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Abstract

Value locality is the phenomenon that a small number of
values occur repeatedly in the same register or memory lo-
cation. Non-speculativereuse of computation[21] is one of
the methods that has been proposed to exploit value local-
ity. However, reuse becomes profitable only when multiple
instructions are reused simultaneously. Identifying suitable
chains of reusable instructions requires a global view of the
program and is therefore difficult to be accomplished with
hardware alone.

This paper investigates the properties of reuse in the con-
text of a dynamic optimization setting. We focus on char-
acterizing the available computation reuse in programs at
coarse granularities, and in determining the relative appli-
cability of specialization and memoization, two commonly
used techniques for exploiting coarse-grained reuse.

Our study suggests that a reuse technique based on an
online optimization system is feasible due to the following
reasons. First, programs contain many large regions: on
average, regions of 16 or more dynamic instructions repre-
sent 54% of all reuse, or 26% of all dynamic instructions.
Second, large regions are stable over time and hence can
likely be identified cost-effectively with a dynamic opti-
mizer. Third, we observed that many reuse opportunities
cannot be exploited withmemoization, the currently used
reuse technique, but must be supplemented withspecial-
ization, a technique that requires run-time code generation.

1 Introduction

Recently, a number of studies have demonstrated that pro-
grams exhibit significantvalue locality, the phenomenon
that a small number of values occur repeatedly in the same
register or memory location [6, 8, 11, 17, 21]. Microar-
chitectural techniques exploiting value locality follow one
of two paradigms:value predictionor computation reuse.
While prediction-based techniques improve performance
by breaking data dependences [11, 12, 18], reuse-based
techniques improve performance by reducing computation
latency ( [3,8,21]).

This paper focuses on the reuse paradigm. Typically,
computation reuse works by remembering in areuse table

the inputs and outputs of a computation. The computa-
tion is either a single instruction or a set of instructions.
When the computation occurs again with the same inputs,
the previously computed results are obtained from a reuse
table and the reusable instructions are bypassed.

Sodani and Sohi observed that up to 90% of dynamic in-
structions can be removed through reuse performed at the
level of individual instructions [21]. The primary obsta-
cle to exploiting this reuse potential is that to gain bene-
fit, a chain ofmultiple instructions must be reused simul-
taneously; reusing a single instruction typically does not
amortize the latency of looking up the reuse table. This
identification of the set of instructions to be reused,region
identification, constitutes one of the principal problems of
reuse.

A number of hardware techniques have been proposed
to identify and exploit coarse-grained reuse: linking data-
dependent instructions in a h/w table [21], detecting reuse
at the granularity of basic blocks [8], and trace-level reuse
[6]. More recently, a hybrid reuse technique using a combi-
nation of software and hardware was proposed by Connors
and Hwu [3] wherein a compiler identifies reuse “regions”
by consulting anoff-line value profile. The hardware is
then responsible for recording the execution instances of
these regions and reusing them

In the compiler domain, it has been known for a long
time that opportunities exist to speed up programs by ex-
ploiting knowledge of fixed/invariant inputs. These soft-
ware techniques to exploit knowledge of invariant inputs
are typically based on partial evaluation [9], in which the
program isspecializedfor the invariant/fixed inputs. These
program specialization optimizations are applied to entire
regions of code that operate on the fixed inputs. Temp [4],
DyC [7], Data Specialization [10], tcc [16], code special-
ization using value profiles [15] are all software techniques
for exploiting coarse-grained reuse.

All known techniques for exploiting coarse-grained
reuse can be categorized as either amemoizationor aspe-
cialization technique. Memoization is a technique based
on looking up previous results in a reuse table [2]. Spe-
cialization involves optimizing the program by hardcod-
ing the values produced by a reusable piece of code. Al-
though various specialization techniques [4,7,15,16] have
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been studied, available opportunities for specialization in
general-purpose programs has not been studied before.

The goal of this paper is to investigate reuse using a
trace-based measurement of its properties. We perform our
study in the context of an online, dynamic optimizer. In
particular, we want to answer the following questions: (i)
What is the amount of reuse that comes from “large” re-
gions of instructions? (Reuse is likely most useful when
reuse exists at large granularities.) (ii ) Are the large reuse
regions “stable” over time? If yes, the region identified by
a dynamic optimizer may be used for a long time, which
amortizes the software cost of identifying it. (iii ) How
should reuse be implemented? What are the respective ad-
vantages of memoization and specialization for exploiting
reuse?

