
Dynamic Binary Translation for Accumulator-Oriented Architectures

Ho-Seop Kim and James E. Smith
Department of Electrical and Computer Engineering

University of Wisconsin—Madison
{hskim,jes}@ece.wisc.edu

Abstract

A dynamic binary translation system for a co-designed
virtual machine is described and evaluated. The underly-
ing hardware directly executes an accumulator-oriented
instruction set that exposes instruction dependence chains
(strands) to a distributed microarchitecture containing a
simple instruction pipeline. To support conventional pro-
gram binaries, a source instruction set (Alpha in our
study) is dynamically translated to the target accumulator
instruction set. The binary translator identifies chains of
inter-instruction dependences and assigns them to de-
pendence-carrying accumulators. Because the underlying
superscalar microarchitecture is capable of dynamic in-
struction scheduling, the binary translation system does
not perform aggressive optimizations or re-schedule
code; this significantly reduces binary translation over-
head.

Detailed timing simulation of the dynamically trans-
lated code running on an accumulator-based distributed
microarchitecture shows the overall system is capable of
achieving similar performance to an ideal out-of-order
superscalar processor, ignoring the significant clock fre-
quency advantages that the accumulator-based hardware
is likely to have. As part of the study, we evaluate an
instruction set modification that simplifies precise trap
implementation. This approach significantly reduces the
number of instructions required for register state copying,
thereby improving performance. We also observe that
translation chaining methods can have substantial impact
on the performance, and we evaluate a number of chain-
ing methods.

1. Introduction

A promising paradigm for processor development is
the co-design of an instruction set architecture (ISA), a
microarchitecture, and a dynamic binary translation sys-
tem that cooperatively support an existing (virtual) ISA.
Our research [28,41,42] is targeted at one such co-
designed virtual machine (VM) that provides high per-
formance by using a simple, distributed superscalar proc-
essor that tolerates increasing on-chip wire delays and is
amenable to a very high clock frequency. A key element
of co-designed VMs is dynamic binary translation (DBT)

from the outwardly visible virtual ISA (V-ISA) to the
implementation ISA (I-ISA). This paper studies several
aspects of our evolving co-designed VM, with emphasis
on the dynamic binary translation system. In our research,
we use the Alpha instruction set as the V-ISA, and an
accumulator-oriented instruction set [28] as the I-ISA.
Fig. 1 illustrates the overall co-designed VM we are
studying. The following two subsections provide an
overview.

1.1 Instruction level distributed processing

A microarchitecture trend is toward distributed, modu-
lar designs, containing partitioned issue buffers and clus-
ters of functional units [16,25,29,37,44]. These distrib-
uted microarchitectures are designed to be tolerant of
intra-processor wiring delays and contain small, fast logic
subsystems. Our research is focused on ISAs and sup-
porting implementations that naturally fit the distributed
design style; i.e., instruction-level distributed processing
(ILDP) [28,41].

The ISA proposed in [28] is based on hierarchical reg-
ister architecture with a small number of accumulators on
top of a larger general-purpose register (GPR) file. The
use of accumulators naturally partitions the instruction
stream into chains of dependent instructions, strands,
where intra-strand register values are passed through the
accumulators. Inter-strand communication is through the
GPRs.

V irtual m achine m onitor (incl. DB T subsystem)

 Translated
 code in
 main
mem ory

 Processor front-end
(incl. I -cache)

 D istributed
 Proces sing
 E lement 0
(incl . D-cache)

 PE 1

PE n-1

Legends:
V-ISA instructions
I-ISA instructions
Data value communication
Performance feedback

V -ISA program

Figure 1. Dynamic binary translation system run-

ning on ILDP processor

The microarchitecture consists of a pipelined instruc-
tion front-end that feeds multiple, distributed processing
elements (PEs). Only the GPRs are renamed to physical
registers in a conventional sense. Based on the depend-
ence information expressed in accumulator numbers, in-
structions are steered to the PEs – a simple form of ac-
cumulator renaming. Each PE contains an instruction
issue FIFO, a local physical accumulator, and a local
copy of the GPRs. Communication among PEs is as-
sumed to take a small number of clock cycles and is ac-
counted for explicitly. Collectively, the hierarchical value
communication, parallel in-order issue units, and distrib-
uted implementation provide overall simplicity – likely to
yield a very high clock speed with moderate pipeline
depth while supporting a complexity-effective form of
superscalar out-of-order issue. A reorder buffer commits
completed instructions in order. For more details on the
microarchitecture, refer to [28].

1.2 Dynamic binary translation

Dynamic binary translation (DBT) converts instruc-
tions from a source ISA to a target ISA. In the co-
designed VM paradigm [1,14,17,24,31], these are the V-
ISA and I-ISA, and only the V-ISA is an existing instruc-
tion set for which conventional software exists. DBT can
be performed either by a host processor [1,2,14,21,
24,26,31,34,46] or specialized hardware [10,15,18,25,40].
A DBT system can also profile program run-time behav-
ior and dynamically optimize blocks of frequently exe-
cuted instructions [3,4,6,8,11,12,15,19,30,35,36,45]. A
key consideration in the design of a DBT system is the
overhead resulting from translation time; any time spent
translating is time not spent executing the source program.

In our DBT design the focus is on simplicity; because
the underlying hardware is dynamic superscalar, it can be
relied upon to provide code scheduling. The only optimi-
zation we provide is “code straightening” where basic
blocks are statically located in accordance with their most
common dynamic execution order (with branch directions
changed accordingly). This well -known optimization,
similar to static code layout techniques [38,39], captures
much of the low-hanging fruit of dynamic optimization
by improving instruction cache locality and branch pre-
diction behavior.

1.3 Related work

Co-designed virtual machines were studied in the IBM
DAISY [14] and BOA [1,17] projects and are imple-
mented in the Transmeta Crusoe [24,31], all of which
targeted VLIW implementations. Our research is targeted
at dynamic superscalar implementations. We believe that
this approach better balances the strengths of hardware
and software, and results in lower overhead binary trans-
lation. Rather than trying to maximize instruction-level
parallelism on a static VLIW microarchitecture using
aggressive optimization and scheduling techniques, our

DBT system simply identifies inter-instruction depend-
ences and encodes the dependence information as accu-
mulator assignments without changing the original pro-
gram order. Maintaining the original instruction order
greatly simplifies precise trap recovery.

Other work in this area has been targeted at dynamic
binary translation from one existing instruction set to
another, with code portabilit y being the primary goal
[21,26,46]. Typically code optimizations are imple-
mented, many of them ISA-specific, and the performance
“goal” is one of reducing losses; i.e. to come reasonably
close to native ISA execution. Furthermore most of this
work is focused on ABI translation rather than full ISA
translation, as is the case with co-designed VMs.

