coay-2 Central Trocesser

Thac CRAY~D zentra

pd
[4MRav]

Tecessor is an evelutianary step from the design of
t 1 a

thz first Cray Resz2arsh machine toward grearer peralliel computing in
poncprozesser made. The new machine has somewhal greater hardware speed
{cight nancseconds per clock pericd vs 12.5 nanosecends) and much wicar
bandwidth throughsut. The net effect of these changss is.a factor ol four

spéed improvermant for wvector-oriented scientific computztion. The data
processing struzture is simplified ever the eavlier design and is nuch Tess
s hat is, a poorly written program vill rua
better on a CRAY-2 machine~than the equivalent program would cn a CRAY-L

a

machine. This 3z the case becausa the tirming of instruction Issue znd
execution is built into the harduare of the new wmachine and careful prog-anm
¢oding is not a2s necessary.

The CRAY-2 avchitecture begzn with 2 new assetdly lanpuage (CPAL} and the
hardiare vas than desigoed to implemant the conceprs in this softwvara
zpprecach. Tha maw language is a mediun level language and a5 sech provides
2 good vehicle for compatible exccution of CRAY-Z programs on & CRAY-1
rachinz. This lzngzuage does not have a2 one-fer-one rzlztionship betwaen
scurce laznguage - statements and binary machine instructions. It is harduare
oriented in the sense that the rzsources of tha machine are specifically
identified in a2 qualitative sensz In the source languoga sictoments.
Assigno2nt of resources in a quantitative sense Is done pariially by the
cempiler and partizlly Ty thz hzrduvare at exccution fimu.

Tna functicnal unit eperations of the CRAY-2 hardware a2re essaatially
jdentical to those of the CRAY-Q hardwvare. The word length, {loating
point format, arithmatic modes, a2nd general computation philiciophy are

211 the saze. 7The éiffsrences zppear as a rescllt of the need for greoater
bzadwidith. More operand registers zre raquired for both thz zgzlzar zna

the vector sections of the machine. The instrustion format is chanzad
from 2 three aldzess to a wne addrass foim teo zccommocdace Lhese empaadad
parzmatazrs. Cnz resulit of this expanded operzting field 3is 2n inczgose

in progren code over the CRAY-1 machine equivelent code of 20 to 30U percent
The larzzr velume of rode Is executed faster by issuing more than cue
instruction per clock paricd. llximum issuc Tate is four instruciicons

Per clock pezricd or two nancseconds per on:z address instruction. Ixecution
of ths issued dinstructions is 2llowved to procead out of time sequence over
large sections of the code. This is zccoirplishad by operating rezister
Teszarvaticns with vanlimited read/write pattern structure. HRandwldth in tha
erithmetic sections of the machine is obtained by making the dapth oi the
azrduare invisible to the prozremar and allowing the hardvarae to coavert
an 2ppacently simple serizsl prograem into & wide bandwidih parallicl one.

G 0, /4 sur

Intemal Data Communication Paths

Thz dinternal data comavnicaticn paths are illustrated in figure 1 to
provide 2n overview of the central processor internal structure. This
structure is cominated by the internal memory which consists of eight
rillion words of 64 bits each. The memory is constructed of 4036 bit
bipolar integrated circuit chips which are arranged in 64 banks with
interleaved addressing. This memory represents the bulk of the hardware
and coqta'ns a large portion of the internal data cormunication paths.

Each of the 64 banks are individually addressable from a nurmber of sources.
Tnis allows many unrelated storage references to be going on concu;rentlj._

Trnie input and output channels for the central procassor each have their
own hardware for internal storeg? access control. Hardware registers in
the access control define the beginning address and limit =z2ddress for =z)
buffer area. This buffer area mzy be in any part of the memory and of any
size. These paramaters 2re established by the central processor menitor
progrem when an inpul or output operation is initiated.

Internal computation in the central processor is divided into two classes
each with a2ssociated bardﬁare. The scalar computation section utilizes
512 operznd registers each capable of holding a single 64 bit date word.
Computztion is performed using one zddress instructions with centinuity
through 2 single 64 bit scalar a2ccumulator. Scalar functional units zre
accessible through the accumulator which is normally the source of one
operand and the destizetion of the result.

Vector compulaticn is perforrmed in 2 separate section of the wmachine and
uses 32 oparand registers each capable of holding 64 data woxrds of 64 bits
ach. Vsctor lengths less thzn 64 elemen:s use « portion of a vecror

operand -register. Vector lengths grezter than 64 elements are segmented
as z2pprepriate to fit In these registers. Vector computation is parformad
usinz one a2ddress instructions with continuity through 2 single 64 element
vector accunulator. Tais accumulator is reentrant sg that nelti-address
vector se2quences w2y be chained topether for sirultancous executicn. The
vector functional units a2re 211 sezranted so that operands may enter th

: 1 io

units cach machine clock period. The vector accuvmulator and vector £
units werk togezther synchronously on streams of data vhich flow uninter
through thes network. TFour floating rultiply units 2ad four floating add
uvalits provide 2 potential for oae billion floating point operatioas pav