The results of our study can be summarized as follows:

• (i) Our benchmarks contain a significant level of reuse
from large regions. On average, 66% of all reuse
(or 29% of dynamic instructions) comes from regions
containing 8 or more dynamic instructions. Regions
of sizes 16 or more represent only slightly less reuse,
54%, which is 26% of all dynamic instructions. On
regions of size 8 or more, the cost of looking up the
reuse table will likely be much smaller than the bene-
fits of bypassing the reused instructions. This conclu-
sion is confirmed by the results of Connors and Hwu
who showed that reuse of large regions leads to sig-
nificant performance improvements [3].

• (ii) Reuse regions are highly stable over time.We
observed that, typically, the same region of instruc-
tions is reused under the same inputs tens of times
(in a rather short program trace). This regularity of
a region’s shape suggests that, with a hardware value
profiler, we can afford to identify regions via software
at run-time, since the overheads are likely to be paid
back.

• (iii) Specialization should be used together with mem-
oization. Our results show that, for many bench-
marks, specialization is more suitable than the cur-
rently used memoization, because (a) most of their
regions reuse the same (single) value, hence lookup
in the reuse table is not necessary; or (b) the shape
of their regions requires run-time code generation,
which is implicit in specialization.

The remainder of this paper is organized as follows.
Section 2 discusses our notion of regions and presents the
methodology we use to identify reusable regions. In Sec-
tion 3, we provide data that characterizes reusable regions
and draw conclusions from the data. In Section 4, we
briefly discuss the characteristics of an online algorithm to
build regions in a feedback-directed optimization setting.
We finally summarize in Section 5 the lessons learned from
this study.

2 Methodology

2.1 Region definition

We perform our study of reuse at the granularity of regions.
Informally, we consider aregion to be a set ofdependent
instructions that can be reused simultaneously, but they
need not be contiguous. A region can consist of instruc-
tions from multiple basic blocks without necessarily con-
taining all instructions of those basic blocks. A reuse re-
gion can also include multiple loop iterations and can span
procedure calls. Our regions have unrestricted structure
because our goal is to let the characteristics of reusable
regions guide the development of reuse optimization tech-
niques rather than the other way round.

Assume that:

(i)   breakPoints is constant
(ii)  the content of the table idoes not change

Region

{
int GetBreakpoint(Address addr)

         return bp;

   return NULL;

   }

}

   BreakPoint *bp = breakPoints;
   for (int i = 0; i < n; i++, bp++) {
      if (bp->code && (bp->addr == addr))

A modified version of a loop from m88ksim

Figure 1: Example of a region

Figure 1 is an example of a reusable region. The figure
shows a simplified version of theckbrkptsfunction from
m88ksim, a SpecINT95 benchmark. The loop searches
through a breakpoint table for the breakpoint ataddr . In
order to create a reuse opportunity, let us assume that the
content of the breakpoint table does not change after the
table is initialized. Under this assumption, the value of
addr is the only input value that changes across multiple
calls to this function. Consequently, all instructions in the
loop except forbp->addr == addr are reusable. The
corresponding reuse region is shown in the figure. The
region is composed of a dynamically non-contiguous se-
quence of instructions (although the reused instructions are
contiguous in the static program, in the dynamic instruc-
tion stream the reused instructions are interrupted with the
non-reusable “==” instructions).

More formally, a region is defined to be any arbitrary
connectedsubgraph1 of thedynamic program dependence
graph(DPDG) which is constructed from a program trace.

1We require that there be no path in the graph from the output of a
region to its input. This constraint ensures that the input of a region does
not depend on its output.
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The nodes of the DPDG consist of all the dynamic instruc-
tion instances in the trace. The edges of the graph consist
of all register data dependences edges, all store-load mem-
ory dependence edges, and all control dependence edges.

Given this definition of a region, region reuse is then
defined in terms of “equality” of these subgraphs, i.e. two
regions are reusable if they have “identical” subgraphs.

