expansion from chain-
ing. Even with efforts to reduce dynamic instruction
court increased by indired jump chaining such as ft-
ware prediction and dual-address RAS (returns are not
trandated into compare-and-branch sequence), severa
benchmarks gill experience serious expansion. In the
benchmarks where the indirect jJump code expansion rate
is gnall, procedure cdls are mostly performed by uncon-
ditional dired branches (BSRin AlphalSA).



W original, no RAS
@ straightening-only, no RAS

[ original, 8-entry RAS
[ straightening-only, 8-entry RAS

Figure 6. Performance impact of code straight-
ening and H/W RAS

In Fig. 6, code-straightening-only performance is
compared to ariginal program performance. The straight-
ened version withou RAS performs worse compared to
the original program withou RAS. Here the benefit of
code straightening is off set by more branch address mis-
predictions and an increased number of instructions exe-
cuted in the compare-and-branch and dspatch code. On
the other hand, our baseline model with dual-address
RAS performs abou the same level as the original pro-
gram with RAS. This is an example of speda hardware
features that can be spedficdly designed for co-designed
system. Nevertheless the performance improvement by
code straightening is lessthan [4] suggests. One impor-
tant fador is that a dynamic optimizer like Dynamo can
choose to “bail ouwt” if performance improvement is not
found while a DBT system cannd. If we exclude under-
performing 6 kenchmarks (where a bail out would be
used), 7% IPC improvement is observed.

4.4 DBT characteristics

We now consider charaderistics of trandated code.
Since NOP instructions are removed by trandation, they

Table 2. Translated instruction statistics

. Relative No. of
Rdative number of Alpha
number of % of copy static in- y
dynamic instructions . Ingt to
instructions struction trandlate
bytes aAlpha
B M B M | B M inst
bzip2 1.58 1.30 18.9 1.3 1.07 1.02 | 818.3
crafty 1.59 1.38 17.4 5.0 1.13 1.08 | 1147.0
eon 177 | 151 | 186 | 46 | 1.33 | 1.15 | 1259.0
gap 1.62 1.40 15.2 15 1.10 1.05 | N/A
gcc 156 | 1.34 | 15.0 1.1 | 1.13 | 1.09 | 1133.0
gzip 1.49 1.23 | 21.7 4.8 1.13 1.06 | 989.3
mcf 162 | 135 | 198 | 3.7 | 1.16 | 1.10 | N/A
parser | 1.55 1.26 19.8 14 1.11 1.07 | 966.7
perl- 1974 | 154 | 122 | 11 | 111 | 108 | 18200
bmk
twolf 1.56 1.29 20.9 4.9 1.16 1.06 | 1235.1
vortex | 147 | 1.33 | 11.8 | 21 | 1.11 1.08 | 658.2
vpr 1.59 1.33 | 20.9 5.6 1.14 1.04 | 1211.6
Avg. 1.60 1.36 17.7 31 1.17 1.07 1124.7

are not counted in V-ISA (Alpha) program charaderistics.
In Table 2, B and M denote basic ISA and modified 1SA
respedively.

The second and third columns dhow the increase in
dynamic instructions compared with Alpha mde. The
basic ISA shows of increase of 60% on average, while
the modified ISA has only about half the increase (36%).
The modified ISA has sgnificantly fewer trandated in-
structions because it does not generate copy-to-GPR in-
structions to maintain V-ISA architeded state. This is
shown in columns 4 and 5 where only 3.1% of the in-
structions are copy instructions in the modified I1SA com-
pared with 17.7 percent for the basic ISA. The rest of the
instruction count expansion comes mostly from chained
register-indired jump and decomposed memory instruc-
tions.

On the other hand, both |-1SAs are relatively good in
code size pansion rate. The use of 16-bit instructions
and spedal branch instructions helps here. The mde &-
pansion rates are 17% for the basic ISA and 76 for the
modified ISA.

The output register value type is an important program
charaderistic becaise it affects number of extra py
instructions and write ports requirement of the general
purpose register file.

100%

90% m@liveout global
mcomm. global
mlocal -> global
mno user -> global
mlocal

mtemp

Eno user

[Jno output reg

80%
2
70%

60% 1 A\

50%
40%

30%

20%

10%

0%

v 9
RS o
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Figure 7. Output register usage

Output register value usage (“globalness’) dtatisticsin
Fig. 7 was colleded for Alphainstructionsin superblocks.
Here, memory instructions with effedive aldresscacula
tion are decomposed into two nodes.

For modified 1SA, about 25% of dynamic instructions
have a global output value (liveout and communication
globals). These ae the global values that shoud be writ-
ten to latency-criticd GPRs. The rest of the produced
register values go to the locd acawmulator; these ae dso
used to updhte achiteded state, off the aiticd path of the
procesor pipeline.

Using the basic ISA requires extra copy-to-GPR in-
structions to maintain state & fragment exit points includ-
ing conditional branches. The notation “locd - global”
represents values that are used oy once but need to be
saved to a GPR before a conditional branch. The notation
“no wer - globa” is dmilar. If these values (represent-
ing extra copy-to-GPR instructions in the basic 1SA for-
mat) are included, the total percentage of instructions that
have global output values risesto about 40%.



Those statistics are in contrast to ealier results [28]
where, for an orade program trace(e.g., register values
do nd nedal to be saved at superblock boundaries), we
found only 20% of instructions produce global output
values.

4.5 |1 PC performance

Our overal god in the reseach reported here is to
adhieve IPC rates that are dose to netive Alpha perform-
ance The eventual objedive of our research is to achieve
performance gains due to a simple and high clock fre-
qguency microarchitedure provided by the acumulator-
oriented ISA [28].