CENTRAL PROCESSOR DATA FATHS

SCALAR ' VECTOR
FUNCTIONAL UNITS | FUNCTIONAL UMITS
l
{ _
SCALAR R A VECTOR
e .
ACCUMULATOR] ACCUNULATOR
’A
512 ' 22
SCALAR REGISTERS VECTOR REG!STERS
} £

INTERNAL STORAGE

EIGHT - MILLION Y/ORDS IN 64 BANKS
| T
Y

CH. 00 CH. 01 CH.

ot

CH. I5

——

16 INPUT/OUTPUT DATA CHANNELS

Instruction rFormat

Progran code is stored in the machine 1nterna] mzmory at execution tice
and is read into an'imstruction issuing machanism as the individual
instructions in the program are required. .The machinz internal remory
is organized in 6% bit vords and such a 64 bit section of progran code
is called 2 PT°°T2H word'. Each progran word is further divided into
quarters called 1nStruct101 parcels'. The 16 bit instructioa parcels
are the bzsic progran units. These consis: of two designators with
complementary attributes which coexist in the-configuration shown below.

| r D

7 bits 9 bits

Tne F designator is the instruction function code and specifies vhich of
the instructions in the machinz repertoire is intended for execution by
this instruction parcel. The D desigaator has several uses, depending ca
the instruction, but in genaral specifies were in the rpachine resources
the function of the F designator is to be performed. The D designator
r2y be thought of 2s a displacerent specification.. It.is used to point
to a2 specific scalar operand register wvhere one is required, or to a
specific vector register. It is used to indicate how far forvsard, or
backward, a progran branch instruction intends to move the program address.
It is used to increzent or decremant an index or an operand address wherte
a szall displacemenz from a2 base value is required. '

There are no address length constants in the body of the progren code. All
such paramaters ar2 held in tables z2ssoéiated with the program cede but
grouped generally at the end of program subsections and referenced throuzh
2 base address and z cisplacement much 2s a data array. 7Thnis approcach rakes
the program code independent of location in the internal memory at executior
time.

Instruction Processing

Prograa code is read {rom the central processor internal memory and

executed via a number of steps as illustrated in figure 2. Program vords
are_read sequentially from the internal mermory to fill a 64 word inmstruction
buffer. These buffers hold a block of program code which begins and ends
2t-100 (octal) word boundzries in the internal storage. There are four
such buffers which hold 2 100 (octal) word block each. The four buffer
fields need not be contiguous.

An instruction buffer load sequence begins vhen the executing program
requires an instruction word vhich is not currently in one of the four
buffers. A series of storage references is initiated beginning at the
storaga location required by the executing program. This storage address
peed not be at a 100 (octal) word boundary and in that case the buffer
would begin filling at an arbitrary internal location. The filling process
continues to the end of the buffer and then fills the beginning of the
buffer to the original a2ddress requested. Program execution nay proceed
as soon a2s the first word arrives at the buffer and will continue reading
code from that buffer until a progzraa word is required vhich is out of the
range of this block. At that tioz the next scquential instruction buffer
is cleared of its curreat program code and 2n instruction buffer load.
sequence is initiated for that buifer. o

A progran word is roved from an instruction buffer to the issue queue
when that word is raguired for execution. This is the last point in

the instruction prccassing sequence where the €4 bit program word is
treated 2s an entity. The issu2 qu2ue treats the program vord zs four
independent instructien parcels. An instruction parcel leaves this queus
vhen that instrecticn issues. -

Instruction issuz refers to the process of cormitting 2 parcel of program
code to executica. When one instruction parcel in a word has been issued
for exzcutica the remzinder of the parcels in that vord must 2lso be issued
bafore the progra= sa2quence can b2 interrupted. The parcels in a progran
viord zre ordered from lefit o right. All four parcels may issue in the
sa:n2 clock period il the propeY concitions exist. If some ol the pzrcels
issve 2nd the remainder do not, the remaining parcels shift up in the

issuve queue and the low order positions are zero filled. Vhen all four
parcels have been issued the mext program word is read from the instructicn
bufier. :)

Issued instructions move to an exacute quaue. There are eight execute
guzues each with a four instructicn parcel capacity. The compiler teads
to adjust ccds so thot {ull prezram words are assigned to exccute queues.
This need not bz the case and a part of one wvord and the beginning of the
next may be assaubled in 2n exzcule queue. This process would require
mare than onc clock period as onnly one executge qucue can be entered in' a
given clock poriod.

INSTRUCTION PROCESSING

.16
64 WORDS — - 15
64 \ORDS 16
64 \ORDS 16
64 YORDS
ISSUE
FOUR QUEUE
INSTRUCTION
BUFFERS EIGHT
EXECUTE
QUEUES

INTERMNAL STORAGE

Instruction Issue

Instruction issue refers to the. proccss of committin ng a'parccl of progranm
-code to execution. Uhen one parcel in a word has been issusd for executior
the rerainder of the parcels in that word nust also be issued befora the

“program sequence czan be interrupted. Program words are read from the
program buffer into an issue queaue. This queue helds the four parcels of
onc prograr word. One or more of these parcels may issue from the queue
in the next clock pariod. When all four parcels.have been.issued the
program.vord is replaced with a new word from the proeram buffer.

