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Abstract. Within two or three technology generations, processor architects will
face a number of major challenges. Wire delays will become critical, and
power considerations will temper the availability of billions of transistors.
Many important applications will be object-oriented, multithreaded, and will
consist of many separately compiled and dynamically linked parts. To accom-
modate these shifts in both technology and applications, microarchitectures will
process instruction streams in a distributed fashion -- instruction level distri-
buted processing (ILDP). ILDP will be implemented in a variety of ways,
including both homogeneous and heterogeneous elements. To help find run-
time parallelism, orchestrate distributed hardware resources, and implement
power conservation strategies, an additional layer of abstraction -- the virtual
machine layer -- will likely become an essential ingredient. Finally, new
instruction sets may be necessary to better focus on instruction level communi-
cation and dependence, rather than computation and independence as is com-
monly done today.

1. Introduction
Processor performance has been increasing at an exponential rate for decades, and
most computer users have come to take it for granted. In fact, this performance
increase has come only through considerable concerted effort involving the interplay
of microarchitecture, underlying hardware technology, and software (compilers,
languages, applications). Because of important shifts in underlying technology and
software, future microarchitectures are likely to be very different from the complex
heavyweight superscalar processors of today.

For nearly twenty years, microarchitecture research has emphasized instruction
level parallelism (ILP) -- improving performance by increasing the number of
instructions per cycle. In striving for higher ILP, microarchitectures have evolved
from pipelining to superscalar processing, with researchers pushing toward increas-
ingly parallel processors. Emphasis has been on wider instruction fetch, higher
instruction issue rates, larger instruction windows, and increasing use of prediction
and speculation. This trend has largely been based on exploiting advances in technol-
ogy and has led to very complex, hardware-intensive processors.

Regarding applications, the focus for microarchitecture research has been
SPEC-like programs, consisting of single threaded programs written in the conven-
tional C and FORTRAN languages, following a big static compile model. That is, an
entire program binary is compiled at once, with very high optimization, sometimes



with the assistance of execution profile feedback.

Starting with ever-increasing transistor budgets and the conventional, big-
compile view of software, microarchitecture researchers made significant progress
through the mid-90s. More recently, however, the problem has seemingly been
reduced to one of finding ways of consuming transistors in some fashion. It is not
surprising that the result is hardware-intensive and complex. Furthermore, the com-
plexity is not just in critical path lengths and transistor counts; there is also high intel-
lectual complexity resulting from increasingly intricate schemes for squeezing perfor-
mance out of second and third order effects.

Substantial shifts in both hardware and software technology are currently
underway, and the conventional ILP-based microarchitecture approach will not fit
with either future hardware or software. In hardware, long wire delays will dominate
gate delays, and power consumption is rapidly becoming a limiting consraint. In
software, the shift is toward object oriented programs that exploit thread level paral-
lelism and dynamic linking. These shifts will lead to general purpose microarchitec-
tures composed of small, simple, interconnected processing elements, running at a
very high clock frequencies. Multiple threads, some completely transparent to con-
ventional software, will be managed by a hidden layer of implementation-specific
software, co-designed with the hardware. This hidden software layer will manage the
distributed hardware resources to use power efficiently and dynamically optimize
executing threads based on observed inter-instruction dependence and communica-
tion.

In short, the microarchitecture focus will shift from Instruction Level Parallel-
ism to Instruction Level Distributed Processing (ILDP) where emphasis will be on
inter-instruction communication with dynamic optimization and a tight interaction
between hardware and low-level software. The following sections are a more in-
depth discussion of these ideas.
2. Technology Shifts

First, consider some of the important hardware and software changes that are driving
the development of future microarchitectures.

On-Chip Wires

Both short and long wires cause problems for microprocessor designers. In the
case of local (short) wires, the problem is one of congestion. That is, for many com-
plex, dense structures, transistor sizes do not determine area requirements, wiring
does. With global (long) wires, delays will not scale as well as transistor delays,
because wire aspect ratios will be more constrained than in the past and fringing
capacitance becomes an important factor.

An interesting analysis of wire delay implications is given in [1] where reach-
able chip area, measured in terms of SRAM memory cells, is projected. Because of
longer wire delays in the future, fewer bits of memory will be reachable in a single
clock cycle than today. For example, in 35 nm technology, it is projected that the
number or reachable bits will be about half of what is reachable today.

