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Abstract several cycles are required to re-fill it before instruction

Control independence has been put forward as a signifi- issuing pr.oceeds at.full efficiency. Furthermore, we are fast
cant new source of instruction-level parallelism for future @PProaching the point where the hardware window that can
generation processors. However, its performance potential be constructed exceeds the average number of instructions

under practical hardware constraints is not known, and Petween mispredictions.

even less is understood about the factors that contribute to  1ere are three ways of dealing with the conditional
or limit the performance of control independence. branch problem. The first, and most widely studied, is to

Important aspects of control independence are identi- improve branch prediction. This approach has received

fied and singled out for study, and a series of idealized considerable (successful) research effort for many years.

machine models are used to isolate and evaluate theseThe second is to fetch and execute both paths following a

aspects. It is shown that much of the performance potentialPranch, and keep only the computation of the correct path.

of control independence is lost due to data dependencedXf course this can lead to exponential growth in hardware,
and wasted resources consumed by incorrect control SO recently, more selective approaches have been advo-
dependent instructions. Even so, control independence carf@t€d, where multi-path execution is only used for

close the performance gap between real and perfect branchard-to-predict branches [1-6]. Predicated execution is a
prediction by as much as half. software method for achieving a similar effect [7, 8]. The

Next, important implementation issues are discussedtNird approach is aimed at reducing the penalty after a
and some design alternatives are given. This is followed byMisprediction occurs. This approach exploits the fact that
a more detailed set of simulations, where the key imple-”Ot all instructions following a mispredicted branch have

mentation features are realistically modeled. These simula-Performed useless computation.

tions show typical performance improvements of 10-30%. '€ third approach is probably less well understood
than the other two, and in this paper we explore its poten-

1. Introduction tial. The key point is that only a subset of dynamic instruc-
In order to expose instruction-level parallelism in tions immediately following the branch may truly depend

sequential programs, dynamically scheduled superscalalgn thed brgnct?] ott)Jtcorr;]e. O'trrf]lesg 'PStrthCt'on; amtrpl th
processors form a “window” of fetched instructions. Each ependenbn the branch. erinstructions deeper In e
window may becontrol independenbf the mispredicted

cycle, the processor selects and issues a group of indeF)erBranch' they will be fetched regardless of the branch out-

dent instructions from this window. Maintaining a suffi- .
come, and do not necessarily have to be squashed and

ciently large window of instructions is essential for high ! . : )
instruction-level parallelism -- the more instructions in the ;i’:ﬁ]%ﬁgted [9. 10]. This can be illustrated with a simple
g .

window, the greater the chance of finding independent one
for parallel execution.

Branch instructions are a major obstacle to maintaining
a large window of useful instructions because they intro- .
ducecontrol dependences the next group of instructions 5e @ o e
to be fetched following a branch instruction depends on the
outcome of the branch. Typically, high performance pro-
cessors deal with control dependences by using branch pre-
diction. Then instruction fetching and speculative issue can
proceed despite unresolved branches in the window. Unfor-
tunately, branch mispredictions still occur, and current
superscalar implementations squash all instructions after a Figure 1 shows a control flow graph (CFG) containing
mispredicted branch, thereby limiting the effective window four basic blocks. Basic blocks are used for simplicity and
size. Following a squash, the window is often empty and May be substituted with arbitrary control flow. The branch

actual path

FIGURE 1. An example of control independence.



terminating block 1 is mispredicted, with dashed arrows instructions in block 3 and subsequent control indepen-
indicating the mispredicted path 1, 2, and 4. Two data dent instructions in block 4. Similarly, there idalse data
dependences, through registers r4 and r5, are also shown.dependence(register r5) produced by thiacorrect con-

At the time the misprediction is detected, blocks 1, 2, trol dependent instructions in block 2. Resolving both
and 4 have already been speculatively fetched and some ofypes of data dependences is delayed by the branch mispre-
their instructions may have already started executing.diction in spite of control independence. Another important
Because only block 2 is control dependent on the mispre-factor is the waste of fetch and execution resources by
dicted branch, it is the only block whose instructions must incorrect control dependent instructions. Having to first
be squashed. Immediately after the misprediction is found,fetch the misspeculated instructions delays filling the
the fetch unit goes back and fetches block 3 to replace theinstruction window with correct, control independent
squashed instructions of block 2. instructions. Also, if there are more incorrect control