-
Iccnar’ 1pcf‘rn

ssued instructicons move to an execute queue. There are eight execute
queuas associated thh eight scalar accumulator netwvorks. A particular
r

execute gqueve is mormaliy farsc encered with an anstruction which clears
the accumulator and enters new data. Followinz instructions in the
program sequance are stacked in this exerute queua untll the quaua is
filled or 2 new clear and enter accumulator instructicn agpea If the
qucue "is filled, the next sequential execute queue is reserved to coatinua
the program sequacce. A clear 2nd enter accunulator instructiecn 2lwvays
begins a2 new execute queue 2nd that queve need not be in sequance. The
accumulator networks and associated execute queuves are assizoed in ’
sequance vntil a busy network is encountered. That sequential exzcute
queve is then skipped and the next sequential execute queus tested for
busy in the follouing clock period.

Instructions which specify 2 B or L pararmeter are interpreted at fcsua
[time That is, the B register value is read at issue tima and an

egu i'aleqt instruciion with 2 direct register designation Is substituted

as the instruction is moved to the execute quaue. The L register value

is captured and held at the execute queus vhen the firsr instruction -shict
uses the L parameter issues to that execute queve. There is onlv cne
position at th2 queve for this parameter. If a2 second instruction in

the program sequence uses a different L paraceter the filling of the nex:t
sequaential ex=2cute quauve is initiated.

W

Instructions which 2lter. the B or L paraméters are executed directly from
the issuve queue. The new values for these parameters are then available
in tha following clock period. Instructions which inveolve a program branc!
are executed directly from the issu2 queue. If the branch is ccnditional
and is basad on the L paramater it may proceed immediately. If the branc
is conditional 2nd ic based on the W recfster it rust wait wntil the W
register is free.

Subset A or B instructions which include 2n advance A flag issue to the
execute queve with the flag attached. The associated accumulator ceatent
is increased by one count 2s that instructioa is rclcasnd for executlon
froa the execute queue. ’ :

Instruction Exccution

A central processor instruction is intecrpreted and the necessary control
signals gencrated for exccution at the time the instruction parcel is
released from an execute queuz. These control signals must be cocrdinated
with those for the other instructions in the same computational sequence.
The sequences tend to be of three or four parcel length. "The most common
examples are: Lload, Add, Store; and Load, 244, Memory reference. The CPAL
statewent formats and hardware implementation both reinforce these patterns.

Jdnstructions are stacked an an execute queuve for the executicn of a single
computational sequence. : A particular execute queue is normélly first entered
with an instruction wvhich clears the scalar accurulator and enters mew data
from 2 scalar operand register.. Following instructions in the sequence are
~stacked in this gueuz until the queue is full or until a new clear and entex
instruction is encountered. The cepsent of the exacute qbeue noroally
correspsyes wieh ane CPAL starep:nt. This Sequente is then executed by

the harcdvare control rechaniss as an integrated unit with optimal timing.

The control signals generated by execution of the instructicns in cne execute
gueue can be quite indapendent of the activity in the other sevea queues.
Scalar and vector opsrand register rescrvations are wade at thz tire the
instruction parcels leazve the issuz queue. These reservations insure that
ths execution of the sequences do not get out of time sequence whan that
sequence is inmportant. The only other interaction between execute queue
sequance controls is tha availability of the resources in the sense of
register bank a2nd functionz2l unit conflicts.

A clear a2nd enter scalar accumulator instruction always issues to a new
eXecute quaua. Execute queaues are examined in sequence for availability.

If the next queues in sequence is busy the instructions are held in the

issue queue 2nd tha paxt execute queve is examined in the following clock
period. Consecutive computationzl sequences may therefore be executed
fron guaues vhich are not ‘adjacent. A computational sequence which contairs
more than four instruction parcels must use two execute queuas chained

4

togetrer. In this casz tha execu:te queues must be adjacent because of
hardware limitztions in chaining the sequences. Long sequences mav
therefore be cdelayed in issuve because of availability of execute quzues.

Instructions which specify a B or L parameter are interpreted at issue

tima2. That is, an instruction vhich specifies a B paramater causes the
content of thz B register to be captured and transmitted to the execute
Gueuve at the tine the instruction parcel leaves the issue queue. The

B register content in this' case assumes the role noroally filled by the
D-designator and causes the associated operand register reference to be
indirect. FEach exccute gueue has one storage position for an L parameter.
This position is filled a2s 2n instruction vhich uses the L parameter issues.
A second dnstruction d4n the same sequence with a different L value requires
that the next exccute queue be chained for continuation of the sequence.

Propram Exit Stack

The program exit stack is a mechanism for retaining the prograa return
2ddresses in subroutine calls until they are needed. The stack con-
sists of 16 rcgisters, each of 24-bit length. A four-bit register, E,
sérves as the stack pointer to indicate where in the stack the current
subroutine exit address is stored.