Of course, reachability is a problem with general logic as well. As logical
structures become more complex (and take relatively larger area) global delays will
increase simply because structures are farther apart. To put it another way, using



simple logic will likely improve performance directly by reducing critical paths, but
also indirectly by reducing area (and overall wire lengths). Of course, this is not a
new observation -- all the Seymour Cray designs benefited from this principle.

Finally, global multi-stop buses, i.e. buses with several receivers (and possibly
multiple drivers) will have very long delays because of both wire capacitance and the
loading on the bus. This type of on-chip, intra-processor bus is likely to disappear in
the future because of its very poor delay characteristics.

Power

With respect to power, dynamic power is related to voltage levels and transistor
switching activity, i.e. dynamic power ∼∼ AV 2 f, where A is a measure of switching
activity, V is the supply voltage and f is the clock frequency. Higher clock frequen-
cies and transistor counts have caused dynamic power to become a very important
design consideration. Because of the dependence on voltage level, the trend is
toward lower power supply voltage levels.

The power problem is likely to get much worse, however. To maintain high
switching speeds with reduced supply voltages, transistor threshold voltages are also
becoming lower. This causes transistors to become increasingly "leaky"; i.e. current
will pass from source to drain even when the transistor is not switching. In the future,
the resulting static power consumption will likely become dominant, probably within
the next two or three chip technology generations.

There are relatively few solutions to the static power problem. One can selec-
tively gate-off the power supply to unused parts of the processor, but this will be a
higher-overhead process than clock-gating used for managing dynamic power and
can lead to difficult-to-manage transient currents. Alternatively, one can use fewer
transistors, or at least fewer fast (i.e. leaky) transistors.

Software

In software, the emphasis in general purpose computing has shifted to integer-
oriented commercial applications, where irregular data is common and data move-
ment is often more important than computation. Highly structured data remains
important for multimedia applications that tend to use integers and low precision
floating point data. These applications are often library-oriented, however, and are
often supported by special processors or instruction set extensions.

There has also been a shift toward object oriented languages and dynamic link-
ing which increase programmer productivity and software reliability. Microarchitec-
ture researchers typically assume a high level of compiler optimization, often using
profile-driven feedback, but in fact, many application binaries are not highly optim-
ized. Furthermore, global compile-time optimization is not compatible with dynamic
linking. And, with a variety of hardware platforms all supporting the same instruc-
tion set, it becomes difficult to optimize a single binary to be executed on all of them.

Consequently, the challenge presented to microarchitects is to provide high per-
formance for irregular, difficult-to-predict applications, many of which have not been
compiler-optimized.

On-Chip Multithreading



Finally, an important trend that brings together microarchitecture and applica-
tions is the use of on-chip multithreading. Multithreading has a very long tradition,
but primarily in very high end systems where there has not been a broad software
base. For example, multiprocessing became an integral component of large IBM
mainframes and Cray supercomputers in the early 1980s. However, the widespread
use of multithreading has been a chicken-and-egg problem that now appears to be
near a solution.

As a way of continuing the exponential CMOS performance curve, single chips
now support multiple threads, or will soon [2,3]. This support is either in the form of
multiple processors [4] or wide superscalar hardware capable of supporting simul-
tatneous multithreadng (SMT) [5,6]. In any case, the trend is toward widespread
availability of hardware-supported on-chip multithreading, and general purpose
software will no doubt take advantage of its availability. Furthermore, additional
motivation for on-chip multithreading is the increasing number of important applica-
tions characterized by many parallel, independent transactions. For example, many
web server applications are becoming throughput oriented.
3. Instruction Level Distributed Processing

Historically, computer architecture innovation has not been purely based on exploit-
ing technology advances; it has also been used to accommodate technology shifts. In
the case of cache memories, for example, architecture innovation was used to avoid
tremendous slow downs - by adapting to the widening gap in relative performance
between processor and DRAM technologies. We now seem to be at a point where
microarchitecture innovation will be driven by shifts in both technology and applica-
tions. The goal is to maintain long term performance trends in the face of increasing
on-chip wire delays, power consumption, and irregular throughput-oriented applica-
tions that are not compatible with big, static, highly optimized compilations.

A microarchitecture paradigm which deals effectively with technology and
application trends is Instruction Level Distributed Processing (ILDP). A processor
following the ILDP paradigm consist of a number of distributed functional units, each
fairly simple with a very high frequency clock cycle (for example, Fig. 1).

