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Abstract the inputs and outputs of a computation. The computa-
tion is either a single instruction or a set of instructions.
Value locality is the phenomenon that a small number Wjhen the computation occurs again with the same inputs,
values occur repeatedly in the same register or memoryiige previously computed results are obtained from a reuse
cation. Non-speculativeuse of computatiof21] is one of table and the reusable instructions are bypassed.
the methods that has been proposed to exploit value localggqani and Sohi observed that up to 90% of dynamic in-
ity. However, reuse becomes profitable only when multiplgctions can be removed through reuse performed at the
instructions are reused simultaneously. Identifying suitallge| of individual instructions [21]. The primary obsta-
chains of reusable instructions requires a global view of thg, 14 exploiting this reuse potential is that to gain bene-
program and is therefore difficult to be accomplished wify 5 chain ofmultiple instructions must be reused simul-
hardware alone. taneously; reusing a single instruction typically does not
This paper investigates the properties of reuse in the c@fyortize the latency of looking up the reuse table. This
text of a dynamic optimization setting. We focus on chagentification of the set of instructions to be reusegjon

acterizing the available computation reuse in programs@nification constitutes one of the principal problems of
coarse granularities, and in determining the relative apgliyse.

cability of specialization and memoization, two commonly
used techniques for exploiting coarse-grained reuse.
Our study suggests that a reuse technigue based o
online optimization system is feasible due to the foIIowingt
reasons. First, programs contain many large regions:
average, regions of 16 or more dynamic instructions rep

sent 54% of all reuse, or 26% of all dynamic instructiongnd Hwu [3] wherein a compiler identifies reuse “regions”

Second, I_arge_r_egions are sta_ble over time and hencg Bg%onsulting aroff-line value profile. The hardware is
likely be identified cost-effectively with a dynamic opti-

. ) . then responsible for recording the execution instances of
mizer. Third, we observed that many reuse opportumu{%sése regions and reusing them
cannot be exploited witinemoizationthe currently used In th iler d in. it has b K f |
reuse technique, but must be supplemented wgjitbcial- n the comprier domain, it has been known for a long

ization a technique that requires run-time code generatié'me, that opportunities ,eX'St, to Speed_ up programs by ex-
ploiting knowledge of fixed/invariant inputs. These soft-

ware techniques to exploit knowledge of invariant inputs
1 Introduction are typically based on partial evaluation [9], in which the

program isspecializedor the invariant/fixed inputs. These
Recently, a number of studies have demonstrated that grgram specialization optimizations are applied to entire
grams exhibit significantalue locality the phenomenonregions of code that operate on the fixed inputs. Temp [4],
that a small number of values occur repeatedly in the saR¥C [7], Data Specialization [10], tcc [16], code special-
register or memory location [6, 8, 11, 17, 21]. Microafzation using value profiles [15] are all software techniques
chitectural techniques exploiting value locality follow onéor exploiting coarse-grained reuse.
of two paradigmsyvalue predictioror computation reuse  All known techniques for exploiting coarse-grained
While prediction-based techniques improve performanaise can be categorized as eitheremoizatioror aspe-
by breaking data dependences [11, 12, 18], reuse-basiatizationtechnique. Memoization is a technique based
techniques improve performance by reducing computation looking up previous results in a reuse table [2]. Spe-
latency ( [3, 8, 21]). cialization involves optimizing the program by hardcod-

This paper focuses on the reuse paradigm. Typicallyg the values produced by a reusable piece of code. Al-

computation reuse works by remembering irease table though various specialization techniques [4, 7,15, 16] have

A number of hardware techniques have been proposed
to identify and exploit coarse-grained reuse: linking data-
endent instructions in a h/w table [21], detecting reuse
the granularity of basic blocks [8], and trace-level reuse
T. More recently, a hybrid reuse technique using a combi-
tion of software and hardware was proposed by Connors



been studied, available opportunities for specialization 2 Methodology
general-purpose programs has not been studied before.