Dynamic optimization (without translation) has also
been studied [3,4,6,8,11,12,15,19,30,35,36,45]. The pri-
mary objective in this work is performance improvement,
and therefore some of the techniques used, e.g. code
straightening and software code caching, are related to
our DBT work.

2. Accumulator-oriented I-ISAs

2.1 Basic ISA

The simplest way to describe the accumulator-oriented
I-ISAs is through an example. Fig. 2 shows an Alpha
code sequence translated into two different accumulator
ISAs. Here we denote the accumulators as Ai and the
GPRs as Rj. The modified ISA is introduced in Section
2.3. In both ISAs, the accumulators link together chains
of dependent instructions. The last conditional branch
instruction is translated to a combination of a conditional
branch and an unconditional branch for code chaining
reason; chaining is explained in Section 3.2 in more detail .

One feature of the basic ISA, introduced in [28], is
that each instruction only contains one GPR, either as a
source or a destination register. In this form, many in-
structions can be encoded using only 16 bits, reducing the
code footprint. Also, addressing modes perform no ad-
dress computation; this must be done with separate in-
structions.

2.2 Precise trap recovery in accumulator I-ISAs

The trap recovery mechanism is a fundamental aspect
of any co-designed VM because it must provide exactly
the same trap behavior as the V-ISA semantics define.
The initial study in [28] did not consider implementation
of precise traps during DBT. One goal of the research
presented here is to consider the performance impact of
implementing precise traps and to evaluate an I-ISA
modified to simpli fy precise trap implementation.

There are two major issues in precise trap recovery.
First, the address of the V-ISA instruction that generates
trap must be identified. In our DBT system, the archi-
tected program counter is not used for actually executing
the source binary code; rather an implementation pro-
gram counter sequences through translated code. The

address of the trapping instruction is found by indexing
an address table of potentially excepting instructions
(PEIs) and conditional branch instructions associated
with a translation group. The address of the first V-ISA
instruction in a translation group is embedded in a special
instruction. This I-ISA instruction is always the first in-
struction in the translation group and writes the embed-
ded address into a special register. This address provides
a base for the PEI table lookup. A similar mechanism is
explained in [36] in greater detail .

Secondly, all architected states must be restored to the
point of the trap. Our DBT system does not reschedule
instruction order; hence values are produced in the same
order as the original program. However, with an accumu-
lator ISA this is not suff icient; some source GPR values
are held in an accumulator and may be overwritten prior
to a trap.

One solution is to add copy-to-GPR instructions
before instructions that overwrite an accumulator holding
a value that will be live at a potential trap location. This
is a fairly expensive solution, however, in terms of added
instructions.

2.3 Modified ISA

An alternative to adding explicit copy instructions as
just suggested is to embed GPR updates into the instruc-
tion set. The modified ISA instructions need more bits to
designate the result GPRs, so some 16-bit instructions are
now 32-bits. Hence, some of the “small footprint” benefit
of having many 16-bit instructions [28] is lost. However,
no copy-to-GPR instructions are necessary and most of
the other advantages of the accumulator instruction set
remain.

With the modified ISA, every instruction producing a
result specifies a destination GPR to maintain architected
state. This also means that, strictly speaking, architected
accumulators are no longer needed. The accumulator
identifiers become strand identifiers, and accumulators
remain in the implementation. In effect, these strand iden-
tifiers are the dual of the independence bits in the IA-64

instruction set [23]. Nevertheless, we will t ypically refer
to the strand identifiers as “accumulators” .

To maintain implementation simplicity in the proces-
sor core, we are studying a microarchitecture where a
separate register file, off the critical path, is maintained
solely to keep the architected GPR state for precise traps.
Only the values needed for later computation, i.e., com-
munication, are actually written to “operational” GPRs in
the critical path. Effectively, these are the same writes as
in the implementation described in [28]. This is possible
because the modified ISA format distinguishes two dif-
ferent types of register writes. Note that this scheme
works in a different way from Crusoe’s working/shadow
registers [24,31] where all register writes go to the work-
ing register file.

In the modified instruction set example in Fig. 2d, the
result registers are explicitly given and the “accumula-
tors” (now strand identifiers) are shown in parentheses.

3. DBT for accumulator-oriented I-ISAs

In this section, we discuss DBT for the proposed ac-
cumulator-based ISAs. Subsections discuss the DBT
process, including fragment formation and chaining.

3.1 Fragment formation

Our DBT mechanism follows the common two-stage
(1) interpret/profile (2) translate/optimize model found in
most existing dynamic optimizers and binary translators.

(a) Alpha assembly code (b) Equivalent RTL notation (c) Basic I-ISA code (d) Modified I-ISA code

L1:ldbu r3, 0[r16] L1:R3 < - mem[R16] L1: A0 < - mem[R16] L1:R3 (A0) < - mem[R16]
 subl r17, 1, r17 R17 < - R17 – 1 A1 < - R17 – 1 R17(A1) < - R17 – 1
 R17 < - A1
 lda r16, 1[r1 6] R16 < - R16 + 1 A2 < - R16 + 1 R16(A2) < - R16 + 1
 R16 < - A2
 xor r1, r3, r3 R3 < - R1 xor R3 A0 < - A0 xor R1 R3 (A0) < - A0 xor R3
 srl r1, 8, r1 R1 < - R1 << 8 A3 < - R1 << 8 R1 (A3) < - R1 << 8
 and r3, 0xf f, r3 R3 < - R3 and 0xff A0 < - A0 and 0xff R3 (A0) < - A0 and 0xff
 s8addq r3, r0,r3 R3 < - 8*R3 + R0 A0 < - 8*A0 + R0 R3 (A0) < - 8*A0 + R0
 ldq r3, 0[r3] R3 < - mem[R3] A0 < - mem[A0] R3 (A0) < - mem[A0]
 R3 < - A0
 xor r3, r1, r1 R1 < - R3 xor R1 A3 < - R3 xor A3 R1 (A3) < - R3 xor A3
 R1 < - A3
 bne r17, L1 P < - L1,if(R17 != 0) P < - L1,if(A1 != 0) P < - L1, if (A1 != 0)
L2: L2: P < - L2 P < - L2

Figure 2. Example program segment from SPEC CPU 2000 benchmark 164.gzip

Interpret

Translate

Threshold End of superblock;
Next fragment not found

V M M /D B T

N ative
execution
wi thin
translation
cache

Target f ragment
found

Target fragment
not found

End of superblock;
Next fragment found

PC
translation
lookup
table

Origi nal
program
binary

Figure 3. DBT framework

The basic unit of translation is the superblock [22]: a
code sequence with a single entry point and multiple exit
points. Following [3,4], the translated superblocks placed
in a translation cache are referred to as fragments.

