
Dynamic Binary Translation for Accumulator-Oriented Architectures 
 
 

Ho-Seop Kim and James E. Smith 
Department of Electrical and Computer Engineering 

University of Wisconsin—Madison 
{hskim,jes}@ece.wisc.edu 

 
 

Abstract 

A dynamic binary translation system for a co-designed 
virtual machine is described and evaluated. The underly-
ing hardware directly executes an accumulator-oriented 
instruction set that exposes instruction dependence chains 
(strands) to a distributed microarchitecture containing a 
simple instruction pipeline. To support conventional pro-
gram binaries, a source instruction set (Alpha in our 
study) is dynamically translated to the target accumulator 
instruction set. The binary translator identifies chains of 
inter-instruction dependences and assigns them to de-
pendence-carrying accumulators. Because the underlying 
superscalar microarchitecture is capable of dynamic in-
struction scheduling, the binary translation system does 
not perform aggressive optimizations or re-schedule 
code; this significantly reduces binary translation over-
head. 

Detailed timing simulation of the dynamically trans-
lated code running on an accumulator-based distributed 
microarchitecture shows the overall system is capable of 
achieving similar performance to an ideal out-of-order 
superscalar processor, ignoring the significant clock fre-
quency advantages that the accumulator-based hardware 
is likely to have. As part of the study, we evaluate an 
instruction set modification that simplifies precise trap 
implementation. This approach significantly reduces the 
number of instructions required for register state copying, 
thereby improving performance. We also observe that 
translation chaining methods can have substantial impact 
on the performance, and we evaluate a number of chain-
ing methods.  

 

1. Introduction 

A promising paradigm for processor development is 
the co-design of an instruction set architecture (ISA), a 
microarchitecture, and a dynamic binary translation sys-
tem that cooperatively support an existing (virtual) ISA. 
Our research [28,41,42] is targeted at one such co-
designed virtual machine (VM) that provides high per-
formance by using a simple, distributed superscalar proc-
essor that tolerates increasing on-chip wire delays and is 
amenable to a very high clock frequency. A key element 
of co-designed VMs is dynamic binary translation (DBT) 

from the outwardly visible virtual ISA (V-ISA) to the 
implementation ISA (I-ISA). This paper studies several 
aspects of our evolving co-designed VM, with emphasis 
on the dynamic binary translation system. In our research, 
we use the Alpha instruction set as the V-ISA, and an 
accumulator-oriented instruction set [28] as the I-ISA. 
Fig. 1 illustrates the overall co-designed VM we are 
studying. The following two subsections provide an 
overview. 

1.1 Instruction level distributed processing 

A microarchitecture trend is toward distributed, modu-
lar designs, containing partitioned issue buffers and clus-
ters of functional units [16,25,29,37,44]. These distrib-
uted microarchitectures are designed to be tolerant of 
intra-processor wiring delays and contain small, fast logic 
subsystems. Our research is focused on ISAs and sup-
porting implementations that naturally fit the distributed 
design style; i.e., instruction-level distributed processing 
(ILDP) [28,41]. 

The ISA proposed in [28] is based on hierarchical reg-
ister architecture with a small number of accumulators on 
top of a larger general-purpose register (GPR) file. The 
use of accumulators naturally partitions the instruction 
stream into chains of dependent instructions, strands, 
where intra-strand register values are passed through the 
accumulators. Inter-strand communication is through the 
GPRs.  

 

V irtual m achine m onitor (incl. DB T subsystem) 

          Translated  
       code in  
    main  
mem ory  

  Processor front-end 
(incl. I -cache) 

         D istributed  
      Proces sing    
   E lement 0  
( incl . D-cache) 

   PE  1 

PE  n-1 

Legends: 
V-ISA instructions 
I-ISA instructions 
Data value communication 
Performance feedback 

V -ISA program 

 
Figure 1. Dynamic binary translation system run-

ning on ILDP processor 



The microarchitecture consists of a pipelined instruc-
tion front-end that feeds multiple, distributed processing 
elements (PEs). Only the GPRs are renamed to physical 
registers in a conventional sense. Based on the depend-
ence information expressed in accumulator numbers, in-
structions are steered to the PEs – a simple form of ac-
cumulator renaming. Each PE contains an instruction 
issue FIFO, a local physical accumulator, and a local 
copy of the GPRs. Communication among PEs is as-
sumed to take a small number of clock cycles and is ac-
counted for explicitly. Collectively, the hierarchical value 
communication, parallel in-order issue units, and distrib-
uted implementation provide overall simplicity – likely to 
yield a very high clock speed with moderate pipeline 
depth while supporting a complexity-effective form of 
superscalar out-of-order issue. A reorder buffer commits 
completed instructions in order. For more details on the 
microarchitecture, refer to [28]. 

1.2 Dynamic binary translation 

Dynamic binary translation (DBT) converts instruc-
tions from a source ISA to a target ISA. In the co-
designed VM paradigm [1,14,17,24,31], these are the V-
ISA and I-ISA, and only the V-ISA is an existing instruc-
tion set for which conventional software exists. DBT can 
be performed either by a host processor [1,2,14,21, 
24,26,31,34,46] or specialized hardware [10,15,18,25,40]. 
A DBT system can also profile program run-time behav-
ior and dynamically optimize blocks of frequently exe-
cuted instructions [3,4,6,8,11,12,15,19,30,35,36,45]. A 
key consideration in the design of a DBT system is the 
overhead resulting from translation time; any time spent 
translating is time not spent executing the source program.  