The goal of this paper is to investigate reuse usingzal Region definition
trace-based measurement of its properties. We perform our
study in the context of an online, dynamic optimizer. IMVe perform our study of reuse at the granularity of regions.
particular, we want to answer the following question}: (Informally, we consider @egionto be a set oflependent
What is the amount of reuse that comes from “large” rgstructions that can be reused simultaneously, but they
gions of instructions? (Reuse is likely most useful whereed not be contiguous. A region can consist of instruc-
reuse exists at large granularitiesi) Are the large reuse tions from multiple basic blocks without necessarily con-
regions “stable” over time? If yes, the region identified bigining all instructions of those basic blocks. A reuse re-
a dynamic optimizer may be used for a long time, whigion can also include multiple loop iterations and can span
amortizes the software cost of identifying itiiiY How procedure calls. Our regions have unrestricted structure
should reuse be implemented? What are the respectivelzbtause our goal is to let the characteristics of reusable
vantages of memoization and specialization for exploitimggions guide the development of reuse optimization tech-
reuse? nigues rather than the other way round.

The results of our study can be summarized as follows:

e (i) Our benchmarks contain a significant level of reuse A modified version of a loop from m88ksim

from large regions. On average, 66% of all reuse | int GetBreakpoint(Address addr)
(or 29% of dynamic instructions) comes from regions | {
containing 8 or more dynamic instructions. Regions

BreakPoint *bp = breakPoints;
for (inti = 0;i<n;i++, bp++) {

of sizes 16 or more represent only slightly less reuse, if (op->code && (bp->addr == addr
54%, which is 26% of all dynamic instructions. On | return bp;
regions of size 8 or more, the cost of looking up the

reuse table will likely be much smaller than the bene-| _ return NULL;
fits of bypassing the reused instructions. This conclu- }
sion is confirmed by the results of Connors and Hwu
who showed that reuse of large regions leads to sig-
nificant performance improvements [3].

e (ii) Reuse regions are highly stable over tim&ve
observed that, typically, the same region of instruc- Figure 1: Example of a region
tions is reused under the same inputs tens of times

(in a rather short program trace). This regularity of rigyre 1 is an example of a reusable region. The figure
aregion’s shape suggests that, with a hardware valyg,ys a simplified version of thekbrkptsfunction from

profiler,.we can afford to identify region_s viasoftwarcle_nggksim a SpecINT95 benchmark. The loop searches
at run-time, since the overheads are likely to be paigtough a breakpoint table for the breakpoingdtr . In
back. order to create a reuse opportunity, let us assume that the
o (iii) Specialization should be used together with mergentent of the breakpoint table does not change after the
oization. Our results show that, for many benchtable is initialized. Under this assumption, the value of
marks, specialization is more suitable than the cuaeldr is the only input value that changes across multiple
rently used memoization, because (a) most of thesills to this function. Consequently, all instructions in the
regions reuse the same (single) value, hence lookopp except folbp->addr == addr  are reusable. The
in the reuse table is not necessary; or (b) the shag@responding reuse region is shown in the figure. The
of their regions requires run-time code generatioregion is composed of a dynamically non-contiguous se-
which is implicit in specialization. guence of instructions (although the reused instructions are
The remainder of this paper is organized as foIIOV\&c.)ntiguous in the static_ program, in th? dynamic in;truc-
Section 2 discusses our notion of regions and presentst{RB stream th? reiqsed Instructions are interrupted with the
methodology we use to identify reusable regions. In Sdi@n-reusable=="instructions). .
tion 3, we provide data that characterizes reusable region¥lore formally, a region is defined to be any arbitrary
and draw conclusions from the data. In Section 4, Vggnnected;ubgrapﬁ of thedynamic program dependence
briefly discuss the characteristics of an online algorithm &2Ph(DPDG) which is constructed from a program trace.
bu”d, regionsin a feedback—dwected optimization setting. 1We require that there be no path in the graph from the output of a
We finally summarize in Section 5 the lessons learned fro@gion to its input. This constraint ensures that the input of a region does
this study. not depend on its output.

Region

Assume that:

(i) breakPoints is constant
(i) the content of the table idoes not change




The nodes of the DPDG consist of all the dynamic instrutiple smaller regions. Hence, for memoization, large re-
tion instances in the trace. The edges of the graph congisins are desirable.
of all register data dependences edges, all store-load mentor a specialization-based optimization, a high repeat
ory dependence edges, and all control dependence edgesie is more important than large regions (even though
Given this definition of a region, region reuse is thdarge regions are likely more beneficial than smaller re-
defined in terms of “equality” of these subgraphs, i.e. twgions). But, for a given trace length, a region of si¥e
regions are reusable if they have “identical” subgraphs. will have a higher repeat rate than a larger enclosing re-
gion of sizeN + 1. Hence, larger regions tend to have a
lower repeat rate than smaller regions. Therefore, we have
2.2 Region-level Reuse two conflicting requirements in our study since we are in-