Control independent instructions following the mispre- dependent instructions than correct ones, e.g. block 2 is
dicted branch, specifically block 4, are not squashed, butlarger than block 3, window space is wasted that might
they do need to be inspected for data dependence violationfiave gone to more control independent instructions.
caused by the mispredicted control flow, and some instruc- The third objective is t@ssess the complexity of imple-
tions may have to be re-executed. The value identified with menting aggressive control independence mechanisms in
r5 must be corrected so that block 4 uses the value pro-superscalar processarélthough it is beyond the scope of
duced earlier in block 1 instead of the one incorrectly pro- this paper to put forth detailed designs, implementation
duced in block 2. Likewise, when block 3 is eventually requirements are identified and hardware/software alterna-
inserted into the window, the data dependence through regtives for meeting the requirements are proposed. We have
ister r4 must also be established. Note that data depenalso developed a detailed execution-driven simulator that
dences through memory must similarly be repaired. After implements the outlined requirements.
the instructions using r4 and r5 in block 4 correct their data  Several conclusions emerge from our study. First, the
dependences and reissue, all subsequent data dependeperformance gap between branch prediction with conven-
instructions must also reissue. Hence, selective instructiontional speculation and oracle branch prediction is quite
reissue [11, 12] in some form is necessary. large, but control independence holds the potential for clos-

Lam and Wilson’s limit study on control independence ing the gap by as much as half. Second, the effects of incor-
[9] showed that substantial performance improvementsrect control dependent instructions -- both wasted
may be possible. However, as a limit study, most imple- resources and false data dependences -- significantly limit
mentation constraints were not considered. Further, impor-the benefits of control independence, with wasted
tant aspects of programs themselves were not modeled; imesources being the chief problem. The impact of true data
particular, a significant subset of data dependences weralependences is slightly smaller than that of false data
ignored due to the trace-driven nature of the study. Severaldependences. Third, for the chosen design alternatives in
microarchitecture implementations have since been pro-the detailed execution-driven model, performance
posed that incorporate control independence in some formimprovements ranging from 10% to 30% are measured.
[10,12-19]. In these studies, however, either the impact of In order to keep the study manageable, we limit our
control independence is not isolated, or insight into the scope to one of two major schemes for exploiting control
reported performance gains is limited and obscured by arti-independence. In particular, the study targets processors
facts of the particular design. that use a single flow of control, i.e. a single fetch unit, as

In this paper we have three primary objectives and con-in today’s superscalar processors. Other schemes, using
tributions. The first objective is testablish new bounds on  multiple flows of control, are not studied here.
the performance potential of control independence under
implementation constraint he study focuses on two fun-
damental constraints that characterize superscalar proces- Lam and Wilson’s limit study [9], and a similar study by
sors: instruction window size and instruction fetch/issue Uht and Sindagi [1], demonstrates that control indepen-
bandwidth. Other aspects of the study remain ideal anddence exposes a large amount of instruction-level parallel-
aggressive to avoid artificial design limitations. ism, on the order of 10 to 100. Although these results are

The second objective is tarovide insight into the fac-  important, full interpretation is obscured for both technical
tors that contribute to or limit the performance of control and practical reasons. As pointed out in an analysis by
independenceData dependences between control depen-Sundararaman and Franklin [20], the limit study makes
dent and control independent instructions play an impor- certain assumptions that may inflate the apparent benefits
tant role. In Figure 1, there is aiue data dependence  Of control independence. Static branch prediction based on

(register r4) between theorrect control dependent  profiling is used, as opposed to more accurate dynamic

1.1 Prior work



branch predictors. More importantly, because the simula-cusses implementation alternatives for each of the features.
tion is fully trace-driven, it does not account for false data Next, in Section 4, we study performance considering tim-
dependences created on mispredicted paths, thus allowingng constraints imposed by practical implementations.
incorrect-data dependent instructions to be scheduled ear; . .
lier than they would be in practice. Furthermore, limit stud- 2. The potential of control independence
ies, by definition, are unconstrained in order to measure In this section we begin evaluating the performance
inherent parallelismin programs, and do not consider fun- potential of control independence in superscalar proces-
damental processor features. There is no concept of a limsors. It is an idealized study in the sense that some of the
ited instruction window or instruction fetch bandwidth, models have oracle knowledge so that (1) performance
whether considering a single or multiple flows of control. bounds can be established and (2) aspects that limit the
The entire dynamic instruction stream is scheduled at once;performance of control independence can be isolated. The
exposing the observed parallelism may require buffering latter has important implications: by understanding the
speculative state for thousands of instructions and using arlimiting aspects, techniques may be developed to overcome
impractical number of parallel fetch units. them. On the other hand, the studynist an unconstrained
Multiscalar processors [10,13] and other speculatively “parallelism limit study” -- a particular class of implemen-
multithreaded architectures [14-17,19] exploit control tations is targeted, and fundamental resources are limited.
independence by pursuing multiple flows of control. In the .
casepof multiscalgr, the compilzr partitions the program 2.1 Control independence models
into tasks, or subgraphs of the CFG, which may contain  In the models given below, the performance impact of
arbitrary control flow. Branch mispredictions within a task three important aspects of a control independent design are
may not cause subsequent tasks to squash if they are corsingled out for study.
trol independent of the branch. To date, however, there hass The first aspect concerns true data dependences
been no study that separates the impact of control indepen-  petween correct control dependent instructions and
dence and determines its contribution to performance inthe  gntrol independent instructions. In such cases, issuing
multiscalar paradigm. the control independent instructions is delayed until