In our DBT design the focus is on simplicity; because 
the underlying hardware is dynamic superscalar, it can be 
relied upon to provide code scheduling. The only optimi-
zation we provide is “code straightening” where basic 
blocks are statically located in accordance with their most 
common dynamic execution order (with branch directions 
changed accordingly). This well -known optimization, 
similar to static code layout techniques [38,39], captures 
much of the low-hanging fruit of dynamic optimization 
by improving instruction cache locality and branch pre-
diction behavior. 

1.3 Related work 

Co-designed virtual machines were studied in the IBM 
DAISY [14] and BOA [1,17] projects and are imple-
mented in the Transmeta Crusoe [24,31], all  of which 
targeted VLIW implementations. Our research is targeted 
at dynamic superscalar implementations. We believe that 
this approach better balances the strengths of hardware 
and software, and results in lower overhead binary trans-
lation. Rather than trying to maximize instruction-level 
parallelism on a static VLIW microarchitecture using 
aggressive optimization and scheduling techniques, our 

DBT system simply identifies inter-instruction depend-
ences and encodes the dependence information as accu-
mulator assignments without changing the original pro-
gram order. Maintaining the original instruction order 
greatly simplifies precise trap recovery. 

Other work in this area has been targeted at dynamic 
binary translation from one existing instruction set to 
another, with code portabilit y being the primary goal 
[21,26,46]. Typically code optimizations are imple-
mented, many of them ISA-specific, and the performance 
“goal” is one of reducing losses; i.e. to come reasonably 
close to native ISA execution. Furthermore most of this 
work is focused on ABI translation rather than full ISA 
translation, as is the case with co-designed VMs. 

Dynamic optimization (without translation) has also 
been studied [3,4,6,8,11,12,15,19,30,35,36,45]. The pri-
mary objective in this work is performance improvement, 
and therefore some of the techniques used, e.g. code 
straightening and software code caching, are related to 
our DBT work. 

2. Accumulator-oriented I-ISAs 

2.1 Basic ISA 

The simplest way to describe the accumulator-oriented 
I-ISAs is through an example. Fig. 2 shows an Alpha 
code sequence translated into two different accumulator 
ISAs. Here we denote the accumulators as Ai and the 
GPRs as Rj. The modified ISA is introduced in Section 
2.3. In both ISAs, the accumulators link together chains 
of dependent instructions. The last conditional branch 
instruction is translated to a combination of a conditional 
branch and an unconditional branch for code chaining 
reason; chaining is explained in Section 3.2 in more detail . 

One feature of the basic ISA, introduced in [28], is 
that each instruction only contains one GPR, either as a 
source or a destination register. In this form, many in-
structions can be encoded using only 16 bits, reducing the 
code footprint. Also, addressing modes perform no ad-
dress computation; this must be done with separate in-
structions. 

2.2 Precise trap recovery in accumulator I-ISAs 

The trap recovery mechanism is a fundamental aspect 
of any co-designed VM because it must provide exactly 
the same trap behavior as the V-ISA semantics define. 
The initial study in [28] did not consider implementation 
of precise traps during DBT. One goal of the research 
presented here is to consider the performance impact of 
implementing precise traps and to evaluate an I-ISA 
modified to simpli fy precise trap implementation. 

There are two major issues in precise trap recovery. 
First, the address of the V-ISA instruction that generates 
trap must be identified. In our DBT system, the archi-
tected program counter is not used for actually executing 
the source binary code; rather an implementation pro-
gram counter sequences through translated code. The 



address of the trapping instruction is found by indexing 
an address table of potentially excepting instructions 
(PEIs) and conditional branch instructions associated 
with a translation group. The address of the first V-ISA 
instruction in a translation group is embedded in a special 
instruction. This I-ISA instruction is always the first in-
struction in the translation group and writes the embed-
ded address into a special register. This address provides 
a base for the PEI table lookup. A similar mechanism is 
explained in [36] in greater detail . 

Secondly, all architected states must be restored to the 
point of the trap. Our DBT system does not reschedule 
instruction order; hence values are produced in the same 
order as the original program. However, with an accumu-
lator ISA this is not suff icient; some source GPR values 
are held in an accumulator and may be overwritten prior 
to a trap.  

One solution is to add copy-to-GPR instructions 
before instructions that overwrite an accumulator holding 
a value that will be live at a potential trap location.  This 
is a fairly expensive solution, however, in terms of added 
instructions. 

2.3 Modified ISA 

An alternative to adding explicit copy instructions as 
just suggested is to embed GPR updates into the instruc-
tion set. The modified ISA instructions need more bits to 
designate the result GPRs, so some 16-bit instructions are 
now 32-bits. Hence, some of the “small footprint” benefit 
of having many 16-bit instructions [28] is lost. However, 
no copy-to-GPR instructions are necessary and most of 
the other advantages of the accumulator instruction set 
remain. 

With the modified ISA, every instruction producing a 
result specifies a destination GPR to maintain architected 
state. This also means that, strictly speaking, architected 
accumulators are no longer needed. The accumulator 
identifiers become strand identifiers, and accumulators 
remain in the implementation. In effect, these strand iden-
tifiers are the dual of the independence bits in the IA-64 

instruction set [23]. Nevertheless, we will t ypically refer 
to the strand identifiers as “accumulators” . 