. . . terested in both memoization as well as specialization.
Let us further examine the notion of reusable regions by.

drawi | ith th l-understood noi To strike a compromise, we first require that reuse re-
drawing an analogy wi 1€ well-understood notion Qfi, g are replicated at leasttimes — thereuse thresh-
instruction reuse. Instructiorf, is considered to be a

. . . X old. We will collect data for a range of thresholds, but for
reusable instance of aarlier instruction!; if both I; and

L . . particular optimization technique, this threshold should

[> are the samstaticinstruction, t_ake the same inputs angg high enough for the benefits of optimization to offset

?org/t/j:rcde the sarlr_1e qutpuft;. Reglqn reuse Is tlgen a ;tral “cost of identifying the region, any code re-structuring,
\rd genera |zat|onq Instruction reuse. eg]@)ms and/or hardware table setup. Then, subject to the thresh-

considered a reusable instance of an earlier regionf old constraint, we maximize region size. We now have an

both &, and R, performidentical operations, accept theopliimization problem. Subject to the threshold constraint,

same m_pu_ts and produce the same outp_ut_s._ An add|t|ovr\1/% would like to find the smallest set of regions that maxi-
constraint is thaR; and R, must also be disjoint. Two re-

. . ) . . . mizes instruction coverage (i.e. the number of instructions
glons are congldered to perforde_ntlcaloperatmns |f.they .that are part of a region). In the next section, we will con-
have an identical set 9f mstru.ctlons and haye an ident ﬁjler an algorithm for finding suamaximalreuse regions.
set of dependences, i.e. their corresponding dependence
subgraphs are isomorphic. Potentially, a large set of re-
gions can all have “identical” structures and have identicdl4 Region Building Algorithm

inputs and outputs. It is these sets of reusable regions we

are most interested in, because they are good prospect¥4prvery briefly describe how our algorithm identifies re-
specialization and memoization. gions. Conceptually, at the simplest, a dynamic instruction

forms a one-instruction region. By linking up with

Given these notions, an algorithm for detecting reugﬁ it i ble inst ith inouts and out
works by identifying identical subgraphs in the DPDG. all its earlier reusable instances (with same inputs and out-

put), the algorithm builds a reuse chain forwhich also
serves as a chain of reusable one-instruction regions. Next,
2.3 Identifying Reusable Regions this one-instruction region containingis expanded into
a two-instruction regiorRR,, by addingy, a dependent in-

Our study simulates benchmark programs, builds the ayruction ofz. The algorithm synthesizes the reuse chain
namic dependence graph, and partitions them into reusdblethe 2-instruction regioi, by “combining” individual
regions. During this partitioning, each dynamic instructodes in the reuse chains:ofindy. This process contin-
tion appears in at most one region. Note that even thoughess till the region cannot be expanded any further (i.e. the
dynamic instruction is part of at most one region, the cornesuse chain for regioR;, contains fewer than instances).
sponding static instruction can map onto multiple regions. The algorithm isgreedy (i) It always grows a region

Since we are interested in an online setting, there is @ big as possible (while satisfying the reuse threshold),
initial cost involved in building reuse regions. Besides thiand(ii) if a region R can be grown by adding a new node
both specialization and memoization have other associatedt does so without exploring other alternatives. Hence,
optimization overheads. Specialization has onlyramal  this algorithm can yield sub-optimal results in terms of in-
(high) optimization cost. This cost can be amortized onBtruction coverage. We followed this approach because the
if the same region is encountered repeatedly. Therefaremplexity of the problem (non-unique partitioning into
we require a high repeat-rate for regions that are speciagions) does not allow for an exhaustive search.
ized. Memoization, on the other hand, involves an initial Sub-optimality can also result from other practical con-
set-up cost which tends to be much lower. Thus, a low&derations of space and time constraints that arise in im-
repeat-rate is sufficient for memoization. But, memoizatementing the above algorithm. It is not possible to an-
tion also incurs overheads in the form of table look-ups aatyze an entire program trade in one pass because the
table spacesach timethe region is encountered. Theredependence graph f@r and the reuse chains consume a
fore, one large region will yield a greater benefit than mubt of memory and analysis time. To tackle this, the al-