The fragment formation algorithm is a slightly modi-
fied version of Dynamo’s Most Recently Executed Tail
(MRET) heuristic. Our DBT system starts interpreting the
given V-ISA program. Over the course of interpretation,
counters are maintained for the following possible trace
start candidate instructions:

• Targets of register indirect jumps (JMP/JSR/
RET in the Alpha ISA)

• Targets of backward conditional branches
• Exit targets of existing fragments

If the number of times a static candidate instruction is
executed reaches a predefined threshold, the interpreted
path is followed to generate a fragment. This heuristic, a
form of simple software speculation, is based on the ob-
servation that when an instruction becomes “hot” , it is
statistically likely that the very next sequence of executed
instructions is also hot. Fragment ending conditions are:

• Register indirect jumps or trap instructions
• Backward taken conditional branches
• Already collected instructions are found again (a

cycle)
• A predefined maximum number of instructions

is reached

Currently our DTB algorithm does not perform loop
unrolli ng. However, there still i s code redundancy inher-
ent in superblock-based translation.

A newly translated fragment is placed in the transla-
tion cache. If later program control flow reaches an exist-
ing fragment, the translated instructions in the fragment
are executed directly on the hardware.

One important byproduct of “hot” trace-based optimi-
zations/translations is that dynamic “code straightening”
is automatically performed; i.e. basic blocks that com-
monly occur in sequence dynamically are placed together
statically, enhancing effective fetch bandwidth.

3.2 Fragment chaining

After a translated fragment is executed, the next frag-
ment must be found (if it exists). In a simple implementa-
tion, the fragment would branch to a “dispatch” code
sequence at a certain fixed location. This dispatch code
locates the next fragment starting address using the PC
translation lookup table in Fig. 3. To limit the number of
these translation address lookups, a good chaining
mechanism that can provide next address in a fast and
eff icient manner is essential. Furthermore, to supplement
conventional chaining, using a co-designed VM provides
us the abilit y to implement special instructions in the I-
ISA that further reduce the fragment transition overhead.

Direct branches, either conditional or unconditional,
are relatively easy to handle because their (taken) target
addresses do not change during program execution. Un-
conditional direct branches are either simply removed by
code straightening (if they do not save return addresses)
or are changed to special save-V-ISA-return-address in-
structions (if they save return addresses). If a conditional
branch is taken at translation time, its condition is re-
versed to allow continuous fetching. If the superblock
exit target (that is, the path not followed at translation
time) is not found in the translation cache, a special call-
translator-if-condition-is-met instruction is generated for
the branch. If the target instruction becomes hot and is
later translated, the DBT system replaces the call-
translator-if-condition-is-met instruction with a normal
conditional branch instruction – a “patch” is performed.

To save lookup overhead for each and every indirect
jump, most dynamic optimizers/translators implement a
form of software based jump target prediction. In
[3,4,14,35], a sequence of instructions compares the indi-
rect target address held in a register against an embedded
translation-time target address. A match indicates a cor-
rect “prediction” and the inlined target instructions can be
executed; if not, the code branches to stub code at the end
of the fragment, finally reaching the shared dispatch code.

Even though software jump target prediction is often
correct, it still adds overhead of additional compare-and-
branch code. Worse, if the prediction fails, the dispatch
code needs to be executed, anyway. Bruening et al. [6]
identify this as the highest overhead and report that an
indirect jump lookup takes 15 instructions, while the
compare-and-branch code sequence takes 6 instructions
in the x86 ISA. In our DBT, three instructions suff ice for
the compare-and-branch code, utili zing a special load-
embedded-target-address instruction. The dispatch code
takes 20 instructions.

Return instructions pose the most serious problem be-
cause their target addresses can change more frequently
than other indirect jumps. The DAISY system [14] cuts
performance losses by allowing multiple compare-and-
branch codes for a single return instruction. Most modern
processors contain a hardware return address stack (RAS)
mechanism [27], which can predict a return instruction’s
target address very accurately. With dynamic trace-based
DBT like ours, however, a conventional hardware return
address stack cannot be utili zed because it does not track
the V-ISA return addresses.

We propose a specialized hardware RAS mechanism
that contains pairs of V-ISA return addresses and their
corresponding I-ISA return addresses. When a return
instruction is fetched, the next fetch address is predicted
by the popped translated return address. The V-ISA ad-
dress is checked against to the instruction’s register value.
If they match, the prediction was successful. If they don’ t,
control is redirected to the dispatch code by an uncondi-
tional branch following the return instruction. Note that
the semantics of return instructions are slightly changed

from the conventional definition – a traditional return
instruction always jumps to the target atomically. To
push the return address pair, a special push-dual-address-
RAS instruction is generated for a V-ISA instruction
(BSR and JSR in Alpha ISA) to save return addresses.

3.3 DBT algorithm

The major function of the translation process is identi-
fying strands and re-mapping intra-strand communication
values to accumulators. Because of the nature of dynami-
cally constructed traces, there is no need for graph-
traversing dependence analysis usually found in static
compilers. Below is the high-level outline of the transla-
tion algorithm. Although the algorithm appears to contain
multiple passes of sequential scans, they can be combined
to a single pass.

Dependence/usage identification: when a hot code se-
quence is found by interpretation, an instruction’s de-
pendences on previous instructions in the same super-
block are identified. In addition, the usage of input and
output registers is examined to determine the “global-
ness” of their values. Global values are placed in the
globally visible GPRs. Following are the important usage
categories.

• No user: an output register value is not used be-
fore being overwritten. An instruction whose
output value is not used naturally ends a strand.

• Local: an output register value used only once
before being overwritten in the same superblock.
These are candidates for assignment to accumu-
lators.

• Temp: values passed between two decomposed
instructions (e.g., conditional moves). These are
assigned to accumulators.

• Live-in global: input register values that are live
on superblock entry; assigned to GPRs.

• Live-out global: output register values live on
superblock exit; assigned to GPRs.

• Communication global: register values used
more than once before being overwritten in the
same superblock; assigned to GPRs.

• Spill global: a) If an instruction has two local
input registers, one is made a spill global be-
cause the I-ISA does not allow two different ac-
cumulators in the same instruction. b) If a strand
has to be terminated to free an accumulator (see
below), a local value is converted to a spil l
global.