2.2 Region-level Reuse

Let us further examine the notion of reusable regions by
drawing an analogy with the well-understood notion of
instruction reuse. InstructionI2 is considered to be a
reusable instance of anearlier instructionI1 if both I1 and
I2 are the samestatic instruction, take the same inputs and
produce the same outputs. Region reuse is then a straight-
forward generalization of instruction reuse. RegionR2 is
considered a reusable instance of an earlier regionR1 if
both R1 andR2 perform identical operations, accept the
same inputs and produce the same outputs. An additional
constraint is thatR1 andR2 must also be disjoint. Two re-
gions are considered to performidenticaloperations if they
have an identical set of instructions and have an identical
set of dependences, i.e. their corresponding dependence
subgraphs are isomorphic. Potentially, a large set of re-
gions can all have “identical” structures and have identical
inputs and outputs. It is these sets of reusable regions we
are most interested in, because they are good prospects for
specialization and memoization.

Given these notions, an algorithm for detecting reuse
works by identifying identical subgraphs in the DPDG.

2.3 Identifying Reusable Regions

Our study simulates benchmark programs, builds the dy-
namic dependence graph, and partitions them into reusable
regions. During this partitioning, each dynamic instruc-
tion appears in at most one region. Note that even though a
dynamic instruction is part of at most one region, the corre-
sponding static instruction can map onto multiple regions.

Since we are interested in an online setting, there is an
initial cost involved in building reuse regions. Besides this,
both specialization and memoization have other associated
optimization overheads. Specialization has only aninitial
(high) optimization cost. This cost can be amortized only
if the same region is encountered repeatedly. Therefore,
we require a high repeat-rate for regions that are special-
ized. Memoization, on the other hand, involves an initial
set-up cost which tends to be much lower. Thus, a lower
repeat-rate is sufficient for memoization. But, memoiza-
tion also incurs overheads in the form of table look-ups and
table spaceeach time the region is encountered. There-
fore, one large region will yield a greater benefit than mul-

tiple smaller regions. Hence, for memoization, large re-
gions are desirable.

For a specialization-based optimization, a high repeat
rate is more important than large regions (even though
large regions are likely more beneficial than smaller re-
gions). But, for a given trace length, a region of sizeN
will have a higher repeat rate than a larger enclosing re-
gion of sizeN + 1. Hence, larger regions tend to have a
lower repeat rate than smaller regions. Therefore, we have
two conflicting requirements in our study since we are in-
terested in both memoization as well as specialization.

To strike a compromise, we first require that reuse re-
gions are replicated at leastτ times – thereuse thresh-
old. We will collect data for a range of thresholds, but for
a particular optimization technique, this threshold should
be high enough for the benefits of optimization to offset
the cost of identifying the region, any code re-structuring,
and/or hardware table setup. Then, subject to the thresh-
old constraint, we maximize region size. We now have an
optimization problem. Subject to the threshold constraint,
we would like to find the smallest set of regions that maxi-
mizes instruction coverage (i.e. the number of instructions
that are part of a region). In the next section, we will con-
sider an algorithm for finding suchmaximalreuse regions.

2.4 Region Building Algorithm

We very briefly describe how our algorithm identifies re-
gions. Conceptually, at the simplest, a dynamic instruction
x forms a one-instruction region. By linking upx with
all its earlier reusable instances (with same inputs and out-
put), the algorithm builds a reuse chain forx, which also
serves as a chain of reusable one-instruction regions. Next,
this one-instruction region containingx is expanded into
a two-instruction regionR2, by addingy, a dependent in-
struction ofx. The algorithm synthesizes the reuse chain
for the 2-instruction regionR2 by “combining” individual
nodes in the reuse chains ofx andy. This process contin-
ues till the region cannot be expanded any further (i.e. the
reuse chain for regionRk contains fewer thanτ instances).

The algorithm isgreedy. (i) It always grows a region
as big as possible (while satisfying the reuse threshold),
and(ii) if a regionR can be grown by adding a new node
x, it does so without exploring other alternatives. Hence,
this algorithm can yield sub-optimal results in terms of in-
struction coverage. We followed this approach because the
complexity of the problem (non-unique partitioning into
regions) does not allow for an exhaustive search.

Sub-optimality can also result from other practical con-
siderations of space and time constraints that arise in im-
plementing the above algorithm. It is not possible to an-
alyze an entire program traceT in one pass because the
dependence graph forT and the reuse chains consume a
lot of memory and analysis time. To tackle this, the al-
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gorithm breaks upT into smaller windows and analyzes
the windows one at a time, and carries over some minimal
summary information across windows. For thego bench-
mark, with a window size of 0.75M instructions, the in-
struction coverage increased from 11.7% to 16.8% over
12M instructions. With a window size of 1.5M instruc-
tions, the coverage increased from 11.8% to 17.6% over
12M instructions. This indicates two things. First, by in-
creasing the length of the trace, greater number of regions
are identified. Second, the loss in coverage by breaking up
into windows is tolerable.