The presence of relatively long wire delays implies processor microarchitec-
tures that explicitly account for inter-instruction and intra-instruction communication.
As much as possible, communication should be localized to small units, while the
overall structure should be organized for communication. Communication among
units will be point-to-point (no busses), with delays measured in clock cycles. Parti-
tioning the processor to accommodate these delays will be a significant part of the
microarchitecture design effort. There may be relatively little low-level speculation
(to keep the transistor counts low and the clock frequency high); determinism is
inherently simpler than prediction and recovery.

With high intra-processor communication delays, the number of instructions
executed per cycle may level off or decrease when compared with today, but overall
performance can be increased by running the smaller distributed processing elements
at a much higher clock rate. The structure of the system and clock speeds have impli-
cations for global clock distribution. There will likely be multiple clock domains,
possibly asynchronous from one another.



IF

IP

IP

CP

CP

CP

CP

IP

IP

FP

FP

Fig. 1. An example ILDP microarchitecture consisting of an instruction
fetch unit, integer processors, floating point processors and
cache processors.

Currently, there is an increasing awareness that clock speed holds the key to
increased performance. For several years, the big push has been for ILP, and gains
have been made, but they now appear to be diminishing, and it makes sense to push
more in the direction of higher clock speeds. This idea is not new; the role of clock
speed has long been the subject of debate among RISC proponents. Using a very fast
clock was certainly the Cray approach, and it is apparent in the evolution of in Intel
processors (see Fig. 2). [X11,X12,X13] In contrast to the Intel processors where the
pipelines have become extremely deep, the challenge will be to use simplicity to keep
pipelines shallow and efficient, even with a very fast clock.
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Fig. 2. Evolution of Intel processor pipelines.



Turning to power considerations, the use of a very fast clock in an ILDP com-
puter will by itself tend to increase dynamic power consumption. However, the very
modular, distributed nature of the processor will permit better power management.
With most units being replicated, resource usage and dynamic power consumption
can be managed via clock gating. In particular, usage of computation resources can
be monitored and subsets of replicated units can be used (or not) depending on com-
putation requirements and priorities.

For static power, a high frequency clock will use fast leaky transistors more
effectively. If transistors consume power even when they are idle, it is probably
better to keep them busy with active work -- which a fast clock will do. In addition,
the replicated distributed units will make selective power gating easier to implement.
Furthermore, some units may be just as effective if slower transistors are used, espe-
cially if multiple parallel copies of the unit are available to provide throughput.

For supporting on-chip multithreading, an ILDP provides the interesting possi-
bility of a hybrid between chip multiprocessors and SMT. In particular, the computa-
tion elements can be partitioned among threads. That is, with simple replicated units,
different subsets of units can be assigned to individual threads. As a whole, the pro-
cessor is shared as in SMT, but any individual unit services only one thread at a time,
as in a multiprocessor. The challenge will be the management of threads and
resources in such a fine-grain distributed system.

Following sections delve deeper into types of distributed microarchitectures.
3.1. Dependence-based Microarchitecture

Clustered dependence-based architectures [7] are one important class of ILDP pro-
cessors. The 21264 [8] is a fairly recent example. In these microarchitectures, pro-
cessing units are organized into clusters and dependent instructions are steered to the
same cluster for processing.

The 21264 microarchitecture there are two clusters, with different instructions
routed to each at issue time (Fig. 3). Results produced in one cluster require an addi-
tional clock cycle to be routed to the other. In the 21264, data dependences tend to
steer communicating instructions to the same cluster. Although there is additional
inter-cluster delay, a faster clock cycle compensates for the delay and leads to higher
overall performance.

In general, a dependence based design may be divided into several clusters;
cache processing can be separated from instruction processing; integer processing can
be separated from floating point, etc. In a dependence-based design, dependent
instructions are collected together, so instruction control logic within a cluster is
likely to be simplified, because there is no need to look for independence if it is
known not to exist. For example, if all the instructions assigned to a cluster are
known to form a dependence chain (or nearly so), they can be issued in order from a
FIFO, greatly simplifying instruction control logic.

The formation of dependent instructions can be done by the compiler, or at
various stages in the pipeline, the dispatch stage being a good possibility. Waiting
until the issue stage as in the 21264 may reduce inter-unit communication slightly,
but at the expense of more complex issue logic.
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Fig. 3. Alpha 21264 clustered microarchitecture.

3.2. Heterogeneous ILDP

Another model for an ILDP is a heterogeneous system where a simple core pipeline is
surrounded by outlying helper or service engines (Fig. 4). These helper engines are
not in the critical processing path, so they have non-critical communication delays
with respect to the main pipeline, and may even use slower transistors to reduce static
power consumption.