Strand formation: based on dependence and input regis-
ter usage patterns, instructions are scanned and a strand
number is assigned to each instruction. The translator
uses an unlimited number of strands that are later as-
signed to a finite number of accumulators. Here temp

usage is treated the same way as local. If an instruction
has:

• Zero local input registers: a strand is started and
a new strand number is assigned to it. Further-
more, instructions with two global input regis-
ters are broken into two accumulator instructions
– a copy-from-GPR instruction and a translated
source instruction that uses the (local) result of
the copy as an input. The copy instruction initi-
ates a strand, and the source instruction now has
one local input register (and is handled accord-
ingly).

• One local input register: assigned the same
strand number as the instruction producing the
local value.

• Two local input registers: a heuristic is needed
to decide which strand number to assign. If one
of the input registers is a temp, then the temp
producer’s strand number is assigned. Otherwise
the number assigned corresponds to the longer
strand up to that point (length is determined by
instruction count).

Accumulator assignment: The strand numbers are con-
verted to finite accumulator numbers. Instead of using a
traditional graph coloring heuristic to assign accumulator
numbers to strands, a simple linear-scan heuristic is used.
When the translator runs out of accumulators, a live
strand is chosen for termination and the accumulator is
freed. This is done by inserting a copy-to-GPR instruction
at the strand termination point, and a copy-from-GPR
instruction before the resumption point.

4. Evaluation

4.1 Methodology

Our aim is to evaluate performance impact of the pro-
posed I-ISAs on the ILDP microarchitecture. In a real co-
designed VM, the DBT itself (and all the other VM soft-
ware) would execute the I-ISA. In our current simulation-
based environment this is impractical. Consequently, the
DBT system is written in C and is compiled to execute on
the simulation platform (SimpleScalar 3.0C [7] running
on Intel clusters). Nevertheless, the simulated DBT sys-
tem does perform all interpretation and binary translation
in the same sequence as it would in a co-designed VM.

Another simulation constraint is that the benchmarks
we run have relatively short executions times compared
with real applications. Consequently, the interpretation
and translation overheads, although small , are still dis-
proportionately large for some of the benchmarks. In
other systems [3,14], interpretation and translation/ op-
timizations overhead have been found to be very small .

With respect to interpretation, we do nothing special.
The same techniques as used by others [3,5,14,32,33] wil l
suff ice, and the interpretation overhead should be about

the same. If an instruction is interpreted 50 times (the
threshold value) and each interpretation takes about 20
instructions, this is a total of about 1,000 target instruc-
tions per source instruction.

Typically, binary translation overhead is an order of
magnitude higher than interpretation; that is, thousands of
instructions per translated source instruction [14]. As
pointed out earlier, the translation overhead for our pro-
posed system should be relatively low, and we evaluate
this overhead in Section 4.2.

To evaluate performance, we focus on detailed simula-
tion of all translated code, including all chaining code.
Our simulation system does switch between interpretation,
translation, and execution modes, however. When the
simulated program control flow reaches a previously
translated fragment, the simulator begins detailed timing
simulation. Here the timing simulation starts with an ini-
tially empty pipeline. Similarly if an exit condition from
the timing simulator is met (i.e., a target fragment was
not found in translation cache, indicated by a call-
translator instruction), the mode is changed to interpreta-
tion after the last instruction in the pipeline is committed.
Overall performance is then measured as V-ISA instruc-
tions per cycle (IPC) for execution of all translated (and
chained) instructions.

To evaluate performance we use three DBT/simulators
as well as a slightly modified superscalar simulator (re-
ferred to as “original” in later sections). Two of these
perform translation from Alpha to basic and modified
accumulator ISAs, respectively. The third converts an
Alpha binary to a code-straightened version of Alpha and
simulates the same superscalar microarchitecture as the
“original” ; this is for isolating the effects of code
straightening and fragment chaining from other DBT
performance effects. This third DBT/simulator tool is
referred to as the “code-straightening-only” simulator in
later subsections. Table 1 lists microarchitecture parame-
ters of two hardware platforms simulated. Modifications
to the superscalar processor simulator are marked with *.

To collect statistics, we use the SPEC CPU2000 inte-
ger benchmarks [20] compiled for Alpha EV6 ISA at the
base optimization level (–arch ev6 –non_shared
–fast). The –fast option includes –O3 optimization
level, even for base optimization. The compiler flags are
same as those reported for Compaq AlphaServer ES40
SPEC CPU2000 benchmark results. DEC C++ V.6.1-027
(for 252.eon) and C V.5.9-005 (for the rest) compilers
were used on Digital UNIX 4.0-1229. The test input
set was used for all benchmarks except for 253.perlbmk,
where one of the train input set (- I./lib dif f -
mail.pl 2 550 15 2 4 23 100) was used. All
benchmarks were run up to completion or 4.3 billi on in-
structions. Skipping the initialization phase and simulat-
ing only part of program using ref input sets, as is fre-
quently done in microarchitecture research, would likely
have exaggerated the benefits of DBT.

For translation, we use a maximum superblock size of
200 and a threshold of 50. We also experimented with
superblock size of 50 and found it is not large enough to
provide performance benefits from code straightening.
We use only four logical accumulators (as opposed to
eight used in [28]). We found that four accumulators are
generally suff icient, and few strands must be prematurely
terminated to free up an accumulator. Four logical accu-
mulators are used throughout the evaluation except where
noted.

In this study, we use an unlimited number of counters
for superblock start candidates. For programs the size of
the SPEC benchmarks, however, the number of counters
is relatively small . Also, the static code size of the SPEC
benchmarks (all are less than 1Mbytes except 176.gcc at
2.3Mbytes) means that they would comfortably fit into a
reasonably sized translation cache. Thus translation cache
management is not required; however, other research
indicates that this overhead is generally negligible [4]. In
fact, there may be a performance cost in not occasionally
flushing translation cache entries. Some fragments may
be sub-optimal because once a fragment is constructed

Table 1. Microarchitecture parameters

Out-of-order superscalar (for original and code-
straightening-only simulators)

ILDP microarchitecture (basic and modified accumulator
ISAs)

Branch prediction
16K entry, 12-bit global history g-share predictor, 8-entry RAS, 512-entry, 4-way set-assoc. BTB
3-cycle fetch redirection latencies for both misfetch and misprediction

I-cache 128-byte line size, direct-mapped, 32-KB size, LRU replacement; up to 3 sequential basic blocks*

D-cache
64-byte line size, 4-way set-assoc., 32-KB size,
2-cycle latency, random replacement