In spite of these drawbacks, our greedy algorithm does
establish alower boundon the numbers and sizes of re-
gions that exist in programs.

For this study, we used the functional simulator from the
Simplescalar toolset [5]. All analysis was performed by
collecting a dynamic trace of instructions and constructing
a dynamic program dependence graph from the trace. For
the purposes of this study, we eliminate trivially reusable
instructions (direct jump, direct call, and a code idiom that
initializes addresses). We also eliminate fill-refill and save-
restore code and connect producers and consumers. We
also ignore data dependences on the stack pointer and re-
turn address register since these dependences artificially
constrain reuse.2 Overall, the transformations either elimi-
nate or ignore roughly5% to 15% of instructions.

2.5 Benchmarks

We conducted this study on a collection of SpecINT95
benchmarks, “micro-benchmarks”, and Java programs. Ta-
ble 2.5 lists the programs we used for our study, the simu-
lation window size for each benchmark and the total num-
ber of instructions simulated. For all these programs, sim-
ulation was performed by skipping over the initialization
phases of the programs. For the SpecInt95 benchmarks, we
used the recommendations of Sherwood and Calder [19] in
determining the starting point of our simulation. For the
Java benchmarks, the starting points were determined em-
pirically.

The choice of window size and trace length was deter-
mined by the amount of available memory. Even though
we collect our data for short traces, we believe that our re-
sults are still meaningful, i.e. they characterize behavior in
at least a subset of important hotspots. Except forgo and
gcc, all the other SpecINT95 benchmarks have few well-
defined hotspots [14]. Hence, for all these benchmarks,
the trace is likely to capture the execution of some hotspot.
For example, the biggest hotspot ofperl has 650 instruc-
tions [14]. Thus, the 0.5M trace forperl would capture
at least 750 executions of any hotspot. Further, bothperl

2If A calls B from different stack depths but with same parameters,
the stack pointer will have different values each time and will break the
reusable region at the call boundary.

andm88ksimare interpreters and hence we believe that the
value profile seen in the short run reflects their behavior
over longer runs of the program.

The SpecInt95 benchmarks were compiled for the Sim-
pleScalar ISA bygccwith optimization flags “-O3”. The
Java programs were compiled by the Strata compiler for
the SimpleScalar ISA. Strata is a research Java bytecode to
native ISA compiler (written in Java) that was developed
as part of our research project [20]. This compiler does all
the traditional local optimizations, eliminates null and ar-
ray bound checks, and performs global register allocation.
interp is an interpreter loop taken from [7]. The input to
the interpreter is a factorial program.printf is a program
where aprintf like function prints data based on a for-
mat string. In this program, the formatting string is held
constant, and the numeric data to be printed is changed
within a loop.

3 Results

We useInstruction coverageas the primary metric in char-
acterizing region reuse. A better metric is used in Sec-
tion 3.5.Instruction coverageis the fraction of all dynamic
instructions that are contained in reusable regions. These
instructions can be removed ifeachregion found by our
study is reused. Although not each region will be removed
in a realistic implementation (e.g. the region is too small),
instruction coverage suitably estimates the overall effec-
tiveness of region-level reuse as a performance enhancer.

3.1 Variation of Instruction Coverage with
Reuse Threshold

First, we present theinstruction coveragefor all the bench-
marks. Because reusing individual instructions rarely
brings any benefit, single-instruction regions are not in-
cluded in the statistics. Further, note that roughly 5%–
15% of instructions are eliminated due to preprocessing of
the program dependence graph (See Section 2). For some
benchmark and reuse threshold combinations, the data
points are missing because the simulations could not com-
plete in available memory and/or in a reasonable amount
of time.

In summary, our benchmarks contain a very high po-
tential for region-based reuse. Most importantly, in most
benchmarks, the reuse is not very sensitive to the thresh-
old level. Even for a threshold as high as 100, between
10% and 60% of instructions can be removed, and across
all benchmarks, on an average, about 35% of dynamic in-
structions can be eliminated.