The E register is cleared when all subroutine calls have becn satis
Each execution of a.return jump instruction advances the E register
content by one count and enters the calling program return address in
the newly pointed register. Ea;h execution of an exit instruction
(00005) in the ca2lled program reads the content of the pointed register
for the return address and then reduces the E register content by one
count.

fied.

The E register may be read and altered by the object program so that
an error exit from 2 czlled subroutine may abort the system of mnested
return addresses and proceed to an arbitrary level in the stack. The
actual return addresses in the program exit stack cannot be alterad

by the object program.

The execution of 2 return juzp instruction with E = 15 (octal) sets

the exit stack overflow f£flag in the M register. This indigates.that
the object progran has called nested subroutines to a depth where the
harésare mechzaniszs is approaching 2 limit. The xeturn juwp instrvction
is completed in a mormal manner, storing the return address in progran
exit stack register 16. The object program is then interrupted for
monitor program service, and tha entrance address for the called sub-
routine is stored 3in progrom exit stack register 17 {see interrupt
sequence). The monitor progran then reorganizes the program exit stack
to permit continuing subroutinz calls. ’

The execution of zn exit instruction with E = 0 sets the exit stack
underflow flaz in the M register. This indicates that an object pro-
gra=-has returned through all of the return addresses currently nested
in the progrzzm exit stack hardware, and monitor program interveaticn
is necessary to replenish the stack. The ronitor program entrance
2ddress is read from Tegister zero in the program exit stack, and
execution of the wonitor program reorganizes the stack. The monitor
program exits vith the next higher level subroutine return zddress in
program exit stack register 17.

There are 16 (octzl) usable positions in the program exit stack for
return addrosscs. Register zero is reserved for the monitor progran
entrance address, and register 17 is rescrved for the interrupi return
address. ‘ -

9rapping_Small loops

Special hardware is provided for trapping small loops of instructions’
in the issue ‘queue. - The condition requiraed for the trepping mode to
25ply is 2n 023000 instruction in the second, third, or fourth parcel
of_a program word. This instruction is 2 branch on L £ 0, with the
branch destination the beginning of the current progran word + This.
package of code is essentially a2 repeat 'L times''sequence. - " The: package-
of code within the loop is issued ‘as a unit with suitable SUbStltutlonS
of register. 6231°nat10n. Each issue modi fies the B and L’ register
values as approprwate and issues the 1nstructlons to an execute queus.
The process may be interrupted 2t any point since the continuity is in
the B and 1 registers. An example of such a loop is the following in
CPAL. T

TAA AC = (A).

A=A+ 1.
B=5+1.
L=1-121.
P=TAA, L £ O.

This saouaﬂce loads 2 block of storage data into a series of scalar.
registers. The first four lines of source language would be compiled
into one parcel. This would be compiled as instruction 001057. The
023000 instruction would appzar in the second parcel of the issue
gueue. Tne first parcel in th2 issua queue would issue rTepeatedly

to an execute queua. Each issued parcel would have an advanced
register designation, and the rezister would be reserved at issue
time. An advance A flagz would be issuad 2long with each instructicn.
The B parametetr vouléd be advanced and the L paramater reducpd as each .
instroction issues. This process would continue until L = 0. The
follo"’ag parcel in the prograc word would then be 1nterpreted-.

! Pegister

The M register is a collection of rode and error flags which Is used by the
ponitor progran in processing a monitor call. This register provides the
object progzran paracaters necessary for the ronitor program to determine
the cause of interruption. The flags are listed below wirh the bit numbers
for the agéociated scalar accumulator bit positioms. '

53) Monitor wode flag

54) Floating point mode flag

55) Monitor call flag .

.56) 1/0 channel reguest flag-
57) FP range overilow flag
 58) Progran bounds overflow flag
59) Operand bounds overflow £Yag
60) Exit stack overflow flag
61) Exit stack underflow flag
62) Object program zero flag

. 63) Object program sign flag

‘onitor Mode Flag —

The moaitor mode flag is set by the interrupt sequence at the tinz that

object program execution is interrupted for service by the monitor progranm.
The interrupt sequence may be initiated by the object program itself {(C0O00¢
fnstruction), by zn I/0 channel requesting service, OT by an error conditic
that requires monitor program service. : ' '

The monitor mode flzz enables execution of the special instructions which
are reserved for the monitor program. These are instructions CC020 through
00037. It also disconnects the Y and Z registexs from their norrmal control
paths and opens the eatire storage rangz 1O the monitor program. rurther
" I/0 channel service requests are blocked until the ronitor mode flag has
been clearecd.

The rmonitor mode Fflag is cleared by the rmonitor progranc execution of an
00005 janstruction. This restores the Y and Z register functions and resum2
execution of the cbject progzram.

Floating Point lode YTlag -

The flocting ﬁoint mode flag is set to enable the interruption of an
object program vhen a flozating point cormputation goes out of range. The
flag is set by execution of instruction 00003 and cleared by executicn

of instruction 00CD2. Tetection of a floating poink nurmber out of ranga
in 2 floating point functional unit sets the FP range overflow flay only
if the floating point mode fleag is set. This coatrol is necessary so that
an object program can process veclor streams with out of range eloments
vithout the delay of unnocessary interruptions.