gorithm breaks u@’ into smaller windows and analyzesndm88ksimare interpreters and hence we believe that the
the windows one at a time, and carries over some mininvalue profile seen in the short run reflects their behavior
summary information across windows. For t)@bench- over longer runs of the program.
mark, with a window size of 0.75M instructions, the in- The SpecInt95 benchmarks were compiled for the Sim-
struction coverage increased from 11.7% to 16.8% ovys#leScalar ISA bygccwith optimization flags “-O3". The
12M instructions. With a window size of 1.5M instrucJava programs were compiled by the Strata compiler for
tions, the coverage increased from 11.8% to 17.6% ovke SimpleScalar ISA. Strata is a research Java bytecode to
12M instructions. This indicates two things. First, by innative ISA compiler (written in Java) that was developed
creasing the length of the trace, greater number of regi@sspart of our research project [20]. This compiler does all
are identified. Second, the loss in coverage by breakingthp traditional local optimizations, eliminates null and ar-
into windows is tolerable. ray bound checks, and performs global register allocation.
In spite of these drawbacks, our greedy algorithm doiegerp is an interpreter loop taken from [7]. The input to
establish dower boundon the numbers and sizes of rethe interpreter is a factorial prograrprintf is a program
gions that exist in programs. where aprintf  like function prints data based on a for-
For this study, we used the functional simulator from th@at string. In this program, the formatting string is held
Simplescalar toolset [5]. All analysis was performed bgonstant, and the numeric data to be printed is changed
collecting a dynamic trace of instructions and constructimgthin a loop.
a dynamic program dependence graph from the trace. For
the purposes of this study, we eliminate trivially reusable
instructions (direct jump, direct call, and a code idiom thd Results
initializes addresses). We also eliminate fill-refill and save-
restore code and connect producers and consumers. Wgeuselnstruction coveragas the primary metric in char-
also ignore data dependences on the stack pointer anchgéerizing region reuse. A better metric is used in Sec-
turn address register since these dependences artificitiip 3.5. Instruction coveragés the fraction of all dynamic
constrain reusé Overall, the transformations either elimiinstructions that are contained in reusable regions. These
nate or ignore roughl§% to 15% of instructions. instructions can be removedéfachregion found by our
study is reused. Although not each region will be removed
in a realistic implementation (e.g. the region is too small),
instruction coverage suitably estimates the overall effec-
iyeness of region-level reuse as a performance enhancer.

2.5 Benchmarks

We conducted this study on a collection of SpecINT§
benchmarks, “micro-benchmarks”, and Java programs. Ta-
ble 2.5 lists the programs we used for our study, the sim@-1  V/ariation of Instruction Coverage with
lation \.N|ndow.5|ze fpr each benchmark and the total num- - payuse Threshold
ber of instructions simulated. For all these programs, sim-
ulation was performed by skipping over the initializatioRirst, we present thiastruction coveragéor all the bench-
phases of the programs. For the SpecInt95 benchmarksmarks. Because reusing individual instructions rarely
used the recommendations of Sherwood and Calder [19biings any benefit, single-instruction regions are not in-
determining the starting point of our simulation. For theluded in the statistics. Further, note that roughly 5%—
Java benchmarks, the starting points were determined é@%%6 of instructions are eliminated due to preprocessing of
pirically. the program dependence graph (See Section 2). For some
The choice of window size and trace length was detd@enchmark and reuse threshold combinations, the data
mined by the amount of available memory. Even thougloints are missing because the simulations could not com-
we collect our data for short traces, we believe that our ggete in available memory and/or in a reasonable amount
sults are still meaningful, i.e. they characterize behaviorafitime.
at least a subset of important hotspots. Excepgfoand In summary, our benchmarks contain a very high po-
gcg all the other SpecINT95 benchmarks have few wetential for region-based reuse. Most importantly, in most
defined hotspots [14]. Hence, for all these benchmark&nchmarks, the reuse is not very sensitive to the thresh-
the trace is likely to capture the execution of some hotspold level. Even for a threshold as high as 100, between
For example, the biggest hotspotmérl has 650 instruc- 10% and 60% of instructions can be removed, and across
tions [14]. Thus, the 0.5M trace fgrerl would capture all benchmarks, on an average, about 35% of dynamic in-
at least 750 executions of any hotspot. Further, lpgh structions can be eliminated.
2If A calls B from different stack depths but with same parameters, We dlscu‘?’sed in Section 2 that we study the reuse behav-
the stack pointer will have different values each time and will break el @cross different thresholds to evaluate whether reusable
reusable region at the call boundary. regions are amenable to specialization, i.e. whether the