Examples of helper engines include the pre-load engine of Roth and Sohi [9]
where pointer chasing can be performed by a special processing unit. Another is the
branch engine of Reinman et al. [10]. An even more advanced helper engine is the
instruction co-processor described by Chou and Shen [11]. Helper engines have also
been proposed for garbage collection [12] and dynamic correctness checking [13].
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Fig. 4. A heterogeneous ILDP chip architecture.



4. Managing ILDP: Co-Designed Virtual Machines

It seems clear that an ILDP computer will need some type of higher level manage-
ment of the distributed resources used by executing instructions. This management
involves the steering of instructions and data among the units that compose the pro-
cessor. It also involves allocation of the distributed resources for multiple simultane-
ous threads and power managment.

One option is for instruction interactions to be analyzed by compiler-level
software. At compile time, inter-instruction dependences and communication can be
determined (or predicted), then this information can be encoded into machine level
instructions. At runtime this information can be used to steer instruction control and
data information through the distributed processing elements.

Alternatively, hardware can be used to determine the necessary inter-
instruction attributes by using hardware tables to collect dynamic history information
as programs are executed. Then, this history information can be accessed by later
instructions for steering of control and data information.

Overall management of processor resources is another important consideration;
for example, resource load balancing will likely be needed for good performance -- at
both the instruction level and thread level. For power efficiency, gating off unused or
unneeded resources requires usage analysis and coordination, especially if power gat-
ing is widespread across a chip. This function can potentially be done via hardware or
software, implemented as part of the OS.

Although they are viable solutions, a big disadvantage of software approaches
based on conventional OS and compilers is that they likely require re-compilation and
OS changes to fit each particular ILDP hardware platform. Disadvantages of the
hardware-intensive solution are complex, power-consuming hardware and a rather
limited scope for observing and collecting information related to the executing
instruction stream.

A more radical and innovative solution is provided by currently evolving
dynamic optimizing software and virtual machine technologies. A Co-designed Vir-
tual Machine is a combination of hardware and software that implements a virtual
architecture. The key idea is to provide hardware designers with a layer of software
that resides in a hidden portion of DRAM main memory. This software layer will
allow relatively complex dynamic program analysis and optimization. The base tech-
nology is used by Transmeta [14] and the IBM Daisy/BOA projects [15] primarily to
support whole-system binary translation. The IBM 390 processors use a similiar
technology, "millicode" [16], to support execution of complex instructions.

Fig. 5 illustrates the overall structure. The physical main memory space
addressable by implementation hardware is larger than the memory space addressable
programs supported by the architected hardware. Code and data to be used for
managing ILDP hardware is placed in "hidden memory" at boot time.

At certain times during normal program execution (application or OS) the
hardware can save the current program counter value and load the PC with a pointer
into VMM code. The hardware may be designed to invoke the VMM in this manner
at the time of (selected) program traps or systems call/returns, and special traps to the
VMM can be initiated via a timer that the VMM controls.



After it takes control, the VMM saves architected state that it may modify.
Then, it uses the processor in the normal fashion, fetching instructions from hidden
memory, loading and storing data from its space in hidden memory. When it is
finished, the VM returns control to the PC of the interrupted program and hardware
resumes normal program execution.

In this system, all conventional software is completely off-the-shelf and no
modifications have to be made in order for it to run correctly. In the meantime,
hardware implementors are free write the VMM to optimize code for the ILDP imple-
mentation and to manage hardware resources (for either performance or power
management [17]) "under the covers".
5. The Role of Instruction Sets
Historically, major changes in instruction set design have occured in discrete steps.
After the original mainframe computers, instruction sets more-or-less stabilized until
the early 1970s when minicomputers came on the scene. These machines used rela-
tively inexpensive packaging and interconnections, and provided an opportunity to
re-think instruction sets. Based on lessons learned from the relatively irregular main-
frame instruction sets, regularity and "orthogonality" became the goals. To incor-
porate these properties, minicomputer ISAs typically supported relatively powerful,
variable-length instructions; the PDP-11 and later VAX-11 instruction sets are good
examples. As microprocessors evolved toward general purpose computing platforms,
there was another re-thinking of instruction sets, this time with hardware simplicity as
a goal. The resulting RISC instruction sets, among other things, allowed a full pipe-
lined processor implementation to fit on a single chip. As transistor densities have
increased, we have reached the point where older, more complex microprocessor
instruction sets can now be dynamically translated by hardware into RISC-like opera-
tions.