Trace processors [12,21] are a variant of multiscalar  after the misprediction is resolved and the correct con-
processors where the dynamic instruction stream is divided o] dependent instructions are fetched/issued.

into traces -- frequently executed dynamic instruction
sequences. An internal mispredicted conditional branch
causes its trace to be squashed, but subsequent traces are
not squashed if, after repairing the mispredicted branch and
predicting a new sequence of traces, the new traces are the
same as those already residing in the processing elements
[12]. Only modest improvements are reported because no
optimization in trace selection or processor assignmentwas® The third aspect is the use of machine resources by
done to expose control independence. instructions on an incorrect path that are eventually
The instruction reuse buffer [18] provides another way  squashed. Even if control independence is ideally
of exploiting control independence. It saves instruction  implemented otherwise, this waste of resources and
input and output operands in a buffer -- recurring inputs  time will reduce performance.
can be used to index the buffer and determine the matching - gjy gitferent models are evaluated. Figure 2 illustrates

output. In the proposed superscalar processor with instruC+e giferences among these six models, using the example
tion reuse, there is complete squashing after a branch iScrG in Figure 1. Only two resources, instruction fetch and
mispredicted. However, cont_rol independent _mstrucuons issue, are shown. Time progresses downward in the fetch/
after the squash can be quickly evaluated via the reusggge schedules. Fetching each basic block consumes fetch
buffer. Overall speedups due to reuse are on the order Ofanqyidth: this is shown using basic block labels within
10%, over half of which is due to squash reuse. their respective fetch slots. Likewise, instructions consume
1.2 Paper organization issue bandwidth, and are labeled first with the correspond-
ing basic block, followed by the production/consumption
of a value. For clarity, only instructions that ultimately
retire (i.e. correct instructions) are shown; for these, only

The second aspect is the handling of false data depen-
dences created by incorrect control dependent instruc-
tions. As discussed earlier, these cause the selective
reissue of some control independent instructions.

Delays brought on by this repair and selective reissue
can inhibit performance gains.

In Section 2, we consider a series of idealized machine
models in order to better understand the relative impor-

tance of some of the bigger issues affecting control inde- the final issue time is shown. The labels “M” and “D” in

pendence. Section 3. I_|sts the key .features n a superscgla{he diagrams indicate the time of the branch misprediction
processor for exploiting control independence and dis- (M) and the time that the misprediction is detected (D).
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FIGURE 2. Fetch and issue timing for the six models, corresponding to the example CFG in Figure 1.

The oracle model (Figure 2(a)) uses oracle branch pre- respect tooracle because block 4 is fetched out-of-order
diction and therefore the branch terminating block 1 is not and earlier. If this instruction is on the critical path, sched-
mispredicted. Blocks 1, 3, and 4 are fetched in correct uling it earlier may improve overall performance.
dynamic program order. The nWR-FD model, shown in Figure 2(c), also does

The next four models use real branch prediction couplednot waste time with misspeculated instructions, however
with complete knowledge of control dependences to their effects on data dependences are felt. For example, we
exploit control independence. The following notations are do not know the true producer of “r5” until the mispredic-
used. tion is resolved, delaying instruction “4: <=r5" until that

. e n . . time. The repair of false data dependences is assumed to
* WR (“Wasted Resources”): Misspeculated instructions occur in a single cycle, at the time a misprediction is

consume window resources and bandwidth, thus delay'resolved - this is the best that can be achieved

ing other, correct instructions. The dual of this model i$VR-nFD (Figure 2(d)): mis-

* FD (“False Data Dependences”): The effects of false speculated instructions take up time and resources (indi-
data dependences between incorrect control dependentated by shaded regions), but false dependences are
instructions and control independent instructions are hidden. Performance degradation with respect to
modeled. NWR-nFD is caused by an underutilized window and

delayed fetching of correct (control independent) instruc-

tions.