Same as left or 64-byte line size, 2-way set-assoc., 8-KB size,
2-cycle latency, random replacement; replicated across PEs

L2 cache 128-byte line size, 4-way set-assoc., 1-MB size, 8-cycle latency, random replacement

Memory 72-cycle latency, 64-bit wide, 4-cycle burst

Reorder buffer size 128 Alpha instructions 128 ILDP instructions

Decode/retire bandwidth 4 Alpha instructions 4 ILDP instructions

Issue window size 128 (same as the reorder buffer size) 4/6/8 (FIFO heads)

Issue bandwidth 4 4/6/8

Execution resources 4 fully symmetric functional units 4/6/8 fully symmetric functional units

Misc. No communication latency, oldest-first issue* 2 or 0 cycle global communication latency

there is no second chance for forming different fragment
starting from the same address in our current implementa-
tion. In Dynamo, for example, the fragment cache is
flushed when there is change of program phase (indicated
by abrupt increase of fragment generation rate) thereby
evicting infrequent fragments from the cache and allow-
ing new fragment formation.

4.2 Translation overhead

To measure the translation overhead, we compiled the
DBT/simulator tool onto the Alpha ISA and built an in-
strumented version with Atom tools on an Alpha 21164
system running Tru64 5.1A. The instrumented version
was then run with the same SPEC benchmarks. The num-
ber of dynamic instructions (in Alpha) is reported for
each procedure. Averaging the total number of instruc-
tions executed in translation-related procedures with the
number of translated instructions gives the average num-
ber of DBT instructions required to translate a single in-
struction.

On average, 1,125 Alpha instructions were executed to
translate a single Alpha instruction. Table 1 in Section
4.4 contains per-benchmark results. This number is about
a quarter of the 4,000+ PowerPC instructions needed to
translate a PowerPC instruction into VLIW architecture,
as reported in [14]. Of course, most of this reduction
comes from the simple nature of our DBT – no aggres-
sive optimization is performed.

Our DBT code in its current form was written for
flexibilit y of simulation, not for translation speed. For
example, on average, 20% of the instructions are spent
copying high-level data structures that represent trans-
lated instructions to the translation cache structure, field
by field. We feel that with optimizations for translation
speed we can reduce the number of instructions per trans-
lated instruction to well below 1,000.

4.3 Evaluation of fragment chaining methods

We used the code-straightening-only simulator to
evaluate the effect of fragment chaining. Chained frag-
ments show different branch/jump prediction behavior
from the original source binary. For example, a single
register-indirect jump in the source is now replaced with
a compare-and-branch sequence plus optional dispatch
code (contains another jump). That is, the number and
type of control-transfer instructions are changed by frag-
ment chaining. To estimate the performance effect of
different fragment chaining options, we tested three dif-
ferent implementations against the “original” simulator.
In Fig. 4, predictor performance is measured as the num-
ber of branch/jump mispredictions per 1,000 instructions.

In the first implementation no_pred, software predic-
tion is not used; a branch to a shared dispatch code is
always generated for a register indirect jump. The dis-

patch code performs a PC translation table lookup to find
the next fragment. Target address prediction rate of the
indirect jump at the end of the dispatch code is expected
to be very poor because all i ndirect jumps lead to the
same dispatch code and a single BTB entry is required to
provide all the target address predictions.

The second implementation, sw_pred.no_ras, uses
conventional software prediction as found in [3,4,14,35].
This reduces mispredictions substantially by reducing the
probabilit y of executing the shared dispatch code. Al-
though the number of mispredictions was reduced to al-
most half of the no_pred, it is still 45% more than the
original Alpha code. This shows the inherent limit of the
simple translation-time prediction.

The final implementation, sw_red.ras, uses a special-
ized dual-address hardware RAS described at the end of
Section 3.2. This method achieves nearly the same num-
ber of mispredictions as the original Alpha code. This
implementation is used as baseline in later simulations.

Fig. 5 shows instruction count expansion from chain-
ing. Even with efforts to reduce dynamic instruction
count increased by indirect jump chaining such as soft-
ware prediction and dual-address RAS (returns are not
translated into compare-and-branch sequence), several
benchmarks still experience serious expansion. In the
benchmarks where the indirect jump code expansion rate
is small , procedure calls are mostly performed by uncon-
ditional direct branches (BSR in Alpha ISA).

0

10

20

30

40

bzip
2

cr
afty

eon
gap

gcc
gzip m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x
vp

r
AM

original no_pred sw_pred.no_ras sw_pred.ras

Figure 4. Number of mispredictions per 1,000

instructions

1

1.1

1.2

1.3

bzip
2

cr
afty

eon
gap

gcc
gzip m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x
vp

r
AM

Figure 5. Relative instruction count

In Fig. 6, code-straightening-only performance is
compared to original program performance. The straight-
ened version without RAS performs worse compared to
the original program without RAS. Here the benefit of
code straightening is offset by more branch address mis-
predictions and an increased number of instructions exe-
cuted in the compare-and-branch and dispatch code. On
the other hand, our baseline model with dual-address
RAS performs about the same level as the original pro-
gram with RAS. This is an example of special hardware
features that can be specifically designed for co-designed
system. Nevertheless, the performance improvement by
code straightening is less than [4] suggests. One impor-
tant factor is that a dynamic optimizer like Dynamo can
choose to “bail out” if performance improvement is not
found while a DBT system cannot. If we exclude under-
performing 6 benchmarks (where a bail out would be
used), 7% IPC improvement is observed.

4.4 DBT characteristics

We now consider characteristics of translated code.
Since NOP instructions are removed by translation, they

are not counted in V-ISA (Alpha) program characteristics.
In Table 2, B and M denote basic ISA and modified ISA
respectively.

The second and third columns show the increase in
dynamic instructions compared with Alpha code. The
basic ISA shows of increase of 60% on average, while
the modified ISA has only about half the increase (36%).
The modified ISA has significantly fewer translated in-
structions because it does not generate copy-to-GPR in-
structions to maintain V-ISA architected state. This is
shown in columns 4 and 5, where only 3.1% of the in-
structions are copy instructions in the modified ISA com-
pared with 17.7 percent for the basic ISA. The rest of the
instruction count expansion comes mostly from chained
register-indirect jump and decomposed memory instruc-
tions.

On the other hand, both I-ISAs are relatively good in
code size expansion rate. The use of 16-bit instructions
and special branch instructions helps here. The code ex-
pansion rates are 17% for the basic ISA and 7% for the
modified ISA.