We discussed in Section 2 that we study the reuse behav-
ior across different thresholds to evaluate whether reusable
regions are amenable to specialization, i.e. whether the
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Benchmark Comment Window Size Total Instrs Input

go SpecInt95 1.5M 12 M 5stone21.siz, 5stone21.in (Ref)
li SpecInt95 1M 4 M 8-queens.lsp (Test)

ijpeg SpecInt95 0.5M 3 M Test
m88ksim SpecInt95 0.2M 0.8 M Ref input

gcc SpecInt95 0.5M 0.5 M cccp.i
perl SpecInt95 0.5M 0.5 M primes.pl, primes.in

raytrace SpecJVM98 0.5M 1.5 M Speed 100
strata Java 0.5M 2 M Compiles a Java class file
interp Micro-Benchmark 0.1M 0.3 M Factorial 70
printf Micro-Benchmark 0.1M 0.3 M Prints 1 through N

Table 1: Benchmarks used in this study

Variation of Instruction Coverage with Reuse Threshold
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Figure 2: Variation of instruction coverage with Reuse
threshold

benefits would offset the overheads. Our results indicate
that there is potential for specialization within some of
these benchmarks.

Figure 2 shows the variation of instruction coverage with
the reuse threshold. The behavior differs across bench-
marks, but as should be expected, there is a uniform re-
duction in instruction coverage as the reuse threshold is
increased. Forgo andgcc, the coverage at a threshold of
100 is half of what it is at a threshold of 10 because both
these benchmarks are known to execute a large number of
program paths [1] and their hotspots do not cover large por-
tions of their execution [14]. Thus, even though there exist
reusable regions, the code containing them is not executed
often enough to bring the reuse over the threshold.

For benchmarks likem88ksimandinterp, the reduction
in instruction coverage is much smaller because these
benchmarks have well-defined hotspots with significant
sources of reusability.

Caveats:
1. In this and the following graphs, different benchmarks

have been simulated for different trace lengths. As
indicated earlier, this choice was dictated by the memory
and time requirements of the simulations. In Section 2.4,
we noticed that instruction coverage increases (and likely
stabilizes) with increasing trace lengths. Therefore, if all
benchmarks were simulated to the same trace length of,
say 10M instructions, the curves would likely look better.

2. For gcc, further experiments show that the behav-
ior differs in different phases of the program. In the
parsing and output phases ofgcc, the instruction coverage
is of the order of 20% unlike thereload phase shown in
the result graphs. Nevertheless, the results indicate that
gcchas phases where it exhibits high reusability.

3.2 Variation of Instruction Coverage with
Region Size

Even though a large number of instructions are covered
by reusable regions, it is more useful to study how these
instructions are distributed amongst regions of different
sizes.

Figure 3 shows the distribution of instruction coverage
across different region sizes for a reuse threshold of 50.
The bottom curve shows how often a region was reused;
because each region reuse requires a lookup, this curve
roughly corresponds to the cost of performing the reuse.
The top curve shows how many instructions were reused,
which roughly corresponds to the benefit of reuse. The
further apart these curves, the greater the benefit. Note that
the figure shows the distribution as a fraction of reusable
instructions. The actual instruction coverage can be read
from Figure 2. The figure shows results forgo, gcc,
m88ksimand strata. These are representative of the be-
havior of the other benchmarks.

At one end of the spectrum,go has most of its instruc-
tions in small regions. Over 70% of the reusable instruc-
tions are in regions of size 7 or less. The behavior of
li is similar, though not as bad as that ofgo. For these

5



gcc: Reuse Coverage Vs. Region Sizes
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go: Reuse Coverage Vs. Region Sizes
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Figure 3: Cumulative instruction coverage across different region sizes for reuse threshold 50

benchmarks that have a predominance of small regions,
one might require more fine-grained support in hardware
(i.e., a faster lookup in the reuse table) to profitably ex-
ploit them. TheStratabenchmark is slightly better. About
35% of the reusable instructions are in regions of size 12
or more. Thus, there is still reasonable reuse potential at
bigger region sizes.raytraceandijpeg fall in this category.