To maintain implementation simplicity in the proces-
sor core, we are studying a microarchitecture where a 
separate register file, off the critical path, is maintained 
solely to keep the architected GPR state for precise traps. 
Only the values needed for later computation, i.e., com-
munication, are actually written to “operational” GPRs in 
the critical path. Effectively, these are the same writes as 
in the implementation described in [28]. This is possible 
because the modified ISA format distinguishes two dif-
ferent types of register writes. Note that this scheme 
works in a different way from Crusoe’s working/shadow 
registers [24,31] where all register writes go to the work-
ing register file.  

In the modified instruction set example in Fig. 2d, the 
result registers are explicitly given and the “accumula-
tors” (now strand identifiers) are shown in parentheses.  

3. DBT for accumulator-oriented I-ISAs 

In this section, we discuss DBT for the proposed ac-
cumulator-based ISAs. Subsections discuss the DBT 
process, including fragment formation and chaining.  

3.1 Fragment formation 

Our DBT mechanism follows the common two-stage 
(1) interpret/profile (2) translate/optimize model found in 
most existing dynamic optimizers and binary translators. 

(a) Alpha assembly code (b) Equivalent RTL notation (c) Basic I-ISA code (d) Modified I-ISA code 

L1:ldbu r3, 0[r16]  L1:R3  < -  mem[R16]  L1: A0  < -  mem[R16]  L1:R3 (A0) < -  mem[R16]  
   subl r17, 1, r17     R17 < -  R17 – 1     A1  < -  R17 – 1    R17(A1) < -  R17 – 1 
      R17 < -  A1  
   lda r16, 1[r1 6]     R16 < -  R16 + 1      A2  < -  R16 + 1     R16(A2) < -  R16 + 1  
      R16 < -  A2  
   xor r1, r3, r3     R3  < -  R1 xor R3      A0  < -  A0 xor R1     R3 (A0) < -  A0 xor R3  
   srl r1, 8, r1     R1  < -  R1 << 8      A3  < -  R1 << 8     R1 (A3) < -  R1 << 8  
   and r3, 0xf f, r3     R3  < -  R3 and 0xff      A0  < -  A0 and 0xff     R3 (A0) < -  A0 and 0xff  
   s8addq r3, r0,r3     R3  < -  8*R3 + R0      A0  < -  8*A0 + R0     R3 (A0) < -  8*A0 + R0  
   ldq r3, 0[r3]     R3  < -  mem[R3]      A0  < -  mem[A0]     R3 (A0) < -  mem[A0]  
      R3  < -  A0  
   xor r3, r1, r1     R1  < -  R3 xor R1      A3  < -  R3 xor A3     R1 (A3) < -  R3 xor A3  
      R1  < -  A3  
   bne r17, L1     P < -  L1,if(R17 != 0)      P < -  L1,if(A1 != 0)     P < -  L1, if (A1 != 0)  
L2:  L2:      P < -  L2    P < -  L2 

Figure 2. Example program segment from SPEC CPU 2000 benchmark 164.gzip 
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Figure 3. DBT framework 



The basic unit of translation is the superblock [22]: a 
code sequence with a single entry point and multiple exit 
points. Following [3,4], the translated superblocks placed 
in a translation cache are referred to as fragments.  

The fragment formation algorithm is a slightly modi-
fied version of Dynamo’s Most Recently Executed Tail 
(MRET) heuristic. Our DBT system starts interpreting the 
given V-ISA program. Over the course of interpretation, 
counters are maintained for the following possible trace 
start candidate instructions: 

 

• Targets of register indirect jumps (JMP/JSR/ 
RET in the Alpha ISA) 

• Targets of backward conditional branches  
• Exit targets of existing fragments 

 

If the number of times a static candidate instruction is 
executed reaches a predefined threshold, the interpreted 
path is followed to generate a fragment. This heuristic, a 
form of simple software speculation, is based on the ob-
servation that when an instruction becomes “hot” , it is 
statistically likely that the very next sequence of executed 
instructions is also hot. Fragment ending conditions are: 

 

• Register indirect jumps or trap instructions 
• Backward taken conditional branches 
• Already collected instructions are found again (a 

cycle) 
• A predefined maximum number of instructions 

is reached 
 

Currently our DTB algorithm does not perform loop 
unrolli ng. However, there still i s code redundancy inher-
ent in superblock-based translation. 

A newly translated fragment is placed in the transla-
tion cache. If later program control flow reaches an exist-
ing fragment, the translated instructions in the fragment 
are executed directly on the hardware. 

One important byproduct of “hot” trace-based optimi-
zations/translations is that dynamic “code straightening” 
is automatically performed; i.e. basic blocks that com-
monly occur in sequence dynamically are placed together 
statically, enhancing effective fetch bandwidth. 

3.2 Fragment chaining 

After a translated fragment is executed, the next frag-
ment must be found (if it exists). In a simple implementa-
tion, the fragment would branch to a “dispatch” code 
sequence at a certain fixed location. This dispatch code 
locates the next fragment starting address using the PC 
translation lookup table in Fig. 3. To limit the number of 
these translation address lookups, a good chaining 
mechanism that can provide next address in a fast and 
eff icient manner is essential. Furthermore, to supplement 
conventional chaining, using a co-designed VM provides 
us the abilit y to implement special instructions in the I-
ISA that further reduce the fragment transition overhead. 