The output register value type is an important program
characteristic because it affects number of extra copy
instructions and write ports requirement of the general
purpose register file.

Output register value usage (“globalness”) statistics in
Fig. 7 was collected for Alpha instructions in superblocks.
Here, memory instructions with effective address calcula-
tion are decomposed into two nodes.

For modified ISA, about 25% of dynamic instructions
have a global output value (liveout and communication
globals). These are the global values that should be writ-
ten to latency-critical GPRs. The rest of the produced
register values go to the local accumulator; these are also
used to update architected state, off the critical path of the
processor pipeline.

Using the basic ISA requires extra copy-to-GPR in-
structions to maintain state at fragment exit points includ-
ing conditional branches. The notation “ local

�
 global”

represents values that are used only once but need to be
saved to a GPR before a conditional branch. The notation
“no user

�
 global” is similar. If these values (represent-

ing extra copy-to-GPR instructions in the basic ISA for-
mat) are included, the total percentage of instructions that
have global output values rises to about 40%.

0

0.5

1

1.5

2

2.5

bzip
2

cra
fty

eon
gap

gcc
gzip m

cf

pars
er

per lb
m

k
tw

o lf

vorte
x

vpr
HM

IP
C

original, no RAS original, 8-entry RAS
straightening-only, no RAS straightening-only, 8-entry RAS

Figure 6. Performance impact of code straight-

ening and H/W RAS

Table 2. Translated instruction statistics

Relative
number of
dynamic
instructions

% of copy
instructions

Relative
number of
static in-
struction
bytes

B M B M B M

No. of
Alpha
inst to
translate
a Alpha
inst

bzip2 1.58 1.30 18.9 1.3 1.07 1.02 818.3

crafty 1.59 1.38 17.4 5.0 1.13 1.08 1147.0

eon 1.77 1.51 18.6 4.6 1.33 1.15 1259.0

gap 1.62 1.40 15.2 1.5 1.10 1.05 N/A

gcc 1.56 1.34 15.0 1.1 1.13 1.09 1133.0

gzip 1.49 1.23 21.7 4.8 1.13 1.06 989.3

mcf 1.62 1.35 19.8 3.7 1.16 1.10 N/A

parser 1.55 1.26 19.8 1.4 1.11 1.07 966.7

perl-
bmk

1.74 1.54 12.2 1.1 1.11 1.08 1829.0

twolf 1.56 1.29 20.9 4.9 1.16 1.06 1235.1

vortex 1.47 1.33 11.8 2.1 1.11 1.08 658.2

vpr 1.59 1.33 20.9 5.6 1.14 1.04 1211.6

Avg. 1.60 1.36 17.7 3.1 1.17 1.07 1124.7

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

1 0 0 %

bz ip
2

cra
fty eon

gap
gcc

gz ip
m

c f

pars
er

perlb
m

k
tw

olf

vo
rte

x vp
r

liveout global

com m . global

local -> global

no user -> global

local

tem p

no user

no output reg

Figure 7. Output register usage

Those statistics are in contrast to earlier results [28]
where, for an oracle program trace (e.g., register values
do not need to be saved at superblock boundaries), we
found only 20% of instructions produce global output
values.

4.5 IPC performance

Our overall goal in the research reported here is to
achieve IPC rates that are close to native Alpha perform-
ance. The eventual objective of our research is to achieve
performance gains due to a simple and high clock fre-
quency microarchitecture provided by the accumulator-
oriented ISA [28].

Fig. 8 compares performance of the ILDP processor
running dynamically translated accumulator ISA code
(the third and fourth bars) with the conventional super-
scalar processor running original code (the first bar) and
code-straightened version (the second bar). These four
bars show V-ISA instructions per cycle (IPC). For the
ILDP microarchitecture, 8-way PEs, 32KB L1 data cache
(same size as the superscalar processor), and 0-cycle
global communication latency were used; this is to isolate
the I-ISA effects from the machine resources.

The difference in performance between the straighten-
ing-only Alpha and the modified ISA is a measure of the
IPC cost in using the simple accumulator-based ISA.
Many factors contribute to this IPC performance loss of
15%. The most important is about 36% more instructions;
a much higher native I-ISA IPC, shown in the last bar, is
clearly offset by the extra instructions. One way to deal
with this instruction count expansion is to not split mem-
ory instructions into two. This puts more pressure on de-

coding hardware but nonetheless reduces pressure on
fetch and reorder buffer mechanisms. However store in-
structions have two input registers and as such, some-
times have to be split . Register indirect jump chaining is
another area to look for further optimization, especially
with further specialized hardware support. Lastly, even
certain run-time optimizations can be considered if they
do not affect the simple trap recovery model.

In the ILDP microarchitecture, L1 data cache is repli-
cated across the PEs. Although this replication allows
faster L1 data cache access by reducing the number of
ports per cache, both microarchitectures were given same
data cache latency.

Another important point is rather idealistic execution
model of the reference superscalar processor. For exam-
ple, an instruction issue window size of 128 is probably
not realizable with today’s clock frequency requirements.
A recent study [13] showed that the SimpleScalar simula-
tor used in this study reports about 20% more IPC com-
pared to a detailed microarchitecture simulator that mod-
els various hardware resource limits.

Therefore, the more relevant point is how well the pro-
posed co-designed VM handles technology constraints
such as increased global wire latencies. In Fig. 9, IPC
variation from L1 data cache size (32-KB and 8-KB),
number of processing elements (four, six, and eight), and
global wire latency (zero and two) are shown.

We experimented with 8 logical accumulators to see if
more than 4 logical accumulators are necessary. The first
bar in Fig. 9 shows that 8 logical accumulators do help
(11% IPC improvement). However, to support 8 logical
accumulators, there must be at least 8 PEs to guarantee
the pipeline is deadlock-free. A minimum 8-way back-
end seems like an excessive investment considering that
the typical IPC of SPEC INT type workload is below 2.
Another point is that even a single bit in the ISA format
space is a very precious resource. That one bit can be
useful especially for opcode fields in 16-bit instructions.