At the other end of the spectrum aregcc, m88ksim, perl,
interp, andprintf. For gcc, over 70% of the instructions
covered are in regions of size 40 or more. Further, as the
graphs show, there are certain well-defined jumps in the
instruction coverage. These correspond to large regions
that occur repeatedly. Likewise, withm88ksim, over 72%
of instructions covered are in regions of size 50 or more.
As with gcc, there are well-defined jumps in the instruction
coverage indicating the presence of large regions that occur
repeatedly. These results indicate that there is a lot of reuse
potential in many programs at large granularities.

3.3 Variance of the input vectors in a region

We now answer the question of how many different values
are reused in a region. Roughly, a region invoked with the
same value always can be optimized with code specializa-

tion; a region with multiple values requires memoization.
The termreuse regionwe considered so far denoted a set

of reused dynamic instructions together with theirparticu-
lar reused values (i.e., the input vector). In order to deter-
mine how many different input vectors appear in a given
staticregion of code, we need to collapse the reuse regions
according to their shape, thus discovering how many val-
ues appeared in the same region of dynamic instructions.
More precisely, we collapse regions that are isomorphic
(but may have different values).

Figure 4 shows the cumulative instruction coverage
across regions with identical shape (“identical” regions)
but different number of unique input vectors, called IO in-
stances. Reuse on the left-most side of each curve can be
removed with specialization; any additional reuse requires
memoization. The first graph in the figure shows this dis-
tribution for m88ksim, perl, interp, printf, gcc. For all
these benchmarks, over 80% of instructions are in “identi-
cal” regions that has exactly one input vector. Thus, these
programs are very amenable to specialization. Except for
m88ksim, the rest have almost all reusable instructions in
code-equivalent regions with at most 8 unique input vec-
tors.

The second graph in the figure shows the distribution for
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Figure 4: Distribution of input vectors (in the graph, called IO instances)

go, li, ijpeg, raytrace, andstrata. There is a sharp differ-
ence with the first graph: only 25% - 45% of reuse comes
from regions with one input vector. Due to the much higher
degree of variation, memoization is likely to be more suit-
able than specialization.

An interesting observation is that except forgcc, the first
group of programs on the left are interpreters. Our mea-
surement thus empirically confirms the accepted wisdom
that code specialization works particularly well for inter-
preters (because they operate on a rarely-modified array
of instructions). Althoughgcc is not an interpreter, in the
window of simulation, it probably operated on data that did
not change.

The important conclusion is that both memoization and
specialization are needed to exploit the available reuse.3

This also indicates that an optimization framework that
employs both memoization and specialization is likely to
perform better than either one individually.

3.4 Load Behavior

If a region has internal loads, these loads act asimplicit in-
puts to the region because stores can potentially change the
value that is loaded across multiple invocations of the re-
gion. In the presence of loads, reuse implementations can
either assume they always load the same value and some-
how guarantee this invariance (via software or hardware) or
they can restructure regions so that loads are never inside a
region, at the cost of more lookups. In order to determine
an appropriate strategy, we classify regions based on their
load behavior as follows.

• If a region has no loads and no stores, it is a pure
computation region without any side effects. These

3Note that while memoization can sometimes be used where special-
ization is applicable, memoization cannot fully subsume specialization.
For instance, the typical interpreter can be specialized [7] but not memo-
ized.

regions require no special support for memory pro-
tection.

• If a region has no loads but has stores, then stores
must be performed to maintain correct program state.
This region classification includes regions that have
side-effects on the memory.

• Given a memory address, if a load always returns the
same value, then it is considered astatic load. Note
that we only require value equality on memory loca-
tions, not on program PC. Thus, a load instruction can
load from multiple memory locations, and for each of
those addresses, the load can either bestaticor not. If
a region has only static loads, it is classified as aStatic
region.

• A load that is not static is termed adynamicload. That
is, this load returns multiple values from the same
memory location. If a region has at least one load
that is static and at least one load that is dynamic, it is
classified as aStatic+Dynamicregion.

• If a region has no static loads, then it is classified as a
Dynamicregion.

Figure 5 shows the instruction coverage across the dif-
ferent load classes. All benchmarks have non-trivial num-
ber of instructions in regions that are side-effect free. For
go and ijpeg, this accounts for more than half the instruc-
tion coverage.