The WR-FDmodel (Figure 2(e)) uses no oracle knowl-
edge regarding misspeculated instructions -- they waste
branches delay fetching the correct control dependentbOth time a_md resources, and interfere with data depen-

dences. This model represents an upper bound on the per-

instructions. But between the time that a branch is mispre—f ¢ I loiting basi trol
dicted and the misprediction is detected, fetch and window '0rMance of superscalar processors exploiting basic contro

resources are kept busy with control independent instruc_mde_pendence. .

tions. Incorrect control dependent instructions are not con-. Fmal_ly, the base model _(Flgur_e .Z(f)) squashes  all
sidered (for example, block 2 is not fetched into the instructions after a branch misprediction.

window), thereby eliminating false dependences and 2.2 Hardware constraints and assumptions
devoting resources solely to control independent work
while the misprediction is resolved.

The inverse notationg)WRand nFD, indicate the corre-
sponding factor imot modeled. Thus, there are four possi-
ble modelsnWR-nFQ nWR-FDQ WR-nFDQ andWR-FD

In the NnWR-nFD model (Figure 2(b)), mispredicted

We are interested in the performance impact of instruc-

Th v diff bet thi del aadcle tion window size and machine width (peak fetch, issue, and
th t'e ton yt ! erencfet ﬁv(\jlgen dl'?f mo te 30 fcﬁ's_ retire rate) on control independence. In our study, the
at instructions are tetched in a ditterent order 101lowing 5 -hine width is 16 instructions per cycle for all simula-

mispredicted branches. This has a negative performanpqions, and window size is varied. We implement the follow-
impact only when true data dependences are delayed W'tnng additional hardware constraints and assumptions:
respect twracle For example, instruction “4: <=r4” issues

later because the producer instruction in block 3 is delayed® Instruction fetch is ideal: up to 16 instructions, includ-

by the misprediction. ing any number of branches, can be fetched every cycle.
Interestingly, there are situations where performance ofe Instruction fetch, dispatch, issue, execute, and retire
NWR-nFDmay actually exceed that afracle For exam- stages are modeled. Fetch and dispatch take 1 cycle

ple, instruction “4: <=r5" issues slightly earlier with each. Issue takes at least 1 cycle, possibly more if the



instruction must stall for operands. Execution takes a  The difference betweeoracleandnWR-nFDillustrates
fixed latency based on instruction type, plus any time performance losses from deferring instructions on a correct
spent waiting for a result bus. Address generation takescontrol dependent path until after a mispredicted branch is
1 cycle, and all data cache accesses are 1 cycle (i.e. perresolved. ImMWR-nFDQ however, machine resources do not
fect data cache). Instructions retire in order. sit idle while the mispredicted branch is resolved -- all

* Any 16 ready instructions may issue in a cycle. machine resources are kept as busy as possible fetching

 Output and anti-dependences for both registers andand executil_wg th(_a control independent path. The_perfor-
memory are eliminated (i.e. perfect renaming). mance loss is typically only 1 to 2 IPC for the medium to

* Oracle memory disambiguation is used. (However, large windows. .
. The base model also defers execution of the correct
stores fetched down the wrong control path may still

; . . control path following a misprediction, but it gets no bene-
interfere with subsequent, control independent loads.) fit from the machine resources before the mispredicted

* A 2'%entry gsharepredictor [22] is implemented for  pranch is resolved -- any work done after the branch is
predicting the direction of conditional branches. All squashed. Viewed in this wag\WWR-nFDindicates that the
direct target addresses are assumed to be predicted cotherwise wasted resourceshasecan lead to large per-
rectly. For indirect calls and jumps, é@entry corre- formance benefits. In terms of the way control flow is man-
lated target buffer [23] is used. Returns are predicted aged, nWR-nFD is most similar to Lam and Wilson’s
using a perfect return address stack [24]. model [9], because misspeculated instructions are ignored.
With nWR-FD the impact of false data dependences is

isolated. For four of the five benchmarks, the performance
Dynamic instruction traces, including both correctly drop is significant, another 1 to 2 IPC beloWVR-nFD

speculated and misspeculated instructions, are generategompresggxperiences a much larger drop in performance.

by the Simplescalar simulator [25]. Five integer SPEC95 False dependences dompresdimit IPC to under 5 for all
benchmarks -- chosen to reflect a variety of prediction window sizes.