Direct branches, either conditional or unconditional, 
are relatively easy to handle because their (taken) target 
addresses do not change during program execution. Un-
conditional direct branches are either simply removed by 
code straightening (if they do not save return addresses) 
or are changed to special save-V-ISA-return-address in-
structions (if they save return addresses). If a conditional 
branch is taken at translation time, its condition is re-
versed to allow continuous fetching. If the superblock 
exit target (that is, the path not followed at translation 
time) is not found in the translation cache, a special call-
translator-if-condition-is-met instruction is generated for 
the branch. If the target instruction becomes hot and is 
later translated, the DBT system replaces the call-
translator-if-condition-is-met instruction with a normal 
conditional branch instruction – a “patch” is performed. 

To save lookup overhead for each and every indirect 
jump, most dynamic optimizers/translators implement a 
form of software based jump target prediction. In 
[3,4,14,35], a sequence of instructions compares the indi-
rect target address held in a register against an embedded 
translation-time target address. A match indicates a cor-
rect “prediction” and the inlined target instructions can be 
executed; if not, the code branches to stub code at the end 
of the fragment, finally reaching the shared dispatch code. 

Even though software jump target prediction is often 
correct, it still adds overhead of additional compare-and-
branch code. Worse, if the prediction fails, the dispatch 
code needs to be executed, anyway. Bruening et al. [6] 
identify this as the highest overhead and report that an 
indirect jump lookup takes 15 instructions, while the 
compare-and-branch code sequence takes 6 instructions 
in the x86 ISA. In our DBT, three instructions suff ice for 
the compare-and-branch code, utili zing a special load-
embedded-target-address instruction. The dispatch code 
takes 20 instructions.  

Return instructions pose the most serious problem be-
cause their target addresses can change more frequently 
than other indirect jumps. The DAISY system [14] cuts 
performance losses by allowing multiple compare-and-
branch codes for a single return instruction. Most modern 
processors contain a hardware return address stack (RAS) 
mechanism [27], which can predict a return instruction’s 
target address very accurately. With dynamic trace-based 
DBT like ours, however, a conventional hardware return 
address stack cannot be utili zed because it does not track 
the V-ISA return addresses.  

We propose a specialized hardware RAS mechanism 
that contains pairs of V-ISA return addresses and their 
corresponding I-ISA return addresses. When a return 
instruction is fetched, the next fetch address is predicted 
by the popped translated return address.  The V-ISA ad-
dress is checked against to the instruction’s register value. 
If they match, the prediction was successful. If they don’ t, 
control is redirected to the dispatch code by an uncondi-
tional branch following the return instruction. Note that 
the semantics of return instructions are slightly changed 



from the conventional definition – a traditional return 
instruction always jumps to the target atomically. To 
push the return address pair, a special push-dual-address-
RAS instruction is generated for a V-ISA instruction 
(BSR and JSR in Alpha ISA) to save return addresses.  

3.3 DBT algorithm 

The major function of the translation process is identi-
fying strands and re-mapping intra-strand communication 
values to accumulators. Because of the nature of dynami-
cally constructed traces, there is no need for graph-
traversing dependence analysis usually found in static 
compilers. Below is the high-level outline of the transla-
tion algorithm. Although the algorithm appears to contain 
multiple passes of sequential scans, they can be combined 
to a single pass.  

 

Dependence/usage identification: when a hot code se-
quence is found by interpretation, an instruction’s de-
pendences on previous instructions in the same super-
block are identified. In addition, the usage of input and 
output registers is examined to determine the “global-
ness” of their values. Global values are placed in the 
globally visible GPRs. Following are the important usage 
categories. 
 

• No user: an output register value is not used be-
fore being overwritten. An instruction whose 
output value is not used naturally ends a strand. 

• Local: an output register value used only once 
before being overwritten in the same superblock. 
These are candidates for assignment to accumu-
lators.  

• Temp: values passed between two decomposed 
instructions (e.g., conditional moves). These are 
assigned to accumulators. 

• Live-in global: input register values that are live 
on superblock entry; assigned to GPRs. 

• Live-out global: output register values live on 
superblock exit; assigned to GPRs. 

• Communication global: register values used 
more than once before being overwritten in the 
same superblock; assigned to GPRs. 

• Spill global: a) If an instruction has two local 
input registers, one is made a spill global be-
cause the I-ISA does not allow two different ac-
cumulators in the same instruction. b) If a strand 
has to be terminated to free an accumulator (see 
below), a local value is converted to a spil l 
global. 

 

Strand formation: based on dependence and input regis-
ter usage patterns, instructions are scanned and a strand 
number is assigned to each instruction. The translator 
uses an unlimited number of strands that are later as-
signed to a finite number of accumulators. Here temp 

usage is treated the same way as local. If an instruction 
has: 
 

• Zero local input registers: a strand is started and 
a new strand number is assigned to it. Further-
more, instructions with two global input regis-
ters are broken into two accumulator instructions 
– a copy-from-GPR instruction and a translated 
source instruction that uses the (local) result of 
the copy as an input. The copy instruction initi-
ates a strand, and the source instruction now has 
one local input register (and is handled accord-
ingly). 