A quarter size L1 data cache (compare the second and
the third bars) does not affect the overall performance
very much, at least for test runs of SPEC CPU2000
benchmarks used in our evaluation. More importantly,
only 3.4% of IPC loss is observed by adding two cycle

0

0.5

1

1.5

2

2.5

bzip
2

cra
fty eon

gap
gcc

gzip
m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x
vp

r
HM

IP
C

original A lpha straightening-only A lpha basic ISA
modified ISA modified ISA (native IP C)

Figure 8. IPC comparison

0

0.5

1

1.5

2

2.5

bz ip
2

cra
fty eon

gap
gcc

gz ip
m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x
vp

r
HM

IP
C

8 log ica l acc., 32KB L1 D $, 8 PEs , 0-cycle 32KB L1 D $, 8 PEs , 0 -cycle 8KB L1 D $, 8 PEs , 0 -cycle
8KB L1 D $, 8 PEs , 2 -cycle 8KB L1 D $, 6 PEs , 2 -cycle 8KB L1 D $, 4 PEs , 2 -cycle

Figure 9. IPC variation over machine parameters

communication latencies (the fourth bar). This shows that
dependence-based strand identification and simple steer-
ing based on accumulator numbers works well to tolerate
the inter-PE communication latency. Lastly, it is ob-
served that 6-PE configuration holds up fairly well (5%
loss compared to 8-PE), while 4-PE lags 8-PE by 18%.

5. Conclusion

We have presented a dynamic binary translation sys-
tem for a co-designed virtual machine. The accumulator-
oriented implementation instruction set is designed to
accommodate simple, high clock frequency microarchi-
tectures that are tolerant to increasing global wire laten-
cies. Translation overhead is dramatically reduced com-
pared to previous DBT systems based on VLIW proces-
sors. No aggressive optimization techniques are used
because the underlying hardware is capable of dynamic
instruction rescheduling between simple in-order FIFOs.
Rather than relying heavily on hardware to achieve high
instruction-level parallelism, our DBT software simply
helps underlying microarchitecture tolerate ever-
increasing global wire latencies while providing the bene-
fits of dynamic code straightening – one of the most eff i-
cient dynamic performance enhancement techniques. It is
our belief that the combination of simple, distributed mi-
croarchitecture capable of dynamic instruction scheduling
and low-overhead dynamic binary translation provides a
good design tradeoff point.

We studied two I-ISA forms and found the modified
format with destination register specifier provides both a
simpler exception recovery model and higher perform-
ance compared to the basic format. We identify fragment
chaining overhead as the one of the biggest performance
limiting factors that offsets the benefits of code straight-
ening. Fragment chaining overhead is exacerbated in our
DBT because no other aggressive optimizations are per-
formed to reduce the number of executed instructions.
Dual address return address stack, a proposed co-
designed VM feature, greatly helps reducing mispredic-
tion rate as well as instruction count expansion from
chaining.

6. Acknowledgements

We would like to thank Ashutosh S. Dhodapkar for
his help on the initial version of the dynamic binary trans-
lator. This work is being supported by SRC grant 2001-
HJ-902, NSF grants EIA-0071924 and CCR-9900610,
Intel and IBM.

7. References
[1] Erik R. Altman, Michael Gschwind, Sumedh Sathaye, S.

Kosonocky, Arthur Bright, Jason Fritts, Paul Ledak, David
Appenzeller, Craig Agricola, Zachary Filan, “BOA: The
Architecture of a Binary Translation Processor,” IBM Re-
search Report RC 21665, Dec. 2000

[2] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, Peter F. Sweeney, “Adaptive Optimization in the Ja-

lapeno JVM,” Proceedings of the ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 47-65, Oct. 2000.

[3] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia,
“Transparent dynamic optimization: the design and im-
plementation of Dynamo,” Hewlett Packard Laboratories
Technical Report HPL-1999-78, Jun. 1999.

[4] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia,
“Dynamo: A Transparent Dynamic Optimization System,”
Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 1-12,
Jun. 2000.

[5] James R. Bell , “Threaded Code,” Communications of ACM,
Vol. 16, No. 6, pp. 370-372, Jun. 1973.

[6] Derek Bruening, Evelyn Duesterwald, Saman Amaras-
inghe, “Design and Implementation of a Dynamic Optimi-
zation Framework for Windows,” Proceedings of the 4th
Workshop on Feedback-Directed and Dynamic Optimiza-
tion, Dec. 2001.

[7] Douglas C. Burger and Todd M. Austin, “The SimpleSca-
lar Toolset, Version 2.0,” Technical Report CS-TR-97-
1342, University of Wisconsin—Madison, Jun. 1997.

[8] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, David M.
Gilli es, “Mojo: A Dynamic Optimization System,” Pro-
ceedings of the 3rd ACM Workshop on Feedback-Directed
and Dynamic Optimization, Dec. 2000.

[9] Anton Chernoff , Mark Herdeg, Ray Hookway, Chris
Reeve, Norman Rubin, Tony Tye, S. Bharadwaj Yadavalli ,
John Yates, “FX!32 - A Profile-Directed Binary Transla-
tor,” IEEE Micro, Vol. 18, No. 2, pp. 56-64, Mar. 1998.

[10] Yuan Chou, John. P. Shen, “ Instruction Path Coproces-
sors,” Proceedings of the 27th International Symposium on
Computer Architecture, pp. 270-281, Jun. 2000.

[11] Thomas M. Conte, Sumedh W. Sathaye, “Dynamic Re-
scheduling: A Technique for Object Code Compatibility in
VLIW Architectures,” Proceedings of the 28th Interna-
tional Symposium on Microarchitecture, pp. 208-218, Dec.
1995.

[12] Dean Deaver, Rick Gorton, Norman Rubin, “Wig-
gins/Redstone: an online program specializer,” Proceed-
ings of the 11th HotChips Symposium, Aug. 1999.

[13] Rajagopalan Deskian, Douglas C. Burger, Stephen W.
Keckler, “Measuring Experimental Error in Microproces-
sor Simulation,” Proceedings of the 28th International
Symposium on Computer Architecture, pp. 266-277, Jun
2001.

[14] Kemal Ebcioglu, Erik Altman, Michael Gschwind, Sum-
edh Sathaye, “Dynamic Binary Translation and Optimiza-
tion,” IEEE Transactions on Computers, Vol. 50, No. 6, pp.
529-548, Jun. 2001.

[15] Brian Fahs, Satarupa Bose, Matthew Crum, Brian Slechta,
Francesco Spadini, Tony Tung, Sanjay J. Patel, Steven S.
Lumetta, “Performance Characterization of a Hardware
Mechanism for Dynamic Optimization,” Proceedings of
the 34th International Symposium on Microarchitecture, pp.
16-27, Dec. 2001.

[16] Keith Farkas, Paul Chow, Norman Jouppi, Zvonko Vrane-
sic, “The Multicluster Architecture: Reducing Cycle Time
Through Partitioning,” Proceedings of the 30th Interna-
tional Symposium on Microarchitecture, pp. 40-51, Dec.
1997.