2.3 Benchmarks

accuracies (Table 1) -- were simulated to completion. With WR-nFDQ we isolate the effects of wasting
TABLE 1. Benchmark information. resources by executing incorrect control dependent instruc-
bonchmark e aataset T dvn st countl Tiso Tate tions until the branch is resolved. Some resources are still
o -(W_\_lﬂ - _Ls.s% used for the control |r_1dependent path -- but n_ot until and
90 99 133 M 16.7% unless the fetch unit reaches the control independent
compress 400000 e 2231 104 M 9.1% region. This results in a major drop in performance, bigger
ijpeg vigoppm 166 M 6.8% than the drop caused byWR-FD For all benchmarks
vortex modified train inpu 101M 1.4% exceptcompressthe effect of wasted time and resources
2.4 Results dominates that of false dependences, by about a factor of 2.

Results of simulating the six machine models are in With WR-FD we see the combined impact of wasted

Figure 3. Performance is measured in instructions per cycle,:esl0 durces d""”‘i falste dtgpendls nies ctalus?rc]i byﬁmctorrect cotn—
(IPC) and is shown as a function of window size. rof dependent instructions. Fortunately, the effects are no

First of all, a performance upper bound is established additive. TheWRcomponent already dominates, so there is

with the oracle results. These results, assuming perfect lf'ttlle %d(imgnal pgna:ty Ctaus,?d by rfr? amngt a:w_d (;elssucling i
branch prediction, are typically over 10 IPC for window alse data dependent Instructions in the control Indepenaden

sizes of 256 to 512. The machine width upper bound is 16,str§am (except focompres At this pc_)int performance
and most of the benchmarks come close to this mark. Com-92/NS aré about 100% over iesemachine.

paring theoracle andbaseresults indicates a large perfor- 2.5 Summary and applications of the study
mance loss due to branch mispredictions with a complete
squash (but otherwise ideal) model. For a 512 instruction for
window, the loss is between 40% and 70% for four of the
five benchmarks. The benchmark that has the least perfor
mance loss isortex-- but its prediction accuracy is quite
high. Performance for theasemodel typically saturates at

a v_vmdow size of 128 or 256. There is no such satu_ratlon interesting implications. A major performance limiter is
point for the oracle model. These results are consistent the incorrect control dependent path, primarily because of

with those producgd_by others and indicate the importance, - e fetching and window spac&/R-nFD), but also
of branch mispredictions on overall performance.

false data dependenceaWR-FD. If these limitations

This initial study has established performance bounds
control independence in the context of superscalar pro-
cessors. Th&/R-FD model reduces the gap between the
‘oracle andbasemodels by half, and a realistic implemen-
tation will fall somewhere betwedraseandWR-FD

The other three control independence models also have



could be mitigated in some way, performance of the mentation issues that must be considered, and they form a
nWR-nFDmodel indicates the remaining problem is less basis for our later performance simulations in Section 4.

significant, i.e. the problem of true data dependences g

between the deferred, correct control dependent path and 16
control independent instructions. 14 orede —
A possible approach to mitigating the effects of incor- _NWR-nFD.
rect control dependent instructions is to design instruction 12 WRED
windows and fetch units that are less sensitive to wasted 10 e
resources. The multiscalar architecture is a candidate due 2 8 \erEED
to its multiple program counters and “expandable, e
split-window” [10]. Although strictly speaking our study is 61
only applicable to processors with a single flow of control, JE -
we at least get a hint of the control independence potential {7
for somemultiscalar design points. For example, Vijayku- 260 128 256 512 1024 2048
mar’s thesis [26] indicates average task sizes on the order window size (log2)
of 15 instructions (comparable to the fetch width of 16 10 omPress
instructions) and effective window sizes of under 200 9 —orade ]|
instructions for integer benchmarks. Given a multiscalar | . MWR-NED
processor with aggressive resolution of inter-task data 8
dependences and selective reissuing capability, the 7
nWR-FDmodel rather thaWR-FDgives the more appro- g s
priate performance bound due to the expandable window. 5 WR-nFD
The large performance drop betweekVR-nFD and A - WREED.
WR-nFD the result of wasted fetch and execution , R-FD
resources, tends to indicate that both hardware and soft- 3¢ base
ware forms of multi-path execution should be performed 2
. . 64 128 256 512 1024 2048
carefully. These techniques are applied to both correctly window size (log2)
predicted and incorrectly predicted branches. We have iipeg
shown that wasted resources caused by incorrect predic- 15 oracle ]
tions alone is a problem; adding some fraction of correct 1‘3" i 'C'FD
predictions worsens the problem. 1 VRHED.
3. Implementation issues 1(1)
In this section we discuss important implementation B 9 p o s
issues for exploiting control independence in superscalar 8
processors. This discussion allows us to better understand, 7
gualitatively, where implementation complexities may lie. 6
We do not mean to suggest that the methods we describe i