| Benchmark | Comment | Window Size | Total Instrs | Input |
go Specint95 1.5M 12M 5stone21.siz, 5stone21.in (Ref)
li Specint95 M 4M 8-queens.Isp (Test)
ijpeg SpecInt95 0.5M 3M Test
m88ksim Specint95 0.2M 0.8M Ref input
gcc Specint95 0.5M 0.5M ccep.i
perl Specint95 0.5M 0.5M primes.pl, primes.in
raytrace SpecJVM98 0.5M 15M Speed 100
strata Java 0.5M 2M Compiles a Java class file
interp Micro-Benchmark 0.1M 0.3M Factorial 70
printf Micro-Benchmark 0.1M 0.3 M Prints 1 through N

Table 1: Benchmarks used in this study

have been simulated for different trace lengths. As

indicated earlier, this choice was dictated by the memory
and time requirements of the simulations. In Section 2.4,
we noticed that instruction coverage increases (and likely
stabilizes) with increasing trace lengths. Therefore, if all

benchmarks were simulated to the same trace length of,
say 10M instructions, the curves would likely look better.

Variation of Instruction Coverage with Reuse Threshold
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2. Forgcq further experiments show that the behav-
ior differs in different phases of the program. In the
parsing and output phasesgxdc, the instruction coverage

is of the order of 20% unlike theeload phase shown in

the result graphs. Nevertheless, the results indicate that
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gcchas phases where it exhibits high reusability.
Figure 2: Variation of instruction coverage with Reuse

threshold 3.2 Variation of Instruction Coverage with
Region Size

benefits would offset the overheads. Our results indicgigeap, though a large number of instructions are covered
that there is potential for specialization within some ‘Hy reusable regions, it is more useful to study how these
these benchmarks. instructions are distributed amongst regions of different
Figure 2 shows the variation of instruction coverage witjzes.
the reuse threshold. The behavior differs across benchrigure 3 shows the distribution of instruction coverage
marks, but as should be expected, there is a uniform gross different region sizes for a reuse threshold of 50.
duction in instruction coverage as the reuse thresholdrige bottom curve shows how often a region was reused:;
increased. Fogo andgcg the coverage at a threshold opecause each region reuse requires a lookup, this curve
100 is half of what it is at a threshold of 10 because bOﬁbugmy corresponds to the cost of performing the reuse.
these benchmarks are known to execute a large numbet®é top curve shows how many instructions were reused,
program paths [1] and their hotspots do not cover large p@hich roughly corresponds to the benefit of reuse. The
tions of their execution [14]. Thus, even though there exgirther apart these curves, the greater the benefit. Note that
reusable regions, the code containing them is not execugs figure shows the distribution as a fraction of reusable
often enough to bring the reuse over the threshold. instructions. The actual instruction coverage can be read
For benchmarks liken88ksimandinterp, the reduction from Figure 2. The figure shows results fgo, gcc,
in instruction coverage is much smaller because thes88ksimandstrata These are representative of the be-
benchmarks have well-defined hotspots with significamavior of the other benchmarks.
sources of reusability. At one end of the spectrungo has most of its instruc-
tions in small regions. Over 70% of the reusable instruc-
Caveats: tions are in regions of size 7 or less. The behavior of
1. In this and the following graphs, different benchmarkisis similar, though not as bad as thatgd. For these
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Figure 3: Cumulative instruction coverage across different region sizes for reuse threshold 50