Interrupt Scgquance

An interrupt sequence is the rechanism for terminating object progran
execution in order to service a monitor call. A monitor call may originate
in the object program its=1f (00006 instruction), by an I/0 channel

requesting service, or by an error condition that requires_monitor action.

The mechanism for these calls is implerented in the flags in the 1
register. M register flags 55 through 61 may be set only in an object
progran mode (no monitor mode flag). Vhen-set these flags cause the
initiation of the interrupt sequence. The “interrupt sequence begins as
soon as all program parcels have been released from the execute queuves.
Yo further instruction issue is allowed. ')

The interrupt sequence begins by setting the monitor mode flag. This
prevents any further interrupt requests from being honored. The object
program scalar accunulator contént is stored in scalar register zero

(see special role of scalar register zerc). The next program address for
the object program is stored in register 17 of the program exit stack.
The rmonitor program entrance address is rtead from register zero of the
progranr exit stack. Execution of the monitor program is initiated at this
address. The wonitor mode flag enables the execution of instructions 00030
through 00037 and disconnects the Y and Z registers from their norral
control functions. This opens the entire storage range to the monitor
program.

A tonitor program terminates execution and returns to the interrupted
object program by executing an 00005 instruction. This instruction, vhen
executed in a ronitor mode, clears the monitor mode flag, lcads the
scalar accumulator from scalar register zero, and reconnects the Y and Z
registers for object progran bounds -control. The interrupted program is
resux=d by reading the content of register 17 in the progran exit stack
for the next program =2ddress. Any ronitor service requests vhich occurred
during the monitor program execution interval will now be honored and

a second intertupt seguence will occur before execution of an object
progra= instruction.

Monitor Call Tlag -.

The vonitor call flaz is set by object program execution of an 00005
jnstruction. The object proaram cxocutes this instruction in order to
call the rmonitor prozram for 2 service function. The scalar accurulator
content is intended 2s the communication vehicle for details of the
fonitor c21l. The monitor program clears this flaz after completion of
the call and before returning to object program execution.

I/0 Channel Request Flag -

The I/0 channel request flag is set by an input or output channel control
which requires monitor program service. This flag will.only .set during
object program execution (no monitor mode flag). The reguesting channel
nucber mey be determined by monditor program execution of the 00030
instruction. The monitor program clears this flag after completion of

the ca2ll and before returning to object progrem execution.

¥P Range Overflow Flag -

This flag is set by the detection of an out of range floating point
number in 2 fleating point functional unit. The setting of this flag is
21lowed only if the floating point mode flag is also set. The monitor
progrzn uses the presence of this flag to determine cause of interruption.

Program Bounds Overflow Flag -

This flag is set by the execution of an instruction fetch beyond the

limit 2ddress set for the object program field (Z register). The instruction
fetch is a2borted in this cese and this flag is set for monitor progran
.determination of the cause of interruption.

Operand Bounds Cverilow Flag‘—

This flag is s2t by the execution of an operand fetch or store inmstruction _
with 2n 2ddress which is bevond the limit address set for the object prograc
field (Z regist=r). Instruction execution is zborted in this case and this
flag is set for ponitor program determination of the cause of interruption.

Exit Stack Overflow Flag -

This flag is set by object program execution of a return jump instruction
with the exit stack pointer, E , equal to 15. The return jump instruciion
is completed in 2 normal naaner storing the retura address in register 16.
The object program is then interrupted and this flag is used by the
ronitor program in determining the cause of interruption.

Exit Stack Underflow Flag -

This flag is set by object program exzecution of an G0005 instruction
with the exit stack pointer, E, equal zero. The entrance address for the
wonitor program is read from register zero of the exit staek and this
flag is vsed by the monitor program to determine cause of interruption.

Object Program Zero Flag -

This flag is a2 storage place for a bit of the object.program W register
during the rwonitor program execution interval. This releases the W
register for use by thz monitor progran.

Object Program Sigh.Plag =

This flaz is a storage place for a bit of the object program W register
during the monitor program execution interval. This releases the W

register for use by the wonitor program.

Special Role of Scalar Resister Zero

Scalar register zero performs a special function in object program

calls to the monitor program. The interrupt sequence stores the scalar
accumulator content in this recgister in the process of initiating monitoer
program execution. This releases the scalar accumulator for use bv the
monftor progrem.

An object progranm reading scalar register zero as an operand register
reads a.zero value. This value-is forced by the hardware to make the
register useful in object programing. An.operand stored in this register
by 2n object program is discarded.

A monitor progranm reading scalar register zero as an operand register
reads the value stored there by the interrupt sequence. This is the
object program scalar accunulator content at time of interruptioa. This
value has meaning to the monitor program if the cause of interruption was
an object program monitor call. For other types of interruptiocan of the
object program the scalar register zero is simply a place to store the
scalar accunulator content over the monitor program execution interval.