Static Loads: The significant result from Figure 5 is
the predominance of instructions that are present in re-
gions that have static loads (Static and Static+Dynamic
regions). For all benchmarks, at least half the instruc-
tion coverage across all benchmarks comes from the Static
and Static+Dynamic classes. This indicates that it is very
important to have some hardware or software support for
static loads. When such support is present, the reuse tech-
nique can assume the invariance of these loads and elim-
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Figure 5: Region classification based on load behavior

inate them. To guarantee correctness, this would require
some kind of detection scheme to detect violations of the
assumptions.

Dynamic Loads : Studying Figure 5 further, we find that
for perl andprintf, almost the entire instruction coverage
comes from regions that have dynamic (and static) loads.
Smart region building techniques might be able to dupli-
cate code such that within each copy, a load always return
the same value. A more straightforward solution would be
to break these regions into smaller regions and move the
loads outside the region. Our results indicate that breaking
regions to eliminate dynamic loads does not significantly
affect region reuse and also makes static loads more promi-
nent.

3.5 Regions: Contiguous or Non-
contiguous?

In the absence of an actual implementation, we use the
following equation to estimate expected benefits for
the purpose of evaluating two different region building
algorithms. The equation assumes a processor with 1 CPI
and tries to model an implementation similar to Connors
and Hwu [3].
Estimated execution time:E = N − x + c ∗ k + m ∗∑

EM(R)
Estimated speedup =N/E

N – # instructions simulated
x – # instructions removed (as part of regions)
k – #dynamicregions
c – Lookup cost (assumed 2 cycles)
m – Miss penalty if lookup in the memo table misses

(assumed 8 cycles)
EM(R) = Estimated misses forstatic region R =

(nI − s + 1) − nR where:
I is the first instruction ofR.

nI – the number of timesI executes
nR is the number of times it is reused as part ofR.
s is the first execution instance thatI is reused. Hence,

for the firsts − 1 instances, there is no lookup forI. After
the sth execution ofI, it is assumed that there is a table
lookup each timeI executes.

Caveats:This equation:

• Does not account for the cost of identifying regions
and the cost of program transformation (memoization
or specialization).

• Assumes a perfect memo-table (no capacity or con-
flict misses) in computing miss-rate

• Does not account for the cost of the memo table in
terms of the size and its impact on latency.

• Assumes a table lookup cost for specializable regions
too whereas in reality, such a runtime cost is not al-
ways incurred.

• Assumes that all instructions can be eliminated.

• Does not account for intelligence in the region-
building algorithm that can eliminate more than the
program analysis can identify (basically because of
the sub-optimality of the region building algorithm)

For a region to be reused, its input vector is looked up
in a memo table. Every lookup incurs the cost of lookup
in a memoization table. On a hit, all the instructions in the
region are bypassed which accrue as profit. On a miss, the
processor has to fetch instructions from the actual region
and this incurs a branch misprediction penalty. While this
penalty is incurred on every lookup miss in the implemen-
tation of Connors and Hwu [3], this need not be the case.

We use this analytical model to evaluate region building
algorithms rather than as an estimate of expected speedup
from the optimizations. Using this model, we evaluate ex-
pected benefits from two region-building algorithms, one
that builds contiguous regions and another that builds non-
contiguous regions. Table 2 shows three sets of results for
two different region building algorithms. For this evalu-
ation, only regions of size 4 and greater are considered.
Also, only static loads are included in regions and stores
are not part of regions. These constraints attempt to mimic
the model assumed by Connors and Hwu [3]. The first set
of results is the instruction coverage as a fraction of to-
tal executed instructions. The second set of results is the
fraction of reusable instructions that are in profitable re-
gions. Astatic reusable region is consideredprofitableif
the lookup and miss-rate overheads are smaller than the
reuse benefit. The final set of results is the estimated
speedups.

The results show that the estimated speedup has a pos-
itive correlation with the fraction of instruction coverage
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Benchmark perl m88ksim gcc interp printf go li ijpeg raytrace strata

Trace Length 1.2M 1M 1.2M 1M 0.3M 20M 6M 3M 1.5M 3M
Instruction Coverage (as a fraction of total instructions)

Non-contiguous 0.47 0.41 0.39 0.61 0.36 0.09 0.20 0.21 0.09 0.09
Contiguous 0.48 0.31 0.37 0.66 0.40 0.09 0.19 0.17 0.11 0.10

Fraction of reusable instructions that is profitable
Non-contiguous 0.98 0.96 0.81 0.96 0.96 0.32 0.64 0.49 0.78 0.50