[17] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul
Ledak, David Appenzeller, “Dynamic and Transparent Bi-

nary Translation,” IEEE Computer, Vol. 33, No. 2, pp. 54-
59, Mar. 2000.

[18] Linley Gwennap, “ Intel's P6 Uses Decoupled Superscalar
Design,” Microprocessor Report, Feb. 16, 1995.

[19] Kim M. Hazelwood, Thomas M. Conte, “A Lightweight
Algorithm for Dynamic If -Conversion During Dynamic
Optimization,” Proceedings of the 2000 International
Symposium on Parallel Architectures and Compilation
Techniques, pp. 71-80, Oct. 2000.

[20] John L. Henning, “SPEC CPU2000: Measuring CPU Per-
formance in the New Mill ennium,” IEEE Computer, Vol.
33, No. 7, pp. 28-35, Jul. 2000.

[21] Raymond J. Hookway, Mark A. Herdeg, “Digital FX!32:
Combining Emulation and Binary Translation,” Digital
Technical Journal, Vol. 9, No. 1, Jan. 1997.

[22] Wen-mei W. Hwu, , Scott A. Mahlke, Willi am Y. Chen,
Pohua P. Chang, Nancy J. Warter, Roger A. Bringmann,
Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara,
Grant E. Haab, John G. Holm, and Daniel M. Lavery, “The
Superblock: An Effective Technique for VLIW and Super-
scalar Compilation,” Journal of Supercomputing, Kluwer
Academic Publishing, pp. 229-248, 1993.

[23] Intel Corp., Intel Itanium Architecture Software Devel-
oper’s Manual vol. 3, Rev. 2.0: Instruction Set Reference,
Intel Corp., 2001.

[24] Tom R. Halfhill , “Transmeta Breaks x86 Low-Power Bar-
rier,” Microprocessor Report, Feb. 14, 2000.

[25] Glenn Hinton, Dave Sager, Mike Upton, Darrel Boggs,
Doug Carmean, Alan Kyker, Patrice Roussel, “The Mi-
croarchitecture of the Pentium 4 Processor,” Intel Technol-
ogy Journal Q1, 2001.

[26] Paul Hohensee, Mathew Myszewski, David Reese, “Wabi
CPU Emulation,” Proceedings of the 8th HotChips Sympo-
sium, pp. 47-65. Aug. 1996.

[27] David Kaeli , P. G. Emma, “Branch History Table Predic-
tion of Moving Target Branches Due to Subroutine Re-
turns,” Proceedings of the 18th International Symposium on
Computer Architecture, pp. 34-42, Jun. 1991.

[28] Ho-Seop Kim, James E. Smith, “An Instruction Set and
Microarchitecture for Instruction-Level Distributed Proc-
essing,” Proceedings of the 29th International Symposium
on Computer Architecture, pp. 71-81, Jun. 2002.

[29] Richard E. Kessler, “The Alpha 21264 Microprocessor,”
IEEE Micro, Vol. 19, No. 2, pp. 24-36, Mar. 1999.

[30] Thomas Kistler, Michael Franz, “Continuous Program
Optimization: Design and Evaluation,” IEEE Transactions
on Computers, Vol. 50, No. 6, pp. 549-565, Jun. 2001.

[31] Alexander Klaiber, “The Technology behind Crusoe Proc-
essors,” Transmeta Technical Brief, 2000.

[32] Paul Klint, “ Interpretation Techniques,” Software Practice
and Experience, Vol. 11, No. 9, pp. 963-973, Sep. 1981.

[33] Peter S. Magnusson, David Samuelsson, “A Compact In-
termediate Format for SIMICS,” Technical Report R94:17,
Swedish Institute of Computer Science, 1994.

[34] Steve Meloan, “The Java HotSpot Performance Engine:
An In-Depth Look,” Technical Whitepaper, Sun Microsys-
tems, 1999.

[35] Matthew Merten, Andrew R. Trick, Ronald D. Barnes,
Erik M. Nystrom, Christopher N. George, John C. Gyllen-
haal, Wen-mei W. Hwu, “An Architectural Framework for
Run-Time Optimization,” IEEE Transactions on Com-
puters, Vol. 50, No. 6, pp. 567-589, Jun. 2001.

[36] Erik Nystrom, Ronald D. Barnes, Matthew C. Merten, and
Wen-mei W. Hwu, “Code Reordering and Speculation
Support for Dynamic Optimization Systems,” Proceedings
of the Int. Conference on Parallel Architectures and Com-
pilation Techniques, Sep. 2001.

[37] Subbarao Palacharla, Norman P. Jouppi, James E. Smith,
“Complexity-Effective Superscalar Processors,” Proceed-
ings of the 24th International Symposium on Computer Ar-
chitecture, pp. 206-218, Jun. 1997.

[38] Karl Pettis, Robert C. Hansen, “Profile Guided Code Posi-
tioning,” Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pp. 16-27, Jun. 1990.

[39] Alex Ramire, Josep L. Larriba-Pey, Carlos Navarro, Josep
Torrellas, Matero Valero, “Software Trace Cache,” Pro-
ceedings of the 13th International Conference on Super-
computing, pp. 119-126, Jun. 1999.

[40] Michael Slater, “AMD's K5 Designed to Outrun Pentium,”
Microprocessor Report, Oct. 24, 1994.

[41] James E. Smith, “ Instruction-Level Distributed Process-
ing,” IEEE Computer, Vol. 34, No.4, pp. 59-65, Apr 2001.

[42] James E. Smith, S. Subramaya Sastry, Timothy H. Heil,
Todd M. Bezenek, “Achieving High Performance via Co-
Designed Virtual Machines,” International Workshop on
Innovative Architecture, Maui High Performance Com-
puter Center, Oct. 1998.

[43] Michael D. Smith, “Overcoming the Challenges to Feed-
back-Directed Optimization,” Proceedings of the ACM
SIGPLAN Workshop on Dynamic and Adaptive Compila-
tion and Optimization, Dec. 2000.

[44] Joel M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, B.
Sinharoy, “POWER4 System Microarchitecture,” IBM
Journal of Research and Development, Vol. 46, No. 1,
pp.5-26, Jan. 2002.

[45] David Ung, Cristina Cifuentes, “Optimizing Hot Paths in a
Dynamic Binary Translator,” Proceedings of the 2nd
Workshop on Binary Translation, Oct. 2000.

[46] Cindy Zheng, Carol Thompson, “PA-RISC to IA-64:
Transparent Execution, No Recompilation,” IEEE Com-
puter, Vol. 33, No. 3, pp. 47-53, Mar. 2000.