A monitor program may storz new data in scalar register zero. This is
appropriate oanly for object program c2lls and is the responsibility of
the wonitor program software. ' '

'Execute Noxt If' Instructions

00010 X, W =10
00011 X, W £ O
00012 X, W>0
00013 X, W <0

These four instructions allow-program execution of the following parcel
of instruction code if the designated conditiorf is satisfied. All four

conditions 2re based on the value of the W register. The flrgt instruction
‘allows execution of the following parcel if the W re01ster contzins 2 zero

value. If not, the following parcel is treated as a pass. The second

instruction listed 2bove is the reverse test. The third instruction allow

execution of the following parcel if the content of the W register is
positive (sign bit zero). The last instruction iIs the reverse test for
negative.

The parcel of progran instruction code which follows the 2bove instructi
has special liritations. It must not be a branch instruction nor an
instruction which alters the B or L register content. Spec1£1ca11y it
must be 2 parcel of code which caa issue to an ex2cute queue along with
the 00010 through CGJ013 instruction. If the following parcel does not
weet this criterion the 'execute next if' instruction becomes a pass.

A cecond restriction in the use of the above instructions relates to the

position of the iImstruction in the 64 bit word. The 'execute mext if’

instruction rust rot be the last parcel of a word. If it is, it becomes

a pass instruvcticn 25 in the preceeding restriction. This second restcrictis

results beczuse of the need to interrupt’at word boundaries.

These four in
allow conditi
As such thay

nst
ional execution as a normal part of the issue/execute macha
= much faster than a conditional branch would be.

ructions are included in the instruction list becauvse the

L

W' kﬂ

St

T¥xecute Next When'® Instructions

164 X=1\VD

These two instructions allow exacution of the next parcel of program code
vhen the indicated vector register is free. All execution ©f code beyond
this point in the program is delayed until che register free condition is
satisfied. The first instruction listed above holds e: <ecution until the

vector register designated by the D parameter in the instruction is free.
The second instruction holds exacution until the vector register designated
by the B register content is free.

These instructions are included in the instruction list to interlock . the
storage references fron the vector portiorn of the machine where required.
Vector storage references may be out of. sequence because there is mno
hardirzere test of each individual element 2ddress at ipstruction issue time
Thesé instructions allow for insuring sequential exescution whexe 2 POSSlblB

CriY-2 G2nevral Choracteristics

The CRAY-2 compuier characteristics differ from the CRAY-1 in sevaral
basic respects. The CRAY-1 projram instructions usc 2 three address
format with very limited nuzbers of directly addressed operating register
The CRAY-2 instructions use an accumulator for continuitf betwezn one
address instructions which may reference a larger numbar of operating
registers. This increoses the total date bandwicdth in the CRAY-2 by
2llo~ing more operations to procced in parallel. Operations are identicea)
in the functional units of the two machines and the differences appear

in the use of the accumulator as one operand in CRAY-2 instructions.

A CRAY-2 instruction sequence generally begins with an instrection that
loads the accumulator-with zn oparand from zn operating register. A

second instruction then reads an ecparand froca a2nother operating register

and performs a function with the previous accumulator content as the

-

second operand. The result is left in the azccumulator. A third instructic

then stores the result in an operating recgister or continues the compuie:

it}

with another function. Simulation of a CRAY-1 program on a CRAY-2 machins
requires three CRAY-2 instructions for.the.equ?vaTent function of mzny
CRAY-1 instructions. Compilation-of a CRAY-1 machine 1aﬁgﬁage prograom
for :CRAY-2 cxecution can combine many functions and the result is core
lTike 2 50% increase in the tota) number of CRAY-2 instruction worcs over
the CRAY-1 equivalent requiremznt. Speed in: the CRAY-2 machine is
accomplished by issuing rmore than one instruction pzr clock period and

allowing more parallel execution of program sequences.

The scalar registers in the CRAY-1 .are arranged in a Eierarchy with the
A 2nd S regicsters dircchy:eddrcsscd by the instructions and the B snd T
}cgistcrs in » second level backup role. There are a total of 1%& scalor
registers in a CRAY-] mschine. The CRAY-2 scalar registers 2rec morged in
2 common pool with address @nd opurand registers all of 64 bit length.
There are a total of 512 ﬁu:h-registerS'which are addressed by & ninc

bit designator in the CRAY-2 instructions.

Storag2 Rafcrences

A CRAY-1 machinz bas 2 single data path from the scalar and vector

ithmetic area of the machine to the storage area. This path is
greatly expandsd in the CRAY-2 rachine. The scalar portion of the CrPAY-2
machine has its own data path ‘to storage indzpendant of the vaclor-sectic

The vector section has four read data patns and two write data paths
vinich. are indepandant of each other. it is then possible for four vector

streams to be reading cdata from storage and two to be viriting data at

at - * =3 - -

the same Ltime. lails necessarily means that there is no hardware interloc!
to prevant reading data frcm storage in a vector mode before data hes
been written thsre from a previously issuad vactor instruction. Such

interlocking functions must be providad by software at compile timz or
by interlocking the vector execution 2t run time ‘through a sp=cial

instructicn for this purpose.