In retrospect, it seems that instruction set innovation has keyed off
packaging/technology changes, from mainframes to minicomputers to microproces-
sors. Now may be a good time to have another serious investigation of instruction
sets. This time, however, on-chip communication delays, high speed clocks, and
advances in translation/virtual machine software provide the motivation.

Implementation Architecture

Instruction Level Distributed Processor

Virtual Architecture

Fig. 5. Supporting an instruction level distributed processor
with a co-designed Virtual Machine.



Instruction sets can and should be optimized for ILDP. Features of new
instruction sets should focus on communication and dependence. They should also
be optimized for very fast execution with emphasis on small, fast memory structures,
including caches and registers.

Most recent instruction sets, including RISC instruction sets, and especially
VLIW instruction sets, have emphasized computation and independence. The
motivation was that higher parallelism could be achieved by focusing on computa-
tional aspects of instruction sets and on placing independent instructions in proximity
either at compile time or during execution time. In contrast, ILDP instruction sets
should be targeted at communication and dependence. That is, communication
should be easily expressed and dependent instructions should be placed in proximity,
to reduce communication delays.

Although maintaining compatibility with legacy program binaries has inhibited
new instruction set architectures, virtual machine technology and binary translation
enable new implementation-level instruction sets. That is, a translator/optimizer pro-
gram can be placed in the hidden memory, and can be invoked by the VMM.
Translated binaries can be cached in the hidden memory; this is basically the
Transmeta/Daisy paradigm [refs], but applied to ILDP rather than a VLIW instruction
set. Consequently, the complex optimizations required by VLIW are not necessary,
and translation can be as simple as adding tag bits to provide instruction and data
steering information.

To make ILDP instruction set concepts less abstract, consider an ISA incor-
porating a register file hierarchy by using a small fast register file for local communi-
cation within a cluster of processing elements, and a larger global register file for
inter-cluster communication. Variable length instructions can be used to provide
smaller instruction footprints and smaller caches.

As an extreme example, consider the following accumulator-based ISA.
Assume 64 general purpose registers and a single accumulator are used for perform-
ing operations. All operations must involve the accumulator, so dependent operations
are explicitly apparent as is local value communication. With such an ISA, there is
need for only one general purpose register field per instruction and the ISA can be
made quite compact, with instructions 1,2 or 4 bytes in length. For example, consider
the following basic instruction types.

R <- A 1 byte
A <- R 1 byte
A <- A op R 2 bytes
A <- A op imm 4 bytes
A <- M(R op imm) 4 bytes
M(R op imm) <- A 4 bytes
R <- M(A op imm) 4 bytes

The first two instructions copy data to/from a register and the accumulator; A is the
single accumulator and R is one of the general purpose registers. The next two
instructions are examples of operations on data held in the accumulator (and general
register file). The last three instructions are example loads and stores.



With an instruction set of this type, dependent instructions will naturally chain
together via the accumulator and will be contiguous in the instruction stream. With a
clustered ILDP implementation, all the instructions in a dependent chain can be
steered simultaneously to the same cluster, with the next dependent chain being
steered to another cluster. If the accumulator is re-named within each cluster, the
parallelism among dependence chains can be exploited, with global communication
taking place via the general registers. Because it contains only dependent instruc-
tions, the instruction issue queue in each cluster will be simplified as will local data
communication through the accumulator.

The single accumulator ISAs is a simple example of an instruction set that
implicitly specifies communication/dependence information; whether the implicit or
explicit (tagging) methods are better is not clear. The important point is that instruc-
tion sets deserved renewed study, and future technologies and ILDP microarchitec-
tures provide fertile ground for innovation.
6. Summary
Technology and application shifts are pointing toward instruction level distributed
processing. These microarchitectures will contain distributed resources and will be
explicitly structured for inter-unit communication. By constructing simple distributed
processing elements, a very high clock rate can be achieved, probably with multiple
clock domains. Replicated distribution processing elements will also allow better
power management. Helper processors may be distributed around the main process-
ing elements to perform more complex optimizations and to perform highly parallel
tasks.

Virtual machines fit very nicely in this environment. In effect, hardware
designers can be given a layer of software that can be used to coordinate the distri-
buted hardware resources and perform dynamic optimization from a higher level per-
spective than is available to hardware alone. Finally, it is once again time that we
reconsider instruction sets with the focus on communication and dependence. New
instructions sets are needed to mesh with ILDP implementations, and they are
enabled by the VM paradigm which makes legacy compatibility less important at the
implementation architecture level.
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