are the only ones possible, but we feel the approaches out- 64 128 256 512 1024 2048

lined here are adequate for highlighting the major imple- Wi”d"wosr"é;("’gz)
Vi
16

gce
16
14
orecle—
14
nWB;nED 12
12 . &
nWR-FD T 10
WR-nFD 8
N N Vi B NRFD ]
6L - 6 ¢
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4 window size (log2)
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window size (10g2) FIGURE 3. Performance of the six models.



3.1 Handling of branch mispredictions 3.2.1 Detecting the reconvergent point

When a branch misprediction is detected in a traditional  Ideally, one would find reconvergent points by associat-
superscalar processor, the processor performs a series ahg with every branch instruction itmmmediate post-dom-
steps to ensure correct execution. Instructions after theinator: the basic block nearest the branch which lies on
mispredicted branch are squashed and all resources thegvery path between the branch and the CFG exit block
hold are freed. Typically, freeing resources includes return-[27]. In Figure 1, for example, block 4 is the immediate
ing physical registers to the freelist and reclaiming entries post-dominator of the mispredicted branch. Although the
in the instruction issue buffers, reorder buffer, and load/ post-dominator does not directly specify the program’s
store queues. In addition, the mapping of physical registerscontrol dependences, it is sufficient for identifying all
is backed up to the point of the mispredicted branch. The reconvergent points. Finding immediate post-dominators
instruction fetch unit is also backed up to the point of the could be difficult using hardware alone. Software can aid
mispredicted branch and the processor begins sequencinghe hardware by encoding this information. For example,
on the correct path. the compiler could encode this information by including in

Exploiting control independence requires modifications each branch instruction a small offset to its post-dominator
to the recovery sequence, as illustrated in Figure 4 andinstruction. A second option is to incorporate post-domina-
described below. Steps 1-3 below constitute thstart  tor registers into the architecture. Software can load these
sequenceand step 4 theedispatch sequence registers with the addresses of post-dominator instructions

1. After detecting a branch misprediction, the first control fOr Soon-to-be-executed branches and then specify a
independent instruction (if it exists) must be found in POSt-dominator register in each branch instruction.
the window. We call this thereconvergent point Hardware-only solutions for detecting reconvergent
because, in general, control independence exists wherPoints probably require imprecise heuristics. One alterna-

control flow diverges and subsequently re-converges. tive is to exploit easily-identified control flow constructs
such as loops and functions. The targets of subroutine

2. Instructions are selectively squashed, depending Ofyetyrn instructions and backward branches are detectable
whether they are incorrect control dependent instruc- py hardware, and they may serve as “global” reconvergent
tions or control independent instructions. Squashed yoints. While these points are not the precise, i.e. nearest,
instructions are removed from the window, and any reconvergent point of any particular branch, they often
resources they hold are released. identify a subset of control independent instructions com-

3. Instruction fetching is redirected to the correct control mon to many branches in a region. Hardware can easily
dependent instructions, and these new instructions aréjetect and record the location of such points in the window,

inserted into the window which may already hold sub- and when a misprediction is detected, the nearest such
sequent control independent instructions. point is assumed to be the correct reconvergent point.

4. Based on the new, correct control dependent instruc-3.2.2 Instruction removal/insertion
tions, data dependences must be established with the
control independent instructions already in the window.
Any modified data dependences cause already-execute
control independent instructions to be reissued.

The restart sequence requires selectively removing and
inserting instructions while maintaining a correct ordering.
he reorder buffer (ROB) of a traditional superscalar pro-
cessor can be augmented to support this. One option is to
Retart Sequence Redispetch Sequence have the ROB support arbitrary physical shifting of instruc-
—————— - - - - — -~ tions to collapse and expand the window for restart
o :S‘fr?];?z‘ns Control Independent Instructions sequences. This first option causes the physical ROB slots
\Reconve,gem Point to move, and any instruction tags in the pipelines pointing
to them will become out-of-date.
FIGURE 4. Misprediction recovery sequence. _ A second option is tq im_plemen_t the ROB as a linked
list. Then, any outstanding instruction tags do not change
as the ROB is repaired, but dispatch and retirement will be
complicated by multiple linked list operations being done
To support the above recovery steps, we have identifiedin parallel. The complexity of manipulating the linked list
four underlying microarchitecture mechanisms. These are:can be reduced by implementing it at a granularity larger
detecting the reconvergent point, supporting arbitrary than a single instruction. That is, ROB space can be parti-
insertion and removal of instructions within the window, tioned into multi-instruction blocks. For example, a 256

establishing correct data dependences following a mispre+nstruction ROB can be implemented as 16 blocks of 16
diction, and selectively reissuing instructions.