W original Alpha
EImodified ISA

[ straightening-only Alpha @ basic ISA
mmodified ISA (native IPC)

Figure 8. IPC comparison

Fig. 8 compares performance of the ILDP processor
running dynamicdly trandated acaimulator ISA code
(the third and fourth bars) with the conventional super-
scalar procesor running original code (the first bar) and
code-straightened version (the secnd kar). These four
bars dow V-ISA instructions per cycle (IPC). For the
ILDP microarchitecdure, 8-way PEs, 32KB L1 data cade
(same size as the superscdar procesor), and O-cycle
global communicaion latency were used; thisisto isolate
the I-1SA eff eds from the machine resources.

The differencein performance between the straighten-
ing-only Alpha and the modified ISA is a measure of the
IPC cost in using the simple aceumulator-based 1SA.
Many fadors contribute to this IPC performance loss of
15%. The most important is about 36% more instructions;
amuch higher native I-ISA IPC, shown in the last bar, is
clealy offset by the extra instructions. One way to ded
with this instruction count expansion is to na split mem-
ory instructions into two. This puts more presaire on ce-

coding herdware but nonetheless reduces pressre on
fetch and reorder buffer mechanisms. However store in-
structions have two input registers and as uch, some-
times have to be split. Register indired jump chaining is
another areato look for further optimizetion, espedally
with further spedalized hardware suppat. Lastly, even
certain run-time optimizaions can be considered if they
do nd affed the simple trap recovery model.

In the ILDP microarchitedure, L1 data cade is repli-
caed acaoss the PEs. Although this replicaion allows
faster L1 data cate accss by reducing the number of
ports per cade, both microarchitedures were given same
data cade latency.

Ancther important point is rather idedistic execution
model of the reference superscdar procesor. For exam-
ple, an instruction issue window size of 128 is probably
not redizable with today’s clock frequency requirements.
A recent study [13] showed that the SimpleScdar simula-
tor used in this gudy reports abou 20% more IPC com-
pared to a detail ed microarchitedure simulator that mod-
elsvarious hardware resourcelimits.

Therefore, the more relevant point is how well the pro-
posed co-designed VM handles techndogy constraints
such as increased global wire latencies. In Fig. 9, IPC
variation from L1 data cade size (32-KB and 8-KB),
number of processng elements (four, six, and eight), and
global wire latency (zero and two) are shown.

We experimented with 8 logical acawmulators to seeif
more than 4 logicd acamulators are necessary. The first
bar in Fig. 9 shows that 8 logicd acaimulators do help
(11% IPC improvement). However, to support 8 logicd
acaimulators, there must be & least 8 PEs to guarantee
the pipeline is deadlock-free A minimum 8-way back-
end seams like an excessve investment considering that
the typicd IPC of SFEC INT type workload is below 2.
Another point is that even a single bit in the ISA format
spaceis a very predous resource That one bit can be
useful especially for opcode fields in 16-bit instructions.

A quarter sizelL1 data cade (compare the second and
the third bars) does not affect the overall performance
very much, at least for t est runs of SFEC CPU2000
benchmarks used in our evauation. More importantly,
only 3.4% of IPC lossis observed by adding two cycle

[E8KB L1DS$, 8 PEs, 2-cycle

W8 logical acc.,32KB L1 D$, 8 PEs, 0-cycle []32KB L1 D$, 8 PEs, O-cycle
[08KB L1 D$, 6 PEs, 2-cycle

m8KB L1 DS$, 8 PEs, 0-cycle
[08KB L1 D$, 4 PEs, 2-cycle

Figure 9. IPC variation over machine parameters



communicaion latencies (the fourth bar). This shows that
dependence-based strand identification and ssimple stee-
ing based onacaimulator numbers works well to tolerate
the inter-PE communication latency. Lastly, it is ob-
served that 6-PE configuration hdds up fairly well (5%
losscompared to 8PE), whil e 4-PE lags 8-PE by 18%.

5. Conclusion

We have presented a dynamic binary trandation sys-
tem for a @-designed virtual machine. The acamulator-
oriented implementation instruction set is designed to
acommodate simple, high clock frequency microarchi-
tedures that are tolerant to increasing global wire laten-
cies. Trandation owrhea is dramaticaly reduced com-
pared to previous DBT systems based onVLIW proces-
sors. No aggressve optimization techniques are used
becaise the underlying hardware is cgpable of dynamic
instruction rescheduling between simple in-order FIFOs.
Rather than relying heavily on hardware to achieve high
instruction-level paralelism, our DBT software simply
helps underlying microarchitedure tolerate ever-
increasing dobal wire latencies whil e providing the bene-
fits of dynamic code straightening — one of the most effi-
cient dynamic performance enhancement techniques. It is
our belief that the combination of ssimple, distributed mi-
croarchitedure capable of dynamic instruction scheduling
and low-overheal dyremic binary translation provides a
good asign tradeoff point.

We studied two I-1SA forms and found the modified
format with destination register spedfier provides both a
simpler exception recovery model and higher perform-
ance @mpared to the basic format. We identify fragment
chaining owerhea as the one of the biggest performance
limiting fadors that off sets the benefits of code straight-
ening. Fragment chaining overhea is exacerbated in our
DBT becaise no aher aggressve optimizaions are per-
formed to reduce the number of executed instructions.
Dual address return address gadk, a proposed co-
designed VM feaure, greatly helps reducing mispredic-
tion rate a well as instruction count expansion from
chaining.
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