Contiguous 0.90 0.95 0.86 0.97 0.95 0.33 0.66 0.42 0.60 0.69

Estimated Speedup
Non-contiguous 1.77 1.40 1.38 2.31 1.42 1.02 1.10 1.08 1.05 1.03

Contiguous 1.44 1.25 1.24 2.24 1.36 1.01 1.09 1.05 1.03 1.03

Table 2: Estimated speedups for different benchmarks

that is profitable. Therefore, as this fraction increases, the
estimated speedup can be expected to increase. In sum-
mary, the results indicate that there is significant reuse po-
tential in programs. These results were obtained with very
short simulation runs. The speedups over the entire run
of the program will likely be higher because: (i) the over-
heads of identifying reusable regions would get amortized;
and (ii) with a longer run, the fraction of profitable reuse is
expected to increase. This should explain the low analyt-
ical speedups for half the benchmarks when compared to
the results obtained by Connors and Hwu [3].

But, the comparison between contiguous and non-
contiguous regions is more meaningful and useful. The
results show that the instruction coverage is pretty similar
for both the algorithms (except form88ksim). The results
also indicate that for some benchmarks, non-contiguous re-
gions can provide much greater benefits than contiguous
regions. Forgcc, perl, m88ksim, the gap seems to be sig-
nificant. For the other benchmarks, contiguous regions do
as well as non-contiguous regions. Based on these two re-
sults, we therefore conclude that for the most part, reuse
optimizations should be biased towards contiguous regions
and should consider non-contiguous regions only when the
expected benefits are much higher.

However, the speedup gaps between the two algorithms
is likely to be higher than these results indicate because the
speedup equation does not account for the cost of misses
due to a finite-sized memo table. While not shown here, the
instructions are distributed across a much greater number
of regions for the contiguous algorithm when compared to
the non-contiguous algorithm. The region ratio is 3X for
gcc, 7X for perl, and 5X forinterp. Therefore, for a finite-
sized memo table, the miss rate is likely to be smaller if
large non-contiguous regions are exploited by specializa-
tion.

We conclude that memoization can yield greater
speedups when assisted by specialization because (i)
While contiguous regions are amenable to memoization,
some kind of specialization is necessary to exploit non-

contiguous regions. For some cases, a simple code re-
structuring might suffice to convert a non-contiguous re-
gion into a contiguous region which can then be memoized.
(ii) Even when a contiguous region can be memoized, if the
region has exactly one input vector, it is more profitable to
specialize the function because specializing contiguous re-
gions is straightforward (at least as hard as memoization).

4 Identifying regions at runtime

The previous sections presented a trace-based study of
region-based reuse. Reuse regions were identified by con-
structing dynamic traces of instructions, building the de-
pendence graph and identifying isomorphic subgraphs in
the graph. However, in a feedback-directed optimization
setting, region identification will not be based on build-
ing dynamic traces. Such a process is memory and time-
intensive.

In a runtime optimization setting, region building will be
based on constructing a value profile of selected instruc-
tions. At this time, we do not have a working algorithm
for online identification of regions. However, any such al-
gorithm is likely going to be based on collecting a value
profile. The value profile is used to identify instructions
that produce a small set of values. Using data and con-
trol dependence analysis, a set of dependent instructions
can be collected to be part of a region. Existing offline
static techniques for building regions [3, 13, 15] are struc-
tured along these lines. All these implementations perform
region-building statically using a separate profiling run for
collecting value profiles (or with assistance from program-
mer annotations [4,7]). However, our study shows that op-
portunities exist for online identification of regions and it
is also feasible to do such identification at runtime. Future
work will be targetted at collecting value profiles at run-
time with low overheads and using these to identify reuse
regions at runtime.
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5 Conclusions

This paper performs an empirical evaluation of computa-
tion reuse, with the focus on whether the reuse can be ex-
ploited profitably in a dynamic optimization setting. Our
findings suggest:(i) programs contain many large regions,
(ii) there is significant program reuse even at large reuse
thresholds, which indicates that the regions could likely be
exploited in an online setting,(iii) algorithms to identify
reuse regions should be biased towards building contigu-
ous regions and build non-contiguous regions only when
the expected benefits are significant, and(iv) employing
specialization along with memoization is likely to yield
greater speedups than memoization alone because many
regions have only one input vector, and because non-
contiguous regions require runtime code generation.
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