benchmarks that have a predominance of small regiotisn; a region with multiple values requires memoization.
one might require more fine-grained support in hardwareThe termreuse regiorwe considered so far denoted a set
(i.e., a faster lookup in the reuse table) to profitably erf reused dynamic instructions together with thgrticu-
ploit them. TheStratabenchmark is slightly better. Aboutlar reused values (i.e., the input vector). In order to deter-
35% of the reusable instructions are in regions of size irfne how many different input vectors appear in a given
or more. Thus, there is still reasonable reuse potentiakgdticregion of code, we need to collapse the reuse regions
bigger region sizegaytraceandijpegfall in this category. according to their shape, thus discovering how many val-
At the other end of the spectrum agec, m88ksim, perl, ues appeared in the same region of dynamic instructions.
interp, andprintf. For gcc over 70% of the instructionsMore precisely, we collapse regions that are isomorphic
covered are in regions of size 40 or more. Further, as et may have different values).
graphs show, there are certain well-defined jumps in theFigure 4 shows the cumulative instruction coverage
instruction coverage. These correspond to large regi@esoss regions with identical shape (“identical” regions)
that occur repeatedly. Likewise, with88ksimover 72% but different number of unique input vectors, called IO in-
of instructions covered are in regions of size 50 or morstances. Reuse on the left-most side of each curve can be
As with gcg there are well-defined jumps in the instructioremoved with specialization; any additional reuse requires
coverage indicating the presence of large regions that ocaigmoization. The first graph in the figure shows this dis-
repeatedly. These results indicate that there is a lot of retréisution for m88ksim, perl, interp, printf, gcc For all
potential in many programs at large granularities. these benchmarks, over 80% of instructions are in “identi-
cal” regions that has exactly one input vector. Thus, these
programs are very amenable to specialization. Except for
m88ksim the rest have almost all reusable instructions in
We now answer the question of how many different valueede-equivalent regions with at most 8 unique input vec-
are reused in a region. Roughly, a region invoked with tiers.
same value always can be optimized with code specializaThe second graph in the figure shows the distribution for

3.3 Variance of the input vectors in a region
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Figure 4: Distribution of input vectors (in the graph, called IO instances)

go, li, ijpeg, raytrace andstrata There is a sharp differ-

ence with the first graph: only 25% - 45% of reuse comes

from regions with one input vector. Due to the much higher

degree of variation, memoization is likely to be more suit-

able than specialization.
An interesting observation is that except fmg the first

group of programs on the left are interpreters. Our mea-

surement thus empirically confirms the accepted wisdom®
that code specialization works particularly well for inter-
preters (because they operate on a rarely-modified array

of instructions). Althouglgccis not an interpreter, in the

window of simulation, it probably operated on data that did

not change.

The important conclusion is that both memoization and
specialization are needed to exploit the available réuse.

This also indicates that an optimization framework that e

employs both memoization and specialization is likely to

perform better than either one individually.

3.4 Load Behavior

If a region has internal loads, these loads adtrgdicit in-

puts to the region because stores can potentially change t
value that is loaded across multiple invocations of the r.

gion. In the presence of loads, reuse implementations

either assume they always load the same value and so
how guarantee this invariance (via software or hardware)%
they can restructure regions so that loads are never insié

regions require no special support for memory pro-
tection.

If a region has no loads but has stores, then stores
must be performed to maintain correct program state.
This region classification includes regions that have
side-effects on the memory.

Given a memory address, if a load always returns the
same value, then it is consideredtatic load. Note
that we only require value equality on memory loca-
tions, not on program PC. Thus, a load instruction can
load from multiple memory locations, and for each of
those addresses, the load can eithesthécor not. If
aregion has only static loads, itis classified &tatic
region.

Aload thatis not static is termeddgnamidoad. That

is, this load returns multiple values from the same
memory location. If a region has at least one load
that is static and at least one load that is dynamic, it is
classified as &tatic+Dynamiaegion.

¢ If aregion has no static loads, then it is classified as a

Dynamicregion.

rV—eigure 5 shows the instruction coverage across the dif-

lhent load classes. All benchmarks have non-trivial num-

eer_of instructions in regions that are side-effect free. For

region, at the cost of more lookups. In order to determine

Q andijpeg, this accounts for more than half the instruc-
ion coverage.

an appropriate strategy, we classify regions based on tiigtic Loads: The significant result from Figure 5 is
load behavior as follows. the predominance of instructions that are present in re-

gions that have static loads (Static and Static+Dynamic

¢ If a region has no loads and no stores, it is a puregions). For all benchmarks, at least half the instruc-
computation region without any side effects. Theg®n coverage across all benchmarks comes from the Static
and Static+Dynamic classes. This indicates that it is very

3Note that while memoization can sometimes be used where Speciiﬁll'portant to have some hardware or software support for
ization is applicable, memoization cannot fully subsume specialization.