• One local input register: assigned the same 
strand number as the instruction producing the 
local value. 

• Two local input registers: a heuristic is needed 
to decide which strand number to assign. If one 
of the input registers is a temp, then the temp 
producer’s strand number is assigned. Otherwise 
the number assigned corresponds to the longer 
strand up to that point (length is determined by 
instruction count). 

 

Accumulator assignment: The strand numbers are con-
verted to finite accumulator numbers. Instead of using a 
traditional graph coloring heuristic to assign accumulator 
numbers to strands, a simple linear-scan heuristic is used. 
When the translator runs out of accumulators, a live 
strand is chosen for termination and the accumulator is 
freed. This is done by inserting a copy-to-GPR instruction 
at the strand termination point, and a copy-from-GPR 
instruction before the resumption point.  

4. Evaluation 

4.1 Methodology 

Our aim is to evaluate performance impact of the pro-
posed I-ISAs on the ILDP microarchitecture. In a real co-
designed VM, the DBT itself (and all the other VM soft-
ware) would execute the I-ISA. In our current simulation-
based environment this is impractical. Consequently, the 
DBT system is written in C and is compiled to execute on 
the simulation platform (SimpleScalar 3.0C [7] running 
on Intel clusters).  Nevertheless, the simulated DBT sys-
tem does perform all interpretation and binary translation 
in the same sequence as it would in a co-designed VM.  

Another simulation constraint is that the benchmarks 
we run have relatively short executions times compared 
with real applications. Consequently, the interpretation 
and translation overheads, although small , are still dis-
proportionately large for some of the benchmarks. In 
other systems [3,14], interpretation and translation/ op-
timizations overhead have been found to be very small .  

With respect to interpretation, we do nothing special. 
The same techniques as used by others [3,5,14,32,33] wil l 
suff ice, and the interpretation overhead should be about 



the same. If an instruction is interpreted 50 times (the 
threshold value) and each interpretation takes about 20 
instructions, this is a total of about 1,000 target instruc-
tions per source instruction. 

Typically, binary translation overhead is an order of 
magnitude higher than interpretation; that is, thousands of 
instructions per translated source instruction [14]. As 
pointed out earlier, the translation overhead for our pro-
posed system should be relatively low, and we evaluate 
this overhead in Section 4.2. 

To evaluate performance, we focus on detailed simula-
tion of all translated code, including all chaining code. 
Our simulation system does switch between interpretation, 
translation, and execution modes, however. When the 
simulated program control flow reaches a previously 
translated fragment, the simulator begins detailed timing 
simulation. Here the timing simulation starts with an ini-
tially empty pipeline. Similarly if an exit condition from 
the timing simulator is met (i.e., a target fragment was 
not found in translation cache, indicated by a call-
translator instruction), the mode is changed to interpreta-
tion after the last instruction in the pipeline is committed. 
Overall performance is then measured as V-ISA instruc-
tions per cycle (IPC) for execution of all translated (and 
chained) instructions.  

To evaluate performance we use three DBT/simulators 
as well as a slightly modified superscalar simulator (re-
ferred to as “original” in later sections). Two of these 
perform translation from Alpha to basic and modified 
accumulator ISAs, respectively. The third converts an 
Alpha binary to a code-straightened version of Alpha and 
simulates the same superscalar microarchitecture as the 
“original” ; this is for isolating the effects of code 
straightening and fragment chaining from other DBT 
performance effects. This third DBT/simulator tool is 
referred to as the “code-straightening-only” simulator in 
later subsections. Table 1 lists microarchitecture parame-
ters of two hardware platforms simulated. Modifications 
to the superscalar processor simulator are marked with *. 

To collect statistics, we use the SPEC CPU2000 inte-
ger benchmarks [20] compiled for Alpha EV6 ISA at the 
base optimization level (–arch ev6 –non_shared 
–fast ). The –fast  option includes –O3 optimization 
level, even for base optimization. The compiler flags are 
same as those reported for Compaq AlphaServer ES40 
SPEC CPU2000 benchmark results. DEC C++ V.6.1-027 
(for 252.eon) and C V.5.9-005 (for the rest) compilers 
were used on Digital UNIX 4.0-1229. The test  input 
set was used for all benchmarks except for 253.perlbmk, 
where one of the train  input set (- I./lib dif f -
mail.pl 2 550 15 2 4 23 100 ) was used. All 
benchmarks were run up to completion or 4.3 billi on in-
structions. Skipping the initialization phase and simulat-
ing only part of program using ref  input sets, as is fre-
quently done in microarchitecture research, would likely 
have exaggerated the benefits of DBT.  

For translation, we use a maximum superblock size of 
200 and a threshold of 50. We also experimented with 
superblock size of 50 and found it is not large enough to 
provide performance benefits from code straightening. 
We use only four logical accumulators (as opposed to 
eight used in [28]). We found that four accumulators are 
generally suff icient, and few strands must be prematurely 
terminated to free up an accumulator. Four logical accu-
mulators are used throughout the evaluation except where 
noted. 