Vecior Registers

Veclor registers in the CRAY-2 rochinz arc similar to the veclor regicters
of the CRAY-1. Each register has 6L clements of 6L bits cach. Vector
length in the LRAY-2 machine is specificd in a hardui{e‘rcgistcr sinmiler
to the CRAY-1 register. There are 32 vector registers in the CRAY-2 as

vs eight in the CRAY-1. These véctor operating registers are rcferenced

by one &ddress instructions similar to the scalar instructions. A vector
_program sequence utilizes & vector zccumulator for continuity in 2 manner
similar to the scalar sequence just described. The vector accumulator may
be chained repeatedly in a2 s?nglé vector seguence and is therefore
transparent in_a simulated three address vector operation of the CRAY-1
type. The accumulator reduces the requiremznt for intermzdiate registers
vhich limits.the CRAY-1 vector bandwidth. Thz result is that the 32 vector
registers of the CRAEY-2 have > potential of more then four times the CRAY-

bancwidth.

Exchange Package

The CRAY-1 machine utilizes an exchange package of .16 storage locations
to store and restore the principle operating registers on a czll to thz
monitor program. lio such packege exists in a2 CRAY-2 machire. An interrupt
of 2 CRAY-2 object program for 2 monitor function stores only the scalar
accumulator content as 2 part of the interrupt sequence. This mz2kes the
monitor call somewhat faster but requires that the monitor program must

store 2nd restore those operating register used.

Indirect Registers

The CRAY-2 machine has 2n instruction subset which uses -2 opavating
-register 2s a tegister pointer to replocz the direct register dzsignator -
of ths normal instruction sct. These incdirect register references allcw

program loops to scen the operating registers end thus save program stord

Program Addressing

The progrom code in ‘the CRAY-2 is zddressed by complete ¢h bit worcs
only- The parcel addressing of the CRA\'—'T hes the advantags of more
compact code and Shorter~intcrrupt lozkout tim=. Thgse‘advantagcs are
outueiched in +he CRAY-2 by the cffectiveness of the relative brancﬂing
“with the full word addressing. program code in the CRAY-2 has no constant
or ebsolute addresses in the body of the code other than the nine bit
displacemant designator. Constants and addresscs 2are ctored in 3 table
associated with each sgbroutine. There 15 &N advantage in having these
addresses all of full word characterl rathar than parcel addresses for

instructions and word addresses for dote.

_ All program entrance points must be left juét?fied.in the 6L bit word.
pelative branching specifies the number of 64 bit words fornward or

backuard from +he word which contains the current instruction sarcel.

Instructicen dubseis A E B

Instruction subset A contains thase instructions which do nbt involwa
o register designation. Instruction subset B is a variation on the
primary instruction set for the last half of the list. A Ssubsct B
instruct?ﬁn 001XX0 is equivalent to instruction .1XX000 with the role
of the D designator replaced viith the B]dés?gnator. In each ol ‘these
subsets the lowest:order otta1 diqgit is reservaed for control of the
-indexing registers which are used in small program loops. The'bit

~ positions in the lowest order octal digit are assigned the follouing

roles.

Bit 13 - Advance A flzg
Bit 14 - ‘Advance B fleg
Bit 15 - Reduce L flag

The indicated register content is modified 2fter the instruction has Been
interpretecd for exacution. For those Instructions which enter one of tha
control registers with datae this indaxing function may conflict. In such

conflict cases the primary Instruction function is implemantied and tha

-

indexing function i1s ineffective.

Spzcial Designators

4
]

Thz following designatars are wsed for the indicated funciion in ths

instruction descriptions.

A

AD - .scolar register D content (6% bits)

1]

scalar accunulator content (64 bits)

A3 - scalar register B content (6L bits)

B - register pointer {3 bits)

)
(]
|

chanhel.s control
- lowar portion of instructita (S bits)

exit stack pointer (I bits)

m m O
t

- upper portion of instruction (7 bits)
chznnel B current address (24 bits)

channel B limit address (2L bits)

(]
0y
]

-

x

"
|

- interrupt channel data (6 bits)

floating point mode flag (1 bit)

r~ . -
!

- . function length paromater (9 bits)

-
s
1

progrom modz register (15 bits)
. current program 2ddress (2% bits)
- monitor program call

_subroutinz call

- clock period ccunter (64 bits)

< - m O v
1

- wvector zccumulztor content (64 x 64 bits)

VD - wvector rcgister D content (84 x 64 bits)

<
a3
'

vecior register B content (04 x 6L bits)

branch tcst register (2 bits)

X =
'

- execute next parczl conditionally

<
I

progra: base addross (2h bits)

~N
|

program linit azdress (24 bits)

nstruction Surirary

— e - . e . S

Subset A

Subset B
B=0D

L=1D

R = AD

P = AD

P = AD, L
P =AD, L
P =AD, W
P = AD, V
P = AD, VW
P = AD, V
R=P+

P +
P=P+D,
P=P + 0D,
P =P + D,
P = + D,
P = + D,
P = +

L]

v w v v

o0 n i

non
YUYWwWY WU9VUW WUVYVVU VWV
. ' 4
OUODO0 DU DoOoUoD Do OU

WYvUv U°vVUXNY
|

- A

e i

o000 OO0

AV el

R4
1

v

v

v

v
\
\

]

o000 OO0

AV m Il n

i

I

AV m,."