For instance, the typical interpreter can be specialized [7] but not men%atiC loads. When SUCh sup_port is present, the reuse te_Ch'
ized. nigue can assume the invariance of these loads and elim-




LOAD class distribution: Reuse Threshold 50 n1 —the number of time$ executes
ng is the number of times it is reused as parff

_ s is the first execution instance thais reused. Hence,
L for the firsts — 1 instances, there is no lookup for After
Soynamic the st execution of!, it is assumed that there is a table
osuatic+Dynamic| - [ookup each timd executes.

O Static
O Only-stores
O Side-effect-free

e I L] Caveats: This equation:
Jﬂ_= 0 H [ H :E_ e Does not account for the cost of identifying regions

and the cost of program transformation (memaoization
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Figure 5: Region classification based on load behavior § paes not account for the cost of the memo table in

terms of the size and its impact on latency.

inate them. To guarantee correctness, this would require Assumes a table lookup cost for specializable regions
some kind of detection scheme to detect violations of the too whereas in reality, such a runtime cost is not al-
assumptions. ways incurred.

e Assumes that all instructions can be eliminated.
Dynamic Loads : Studying Figure 5 further, we find that
for perl and printf, almost the entire instruction coverage
comes from regions that have dynamic (and static) loads.
Smart region building techniques might be able to dupli-
cate code such that within each copy, a load always return
the same value. A more straightforward solution would beFor a region to be reused, its input vector is looked up
to break these regions into smaller regions and move {heéx memo table. Every lookup incurs the cost of lookup
loads outside the region. Our results indicate that breakiath memoization table. On a hit, all the instructions in the
regions to eliminate dynamic loads does not significanil#gion are bypassed which accrue as profit. On a miss, the
affect region reuse and also makes static loads more progigcessor has to fetch instructions from the actual region

e Does not account for intelligence in the region-
building algorithm that can eliminate more than the
program analysis can identify (basically because of
the sub-optimality of the region building algorithm)

nent. and this incurs a branch misprediction penalty. While this
penalty is incurred on every lookup miss in the implemen-
3.5 Regions: Contiguous or Non- tation of Connors and Hwu [3], this need not be the case.

We use this analytical model to evaluate region building
algorithms rather than as an estimate of expected speedup
In the absence of an actual implementation, we use fh@m the optimizations. Using this model, we evaluate ex-
following equation to estimate expected benefits fpected benefits from two region-building algorithms, one
the purpose of evaluating two different region buildinthat builds contiguous regions and another that builds non-
algorithms. The equation assumes a processor with 1 €Bhtiguous regions. Table 2 shows three sets of results for
and tries to model an implementation similar to Connotwo different region building algorithms. For this evalu-

contiguous?

and Hwu [3]. ation, only regions of size 4 and greater are considered.

Estimated execution timeEl = N — x + ¢ x k + m x Also, only static loads are included in regions and stores

SEM(R) are not part of regions. These constraints attempt to mimic

Estimated speedup¥/FE the model assumed by Connors and Hwu [3]. The first set
N —# instructions simulated of results is the instruction coverage as a fraction of to-
x —# instructions removed (as part of regions) tal executed instructions. The second set of results is the
k —#dynamicregions fraction of reusable instructions that are in profitable re-
¢ — Lookup cost (assumed 2 cycles) gions. Astatic reusable region is considerpdbfitableif
m — Miss penalty if lookup in the memo table missethe lookup and miss-rate overheads are smaller than the

(assumed 8 cycles) reuse benefit. The final set of results is the estimated
EM(R) = Estimated misses fostatic region R = speedups.

(n; — s+ 1) — ng where: The results show that the estimated speedup has a pos-
1 is the first instruction oRR. itive correlation with the fraction of instruction coverage



Benchmark || perl | m88ksim| gcc |interp | printf [ go | i | ijpeg | raytrace] strata |
Tracelength [12M] IM [12M] IM [O03M[20M[ 6M [ 3M [ 15M | 3M
Instruction Coverage (as a fraction of total instructions)