In this study, we use an unlimited number of counters 
for superblock start candidates. For programs the size of 
the SPEC benchmarks, however, the number of counters 
is relatively small . Also, the static code size of the SPEC 
benchmarks (all are less than 1Mbytes except 176.gcc at 
2.3Mbytes) means that they would comfortably fit into a 
reasonably sized translation cache. Thus translation cache 
management is not required; however, other research 
indicates that this overhead is generally negligible [4]. In 
fact, there may be a performance cost in not occasionally 
flushing translation cache entries. Some fragments may 
be sub-optimal because once a fragment is constructed 

Table 1. Microarchitecture parameters 
 

 
Out-of-order superscalar (for original and code-
straightening-only simulators) 

ILDP microarchitecture (basic and modified accumulator 
ISAs) 

Branch prediction 
16K entry, 12-bit global history g-share predictor, 8-entry RAS, 512-entry, 4-way set-assoc. BTB 
3-cycle fetch redirection latencies for both misfetch and misprediction 

I-cache 128-byte line size, direct-mapped, 32-KB size, LRU replacement; up to 3 sequential basic blocks* 

D-cache 
64-byte line size, 4-way set-assoc., 32-KB size, 
2-cycle latency, random replacement 

Same as left or 64-byte line size, 2-way set-assoc., 8-KB size, 
2-cycle latency, random replacement; replicated across PEs 

L2 cache 128-byte line size, 4-way set-assoc., 1-MB size, 8-cycle latency, random replacement 

Memory 72-cycle latency, 64-bit wide, 4-cycle burst 

Reorder buffer size 128 Alpha instructions 128 ILDP instructions 

Decode/retire bandwidth 4 Alpha instructions 4 ILDP instructions 

Issue window size 128 (same as the reorder buffer size) 4/6/8 (FIFO heads) 

Issue bandwidth 4 4/6/8 

Execution resources 4 fully symmetric functional units 4/6/8 fully symmetric functional units 

Misc. No communication latency, oldest-first issue*  2 or 0 cycle global communication latency 

 



there is no second chance for forming different fragment 
starting from the same address in our current implementa-
tion. In Dynamo, for example, the fragment cache is 
flushed when there is change of program phase (indicated 
by abrupt increase of fragment generation rate) thereby 
evicting infrequent fragments from the cache and allow-
ing new fragment formation. 

4.2 Translation overhead 

To measure the translation overhead, we compiled the 
DBT/simulator tool onto the Alpha ISA and built an in-
strumented version with Atom tools on an Alpha 21164 
system running Tru64 5.1A. The instrumented version 
was then run with the same SPEC benchmarks. The num-
ber of dynamic instructions (in Alpha) is reported for 
each procedure. Averaging the total number of instruc-
tions executed in translation-related procedures with the 
number of translated instructions gives the average num-
ber of DBT instructions required to translate a single in-
struction.  

On average, 1,125 Alpha instructions were executed to 
translate a single Alpha instruction. Table 1 in Section 
4.4 contains per-benchmark results. This number is about 
a quarter of the 4,000+ PowerPC instructions needed to 
translate a PowerPC instruction into VLIW architecture, 
as reported in [14]. Of course, most of this reduction 
comes from the simple nature of our DBT – no aggres-
sive optimization is performed.  

Our DBT code in its current form was written for 
flexibilit y of simulation, not for translation speed. For 
example, on average, 20% of the instructions are spent 
copying high-level data structures that represent trans-
lated instructions to the translation cache structure, field 
by field. We feel that with optimizations for translation 
speed we can reduce the number of instructions per trans-
lated instruction to well below 1,000. 

4.3 Evaluation of fragment chaining methods 

We used the code-straightening-only simulator to 
evaluate the effect of fragment chaining. Chained frag-
ments show different branch/jump prediction behavior 
from the original source binary. For example, a single 
register-indirect jump in the source is now replaced with 
a compare-and-branch sequence plus optional dispatch 
code (contains another jump). That is, the number and 
type of control-transfer instructions are changed by frag-
ment chaining. To estimate the performance effect of 
different fragment chaining options, we tested three dif-
ferent implementations against the “original” simulator. 
In Fig. 4, predictor performance is measured as the num-
ber of branch/jump mispredictions per 1,000 instructions. 

In the first implementation no_pred, software predic-
tion is not used; a branch to a shared dispatch code is 
always generated for a register indirect jump. The dis-

patch code performs a PC translation table lookup to find 
the next fragment. Target address prediction rate of the 
indirect jump at the end of the dispatch code is expected 
to be very poor because all i ndirect jumps lead to the 
same dispatch code and a single BTB entry is required to 
provide all the target address predictions. 

The second implementation, sw_pred.no_ras, uses 
conventional software prediction as found in [3,4,14,35]. 
This reduces mispredictions substantially by reducing the 
probabilit y of executing the shared dispatch code. Al-
though the number of mispredictions was reduced to al-
most half of the no_pred, it is still 45% more than the 
original Alpha code. This shows the inherent limit of the 
simple translation-time prediction.  

The final implementation, sw_red.ras, uses a special-
ized dual-address hardware RAS described at the end of 
Section 3.2. This method achieves nearly the same num-
ber of mispredictions as the original Alpha code. This 
implementation is used as baseline in later simulations. 

Fig. 5 shows instruction count expansion from chain-
ing. Even with efforts to reduce dynamic instruction 
count increased by indirect jump chaining such as soft-
ware prediction and dual-address RAS (returns are not 
translated into compare-and-branch sequence), several 
benchmarks still experience serious expansion. In the 
benchmarks where the indirect jump code expansion rate 
is small , procedure calls are mostly performed by uncon-
ditional direct branches (BSR in Alpha ISA). 