OO0 0 OO0

cho
o
oh2
043

oLy
c4Ls
046
o047
050
051
052
053
054
055
056

057

050
051
062
063

054

055
055
057
070

071.

072
073

074
075
076
077

nstruction Sunmary

m—

100 A = AD 140 VvV = VD

101 £ =A% AD 151 V=V = yp
102, A= A+ AD 12 V=1V 4+ VD
103 A= A-AD 143 V=V - VD
104 AD = A 14 VD=V

105 AD = (A) 155 vD = (A)

106 e

107 (A) = AD 1,7 (R) = vD |
110 A=1D 150 HM: AD = Vv(0)
111 A=A=D 151 1: AD = V(£)
112 A=A+0D 152 M: AD = V(+)
113 A=A-D 153 H: AD = V(-)
11, A=A>0D " 154 - F: AD=V

115 A=A<0D 155 . _
116 AD = Vv(A) 1566 H: V=VD * A
117 V(A) = AD 157 H: V=1V + VD = A.
120 A= AD, A > L 160 VvV =VDp, V> A
121 A=A, AD < L 151 V=V, VD < A
122 P: A= AD 162 P: VvV = VD

123 A 163 Z: V= VD
1247 L: A % D 16, X = VD

125 . A % AD 165" L: V=V = VD
126 A + AD 166 L: V=V + VD
127 A AD 167 L: V=V -1VD
130 A = AD 170 F: ¥ =V + VD
131 A= AD 171 F: V=V - VD
132 : A= 172 R: V= 1\D

133 173

13% A=A = AD 17, F: v'=V % yp
135 L= A% AD 175 - €: V=V = VD
135 A= A = AD 176 H: V =V = VD
137 A= A= AD 177 lt: Vv =1V = VD

Instrnctiqg”§u§§

————

00000
00001

009302

00003

00004
00005
00006
00007

- 00010

00011
00012
03013

00014
00015
‘00016
00017

00020
00021
00022
00023
00024
00025
00026
00027

00030
00031

00032
00033

00034
C2233
00336
030337

Pass

J =20
J=1

' = A

P = (E)
Q=A

X, 11 =0
X, ¥ £ 0
X, W>0
X, W< 0
E = A
B, L =1
B = A
L A
.’).:E
A {E)
A = G82
A=1
A= T

A =M
A=Y
A= 2
(E)—A
c2 =0
CcR = A
HE = A
T‘A'—’:A
M= A

Y = A

A A

0UD%0

00041
00042
00043

00044
00045
00046
00047

00050
00051
00052
00053

00054
00035
00036
00057

00050
00051
000562
00063

0005%
00C55
00056
00057

00370
00071
00072

00073

00074
0C275
00075
00077

Vo= A

"a' = V A

VeV+A
Ve=V-A

M: V=V *A

v =YV >»AQ:
V=V<A
\7_—_‘V>>A
V=V << A
L: V=Y % A
ZV=V+A
L V=YV - A
F: V=V +A
- V=V - A
F: V=V = A
C: V=V = A
H: V=V * A

fnstructicn Subs«t b

,—__..——..._—-———..—..._..

00100 A

= A2 0910V = V2
00101 A= A * AZ 0ol V=1V =g
00102 A= At A2 00142 V=V +\(Q
00103 A= A - AQ 00143 V=V - V¢
c010%4 2=A 0014 VE =
00105 A2 = (A) 001545 2 = (A)
00105 001L6 :
00107 (A) ="A3 00147 (A) = v
00110 A =B 00150 M: AZ = V(0)
00111 A=A ™ B 00151 M: A2 = V(F)
00j12 A=A+ B 00152 H: AT = V(+)
09113 A=A - B 00153 M: A2 = V(-)
0011, A =A>B 00154 : A2 =V
00115 A=A < B 00155 '
00116 - A2 = V(A) 00156 HM: V= V2 A
00117 V{A) = A2 00157 t- V=V + V@
00120 A= A2, A>L 00160 V =V2, V>A
00121 A=A, A2 < L 00161 V =V, V3 < A.
00122 P: A = AZ 00162 P: V = V2
00123 : A= A% 00163 Z: V = V@
00125 L: A=A =B 0516 X = V2 :
00125 L: A= A = A% 00165 L: V=V > V@
0012¢ L: A= A+ A3 00165 L: V=V + V2
00127 L: A=A - AZ 02167 L: V=V - V2
00130 F: A= A+ A2 0017C F: V =V + V@
09131 F: A= A- A2 00171 F: V=V - V@
00132 R: A= A3 00172 PR: V=1VQ
00133 00173 T
C013L F: A= A * A2 00175 F: V=V = VQ
03135 €: A= A = A3 C0175 G ¥V =V & VE
GJ135 H: A= A * A2 00176 H: V=V = V@
00137 1: A= A * A2 00177 1: V=1V = V2

-~