Mispredicted Branch .
Correct Instructions

3.2 Key microarchitecture mechanisms



instructions each. Then, a block at a time can be inserted o4, Performance of control independence ina
removed from the ROB in a more-or-less conventional superscalar processor

way. This reduces complexity but also reduces full utiliza-
tion of the window as ROB blocks will often not be fully
utilized. For example, when the processor needs to inser

The idealized studies of Section 2 provide insight into
the factors that govern performance of control indepen-

eight instructions into the middle of the ROB, it will allo- dence. We now proceed with a more refined analysis,
cate a full block of 16 but use only half the entries. focusing on an implementation of the mod&R-FD The

During the restart sequence, resources (physical regiS_anaIysis is based on a detailed, fully-execution driven sim-

ters and load/store buffers) of squashed control dependent/lator, and reflects the performance impact of implement-
instructions are iteratively reclaimed. In parallel, as the N9 the basic mechanisms outlined in Section 3.

correct control dependent path is fetched, new instructions4.1 Simulator detail

may acquire the resources freed by the old instructions. If

. . Many of the basic hardware constraints are the same as
there are more correct control dependent instructions than ; . L ) .
. . In Section 2. The machine width is 16 instructions and the
incorrect ones, the resources of control independent

instructions. vounaest first. are reclaimed to make room underlying pipeline is similar. Instruction fetching remains
»young ' " ideal, but a more realistic data cache is modeled. The data
3.2.3 Forming correct data dependences cache is 64KB, 4-way set associative. The cache access
latency is two cycles for a hit instead of one, and the miss
a preceding block of instructions, they may not deta !at_ency to the perfect L2 data ca_che IS 14 c_ycle_s. Also, real-
. . istic, but aggressive, address disambiguation is performed.
independent. Consequently, both register and memory
. : . Loads may proceed ahead of unresolved stores, and any
dependences of control independent instructions must be
. . - memory hazards are detected as store addresses become
repaired after a misprediction.

When the restart sequence completes, the registerava"able [12] -- recovery is via the selective reissuing

. mechanism. Lastly, the branch predictor, while identical to
rename maps reflect state up to the re-convergent point

Control independent instructions are redispatched [12] that in the ideal study, may hf”“’e. lower accuracy_due to
. . . . delayed updates and temporarily incorrect global history.
using the up-to-date register maps. Dur!ng _red|spatch, The key mechanisms for supporting control indepen-

soqrce_opera_nds are remapped while destlna_tlon op_erandaence outlined in Section 3, are modeled as follows.
maintain their original assignments. If an instruction’s Det,ecting the reconverge’nt pointis done via software
source operand is mapped to a new physical register, theanalysis of post-dominator information
|ns_t|_r(l)Jc:r20r;irre:Ts]ZLrjﬁoer|;r;nee\évdgitcae.s the memorv-orderin Instruction removal/insertion is implemented via the

p y dep : ory gIinked list approach, using single-instruction granularity.
mechanism detects when a preceding store is removed or

. . Forming correct data dependencess delayed a vari-
inserted by a restart sequence and directs affected loads to . 0

. ) . . able number of cycles after the misprediction is detected,
reissue. An implementation can be found in [12].

unlike the ideal study, because (1) the redispatch sequence
3.2.4 Selective reissuing of instructions cannot proceed until after the restart sequence completes

If a control independent instruction reissues due to and (2) redispatch proceeds at the maximum dispatch rate.

. ) Selective reissuingis modeled in detail, whereas the
incorrect register/memory dependences, then subsequent .

. . . . iIdeal study models only thelelay caused by repaired
data dependent instructions will also need to reissue.