 

0

10

20

30

40

bzip
2

cr
afty

eon
gap

gcc
gzip m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x
vp

r
AM

original no_pred sw_pred.no_ras sw_pred.ras

 
Figure 4. Number of mispredictions per 1,000 

instructions 

 

1

1.1

1.2

1.3

bzip
2

cr
afty

eon
gap

gcc
gzip m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x
vp

r
AM

 
Figure 5. Relative instruction count 



In Fig. 6, code-straightening-only performance is 
compared to original program performance. The straight-
ened version without RAS performs worse compared to 
the original program without RAS. Here the benefit of 
code straightening is offset by more branch address mis-
predictions and an increased number of instructions exe-
cuted in the compare-and-branch and dispatch code. On 
the other hand, our baseline model with dual-address 
RAS performs about the same level as the original pro-
gram with RAS. This is an example of special hardware 
features that can be specifically designed for co-designed 
system. Nevertheless, the performance improvement by 
code straightening is less than [4] suggests. One impor-
tant factor is that a dynamic optimizer like Dynamo can 
choose to “bail out” if performance improvement is not 
found while a DBT system cannot. If we exclude under-
performing 6 benchmarks (where a bail out would be 
used), 7% IPC improvement is observed. 

4.4 DBT characteristics 

We now consider characteristics of translated code. 
Since NOP instructions are removed by translation, they 

are not counted in V-ISA (Alpha) program characteristics. 
In Table 2, B and M denote basic ISA and modified ISA 
respectively. 

The second and third columns show the increase in 
dynamic instructions compared with Alpha code. The 
basic ISA shows of increase of 60% on average, while 
the modified ISA has only about half the increase (36%). 
The modified ISA has significantly fewer translated in-
structions because it does not generate copy-to-GPR in-
structions to maintain V-ISA architected state. This is 
shown in columns 4 and 5, where only 3.1% of the in-
structions are copy instructions in the modified ISA com-
pared with 17.7 percent for the basic ISA. The rest of the 
instruction count expansion comes mostly from chained 
register-indirect jump and decomposed memory instruc-
tions. 

On the other hand, both I-ISAs are relatively good in 
code size expansion rate. The use of 16-bit instructions 
and special branch instructions helps here. The code ex-
pansion rates are 17% for the basic ISA and 7% for the 
modified ISA. 

The output register value type is an important program 
characteristic because it affects number of extra copy 
instructions and write ports requirement of the general 
purpose register file. 

Output register value usage (“globalness” ) statistics in 
Fig. 7 was collected for Alpha instructions in superblocks. 
Here, memory instructions with effective address calcula-
tion are decomposed into two nodes.  

For modified ISA, about 25% of dynamic instructions 
have a global output value (liveout and communication 
globals). These are the global values that should be writ-
ten to latency-critical GPRs. The rest of the produced 
register values go to the local accumulator; these are also 
used to update architected state, off the critical path of the 
processor pipeline.  

Using the basic ISA requires extra copy-to-GPR in-
structions to maintain state at fragment exit points includ-
ing conditional branches. The notation “ local 

�
 global” 

represents values that are used only once but need to be 
saved to a GPR before a conditional branch. The notation 
“no user 

�
 global” is similar. If these values (represent-

ing extra copy-to-GPR instructions in the basic ISA for-
mat) are included, the total percentage of instructions that 
have global output values rises to about 40%.  
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Figure 6. Performance impact of code straight-

ening and H/W RAS 

Table 2. Translated instruction statistics 
 

Relative 
number of 
dynamic 
instructions  

% of copy 
instructions 

Relative 
number of 
static in-
struction 
bytes 

 

B M B M  B M 

No. of 
Alpha 
inst to 
translate 
a Alpha 
inst 

bzip2 1.58 1.30 18.9 1.3 1.07 1.02 818.3 

crafty 1.59 1.38 17.4 5.0 1.13 1.08 1147.0 

eon 1.77 1.51 18.6 4.6 1.33 1.15 1259.0 

gap 1.62 1.40 15.2 1.5 1.10 1.05 N/A 

gcc 1.56 1.34 15.0 1.1 1.13 1.09 1133.0 

gzip 1.49 1.23 21.7 4.8 1.13 1.06 989.3 

mcf 1.62 1.35 19.8 3.7 1.16 1.10 N/A 

parser 1.55 1.26 19.8 1.4 1.11 1.07 966.7 

perl-
bmk 

1.74 1.54 12.2 1.1 1.11 1.08 1829.0 

twolf 1.56 1.29 20.9 4.9 1.16 1.06 1235.1 

vortex 1.47 1.33 11.8 2.1 1.11 1.08 658.2 

vpr 1.59 1.33 20.9 5.6 1.14 1.04 1211.6 

Avg. 1.60 1.36 17.7 3.1 1.17 1.07 1124.7 
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Those statistics are in contrast to earlier results [28] 
where, for an oracle program trace (e.g., register values 
do not need to be saved at superblock boundaries), we 
found only 20% of instructions produce global output 
values. 