Non-contiguous || 0.47 0.41 039 | 061 | 0.36 | 0.09| 0.20| 0.21 0.09 0.09
Contiguous 0.48 0.31 0.37 | 0.66 | 0.40 | 0.09| 0.19| 0.17 0.11 0.10
Fraction of reusable instructions that is profitable
Non-contiguous || 0.98 0.96 0.81| 096 | 0.96 | 0.32| 0.64| 0.49 0.78 0.50
Contiguous 0.90 0.95 0.86 | 097 | 0.95| 0.33| 0.66| 0.42 0.60 0.69
Estimated Speedup
Non-contiguous || 1.77 1.40 138 | 231 | 1.42 | 1.02| 1.10| 1.08 1.05 1.03
Contiguous 1.44 1.25 124 | 224 | 1.36 | 1.01 | 1.09| 1.05 1.03 1.03

Table 2: Estimated speedups for different benchmarks

that is profitable. Therefore, as this fraction increases, tmntiguous regions. For some cases, a simple code re-
estimated speedup can be expected to increase. In sstmicturing might suffice to convert a non-contiguous re-
mary, the results indicate that there is significant reuse gien into a contiguous region which can then be memoized.
tential in programs. These results were obtained with veiiy Even when a contiguous region can be memoized, if the
short simulation runs. The speedups over the entire magion has exactly one input vector, it is more profitable to
of the program will likely be higher because: (i) the ovespecialize the function because specializing contiguous re-
heads of identifying reusable regions would get amortizeglpns is straightforward (at least as hard as memoization).
and (ii) with a longer run, the fraction of profitable reuse is
expected to increase. This should explain the low analyt-
ical speedups for half the benchmarks when compared to
the results obtained by Connors and Hwu [3]. 4
But, the comparison between contiguous and non-
contiguous regions is more meaningful and useful. TA&e previous sections presented a trace-based study of
results show that the instruction coverage is pretty similtggion-based reuse. Reuse regions were identified by con-
for both the algorithms (except fan88ksin). The results structing dynamic traces of instructions, building the de-
also indicate that for some benchmarks, non-contiguouspendence graph and identifying isomorphic subgraphs in
gions can provide much greater benefits than contigudg graph. However, in a feedback-directed optimization
regions. Foigce, perl, m88ksimthe gap seems to be sigsetting, region identification will not be based on build-
nificant. For the other benchmarks, contiguous regions itg dynamic traces. Such a process is memory and time-
as well as non-contiguous regions. Based on these twoiréensive.
sults, we therefore conclude that for the most part, reusén a runtime optimization setting, region building will be
optimizations should be biased towards contiguous regitisgsed on constructing a value profile of selected instruc-
and should consider non-contiguous regions only when tliens. At this time, we do not have a working algorithm
expected benefits are much higher. for online identification of regions. However, any such al-
However, the speedup gaps between the two algorithgesithm is likely going to be based on collecting a value
is likely to be higher than these results indicate because ghefile. The value profile is used to identify instructions
speedup equation does not account for the cost of misgest produce a small set of values. Using data and con-
due to a finite-sized memo table. While not shown here, tttel dependence analysis, a set of dependent instructions
instructions are distributed across a much greater numban be collected to be part of a region. Existing offline
of regions for the contiguous algorithm when compared $tatic techniques for building regions [3, 13, 15] are struc-
the non-contiguous algorithm. The region ratio is 3X faured along these lines. All these implementations perform
gcg 7X for perl, and 5X forinterp. Therefore, for a finite- region-building statically using a separate profiling run for
sized memo table, the miss rate is likely to be smallergbllecting value profiles (or with assistance from program-
large non-contiguous regions are exploited by specializaer annotations [4,7]). However, our study shows that op-
tion. portunities exist for online identification of regions and it
We conclude that memoization can yield greatés also feasible to do such identification at runtime. Future
speedups when assisted by specialization becausew(jk will be targetted at collecting value profiles at run-
While contiguous regions are amenable to memoizatidime with low overheads and using these to identify reuse
some kind of specialization is necessary to exploit noregions at runtime.

Identifying regions at runtime
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Conclusions [10]

This paper performs an empirical evaluation of computa-
tion reuse, with the focus on whether the reuse can be ex-
ploited profitably in a dynamic optimization setting. Oufi1]
findings suggest(i) programs contain many large regions,
(i) there is significant program reuse even at large reuse
thresholds, which indicates that the regions could likely be
exploited in an online settindjii) algorithms to identify
reuse regions should be biased towards building contigu-
ous regions and build non-contiguous regions only whé?]
the expected benefits are significant, giwd employing
specialization along with memoization is likely to yield
greater speedups than memoization alone because man
regions have only one input vector, and because nék3
contiguous regions require runtime code generation.
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