: . . ) . dependences, i.e. only the final instruction issue. The
Ultimately, instructions may issue and execute multiple o . .
. . L source of reissuing includes both register rename repairs
times before they eventually retire. Reissuing, therefore,

becomes a common case and the microarchitecture must bgnd loads squashed by stores, followed by a cascade of

modified to reflect this. To reduce the complexity and reissued instructions along the dependence chains.
latency of reissuing instructions, they remain in the instruc- 4.2 Performance results

tion issue buffers u_ntil they retire [11_,1_2]. Instr_uction issue Figure 5 shows the instructions per cycle (IPC) for three
buffers can be built to reissue their mstrl_Jctlons autono- jisferent machines: a superscalar processor that squashes
mously when they observe a new value being produced fory| instryctions after branch mispredictions (BASE), a pro-
a source operand. This functionality can be built into the ~oqsor with control independence capability (CI), and one

normal issue logic. Thus, the redispatch logic need only it the added capability to instantaneously repair data
identify instructions directly affected by incorrect data dependences and redispatch all control independent

dependences, and the following data dependent chain ofstyctions after the restart sequence completes (CI-).

instructions will automatically reissue. Measurements are made for three window sizes, 128, 256,
and 512 instructions.

Although instructions may beontrol independent with



For less predictable workloads, control independenceperformance results given in the previous section. The
offers a significant performance advantage over completeresults in this section are for a 256-instruction window.
squashing, although less than the ideal study indicated. The The first row of Table 2 shows how often a control inde-
relative performance improvement of Cl over BASE for pendent reconvergent point is in the window at the time a

each of the window sizes is summarized in Figuré&e, misprediction is detected. Except faortex a reconvergent
compress and jpeg show improvements on the order of pointis present for over 60% of mispredictions.
20% to 30%. Whilgpegis fairly predictable, it is also rich The second and third rows of Table 2 show the average

in parallelism and any misprediction cycles result in a large number of instructions removed and inserted those
penalty.Go on the other hand is a very control-intensive restart sequences that reconverge in the window aver-
workload with frequent mispredictions, and it demon- age, fewer than 14 incorrect control dependent instructions
strates the most performance benefit. are removed, and fewer than 20 correct control dependent
Gcece also shows a substantial performance gain, aboutinstructions are inserted. For over 80% of the restarts that
10%. Statistics presented in the next section show thatreconverge in the window, both the number of instructions
approximately 60% ofjccs mispredictions have a corre- inserted and removed is fewer than 32 (not shown in table).
sponding reconvergent point in the window, while fw; The fourth row in Table 2 shows that the average num-
jpeg andcompresshe same statistic is over 70%. The fact ber of control independent instructions after the reconver-
that less control independence is exposeddamay par- gent point is greater than 50 for all the benchmarks. The
tially account for the lower performance gain. fifth row in Table 2 shows that on average, only 2 to 3 of
From Figure 5 we see that CI-I, as expected, gives betterthe control independent instructions will acquire new phys-
performance than Cl. However, the gain is small -- ical register names during redispatch, requiring them to
between 1% and 4% -- meaning the time spent duringreissue (as well as subsequent data dependent instructions).
redispatch sequences has less impact than anticipated. The last row in Table 2 shows the amount of useful
work that can be saved with control independent instruc-
tions. Ignoringvortex 11% {peg) to 39% gompresyof all
retired instructions issue and have their final value before a
preceding mispredicted branch is resolved. Without using

ocH control independence this work would be lost.
:ELSE TABLE 2. Control independence measures.

statistic gce go comp| jpeg vortei
% of misp. that reconver 62% /1% 91% 82 47%

# removed ctl. dep. instr. 13.2 13p 6.8 9.0 9.p
#inserted ctl. dep.inst. | 165 181  6.f 107 128
# control indep. inst. | 51.§ 62 122 79)8 815
benchmarkfindow size # instr. w/ new reg. namep 2.4 2.2 1y 22 21
work saved I 20%] 30% 399 11% 4%

FIGURE 5. Performance of the three models. .
5. Conclusions and future work

35% Improvement of Cl over BASE This research refines our understanding of control inde-
— 30% = pendence, perhaps the least understood solution to the con-
é 25% ditional branch problem. The study establishes new
3 performance bounds that account for practical implementa-
o 20% :;gg tion constraints and incorporate all data dependences. To
E 15% 1 0512 gain insight, the study identifies three important factors and
& 10% | isolates their impact on performance: true data depen-
& 506 - dences between correct control dependent instructions and
0% | | | | | e control independent instructions, false data dependences
gee 90 comp ipeg vortex created by incorrect control dependent instructions, and

wasted resources consumed by incorrect control dependent
instructions. A conclusion is that both types of data depen-
dences limit the potential of control independence in per-
4.3 Other control independence measures haps unavoidable ways, but the biggest performance
This section explores the behavior of control indepen- limiter is wasted resources consumed by incorrect control

dence in a superscalar processor to better understand th@ependent instructions. This limitation may be reduced in

FIGURE 6. Percent improvement in IPC.
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