4.5 IPC performance 

Our overall goal in the research reported here is to 
achieve IPC rates that are close to native Alpha perform-
ance. The eventual objective of our research is to achieve 
performance gains due to a simple and high clock fre-
quency microarchitecture provided by the accumulator-
oriented ISA [28]. 

Fig. 8 compares performance of the ILDP processor 
running dynamically translated accumulator ISA code 
(the third and fourth bars) with the conventional super-
scalar processor running original code (the first bar) and 
code-straightened version (the second bar). These four 
bars show V-ISA instructions per cycle (IPC). For the 
ILDP microarchitecture, 8-way PEs, 32KB L1 data cache 
(same size as the superscalar processor), and 0-cycle 
global communication latency were used; this is to isolate 
the I-ISA effects from the machine resources.  

The difference in performance between the straighten-
ing-only Alpha and the modified ISA is a measure of the 
IPC cost in using the simple accumulator-based ISA. 
Many factors contribute to this IPC performance loss of 
15%. The most important is about 36% more instructions; 
a much higher native I-ISA IPC, shown in the last bar, is 
clearly offset by the extra instructions. One way to deal 
with this instruction count expansion is to not split mem-
ory instructions into two. This puts more pressure on de-

coding hardware but nonetheless reduces pressure on 
fetch and reorder buffer mechanisms. However store in-
structions have two input registers and as such, some-
times have to be split . Register indirect jump chaining is 
another area to look for further optimization, especially 
with further specialized hardware support. Lastly, even 
certain run-time optimizations can be considered if they 
do not affect the simple trap recovery model. 

In the ILDP microarchitecture, L1 data cache is repli-
cated across the PEs. Although this replication allows 
faster L1 data cache access by reducing the number of 
ports per cache, both microarchitectures were given same 
data cache latency. 

Another important point is rather idealistic execution 
model of the reference superscalar processor. For exam-
ple, an instruction issue window size of 128 is probably 
not realizable with today’s clock frequency requirements. 
A recent study [13] showed that the SimpleScalar simula-
tor used in this study reports about 20% more IPC com-
pared to a detailed microarchitecture simulator that mod-
els various hardware resource limits. 

Therefore, the more relevant point is how well the pro-
posed co-designed VM handles technology constraints 
such as increased global wire latencies. In Fig. 9, IPC 
variation from L1 data cache size (32-KB and 8-KB), 
number of processing elements (four, six, and eight), and 
global wire latency (zero and two) are shown.  

We experimented with 8 logical accumulators to see if 
more than 4 logical accumulators are necessary. The first 
bar in Fig. 9 shows that 8 logical accumulators do help 
(11% IPC improvement). However, to support 8 logical 
accumulators, there must be at least 8 PEs to guarantee 
the pipeline is deadlock-free. A minimum 8-way back-
end seems like an excessive investment considering that 
the typical IPC of SPEC INT type workload is below 2. 
Another point is that even a single bit in the ISA format 
space is a very precious resource. That one bit can be 
useful especially for opcode fields in 16-bit instructions. 

A quarter size L1 data cache (compare the second and 
the third bars) does not affect the overall performance 
very much, at least for test runs of SPEC CPU2000 
benchmarks used in our evaluation. More importantly, 
only 3.4% of IPC loss is observed by adding two cycle 

 

0

0.5

1

1.5

2

2.5

bzip
2

cra
fty eon

gap
gcc

gzip
m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x
vp

r
HM

IP
C

original A lpha straightening-only A lpha basic ISA
modified ISA modified ISA (native  IP C)
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communication latencies (the fourth bar). This shows that 
dependence-based strand identification and simple steer-
ing based on accumulator numbers works well  to tolerate 
the inter-PE communication latency. Lastly, it is ob-
served that 6-PE configuration holds up fairly well  (5% 
loss compared to 8-PE), while 4-PE lags 8-PE by 18%. 

5. Conclusion 

We have presented a dynamic binary translation sys-
tem for a co-designed virtual machine. The accumulator-
oriented implementation instruction set is designed to 
accommodate simple, high clock frequency microarchi-
tectures that are tolerant to increasing global wire laten-
cies. Translation overhead is dramatically reduced com-
pared to previous DBT systems based on VLIW proces-
sors. No aggressive optimization techniques are used 
because the underlying hardware is capable of dynamic 
instruction rescheduling between simple in-order FIFOs. 
Rather than relying heavily on hardware to achieve high 
instruction-level parallelism, our DBT software simply 
helps underlying microarchitecture tolerate ever-
increasing global wire latencies while providing the bene-
fits of dynamic code straightening – one of the most eff i-
cient dynamic performance enhancement techniques. It is 
our belief that the combination of simple, distributed mi-
croarchitecture capable of dynamic instruction scheduling 
and low-overhead dynamic binary translation provides a 
good design tradeoff point. 

We studied two I-ISA forms and found the modified 
format with destination register specifier provides both a 
simpler exception recovery model and higher perform-
ance compared to the basic format. We identify fragment 
chaining overhead as the one of the biggest performance 
limiting factors that offsets the benefits of code straight-
ening. Fragment chaining overhead is exacerbated in our 
DBT because no other aggressive optimizations are per-
formed to reduce the number of executed instructions. 
Dual address return address stack, a proposed co-
designed VM feature, greatly helps reducing mispredic-
tion rate as well as instruction count expansion from 
chaining. 
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