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Abstract
Control independence has been put forward as a signifi-

cant new source of instruction-level parallelism for future
generation processors. However, its performance potential
under practical hardware constraints is not known, and
even less is understood about the factors that contribute to
or limit the performance of control independence.

Important aspects of control independence are identi-
fied and singled out for study, and a series of idealized
machine models are used to isolate and evaluate these
aspects. It is shown that much of the performance potential
of control independence is lost due to data dependences
and wasted resources consumed by incorrect control
dependent instructions. Even so, control independence can
close the performance gap between real and perfect branch
prediction by as much as half.

Next, important implementation issues are discussed
and some design alternatives are given. This is followed by
a more detailed set of simulations, where the key imple-
mentation features are realistically modeled. These simula-
tions show typical performance improvements of 10-30%.

1.  Introduction

In order to expose instruction-level parallelism in
sequential programs, dynamically scheduled superscalar
processors form a “window” of fetched instructions. Each
cycle, the processor selects and issues a group of indepen-
dent instructions from this window. Maintaining a suffi-
ciently large window of instructions is essential for high
instruction-level parallelism -- the more instructions in the
window, the greater the chance of finding independent ones
for parallel execution.

Branch instructions are a major obstacle to maintaining
a large window of useful instructions because they intro-
ducecontrol dependences-- the next group of instructions
to be fetched following a branch instruction depends on the
outcome of the branch. Typically, high performance pro-
cessors deal with control dependences by using branch pre-
diction. Then instruction fetching and speculative issue can
proceed despite unresolved branches in the window. Unfor-
tunately, branch mispredictions still occur, and current
superscalar implementations squash all instructions after a
mispredicted branch, thereby limiting the effective window
size. Following a squash, the window is often empty and

several cycles are required to re-fill it before instruction
issuing proceeds at full efficiency. Furthermore, we are fast
approaching the point where the hardware window that can
be constructed exceeds the average number of instructions
between mispredictions.

There are three ways of dealing with the conditional
branch problem. The first, and most widely studied, is to
improve branch prediction. This approach has received
considerable (successful) research effort for many years.
The second is to fetch and execute both paths following a
branch, and keep only the computation of the correct path.
Of course this can lead to exponential growth in hardware,
so recently, more selective approaches have been advo-
cated, where multi-path execution is only used for
hard-to-predict branches [1-6]. Predicated execution is a
software method for achieving a similar effect [7, 8]. The
third approach is aimed at reducing the penalty after a
misprediction occurs. This approach exploits the fact that
not all instructions following a mispredicted branch have
performed useless computation.

The third approach is probably less well understood
than the other two, and in this paper we explore its poten-
tial. The key point is that only a subset of dynamic instruc-
tions immediately following the branch may truly depend
on the branch outcome. These instructions arecontrol
dependenton the branch. Other instructions deeper in the
window may becontrol independentof the mispredicted
branch: they will be fetched regardless of the branch out-
come, and do not necessarily have to be squashed and
re-executed [9, 10]. This can be illustrated with a simple
example.

FIGURE 1. An example of control independence.

Figure 1 shows a control flow graph (CFG) containing
four basic blocks. Basic blocks are used for simplicity and
may be substituted with arbitrary control flow. The branch
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terminating block 1 is mispredicted, with dashed arrows
indicating the mispredicted path 1, 2, and 4. Two data
dependences, through registers r4 and r5, are also shown.

At the time the misprediction is detected, blocks 1, 2,
and 4 have already been speculatively fetched and some of
their instructions may have already started executing.
Because only block 2 is control dependent on the mispre-
dicted branch, it is the only block whose instructions must
be squashed. Immediately after the misprediction is found,
the fetch unit goes back and fetches block 3 to replace the
squashed instructions of block 2.

Control independent instructions following the mispre-
dicted branch, specifically block 4, are not squashed, but
they do need to be inspected for data dependence violations
caused by the mispredicted control flow, and some instruc-
tions may have to be re-executed. The value identified with
r5 must be corrected so that block 4 uses the value pro-
duced earlier in block 1 instead of the one incorrectly pro-
duced in block 2. Likewise, when block 3 is eventually
inserted into the window, the data dependence through reg-
ister r4 must also be established. Note that data depen-
dences through memory must similarly be repaired. After
the instructions using r4 and r5 in block 4 correct their data
dependences and reissue, all subsequent data dependent
instructions must also reissue. Hence, selective instruction
reissue [11, 12] in some form is necessary.

Lam and Wilson’s limit study on control independence
[9] showed that substantial performance improvements
may be possible. However, as a limit study, most imple-
mentation constraints were not considered. Further, impor-
tant aspects of programs themselves were not modeled; in
particular, a significant subset of data dependences were
ignored due to the trace-driven nature of the study. Several
microarchitecture implementations have since been pro-
posed that incorporate control independence in some form
[10,12-19]. In these studies, however, either the impact of
control independence is not isolated, or insight into the
reported performance gains is limited and obscured by arti-
facts of the particular design.

In this paper we have three primary objectives and con-
tributions. The first objective is toestablish new bounds on
the performance potential of control independence under
implementation constraints. The study focuses on two fun-
damental constraints that characterize superscalar proces-
sors: instruction window size and instruction fetch/issue
bandwidth. Other aspects of the study remain ideal and
aggressive to avoid artificial design limitations.

The second objective is toprovide insight into the fac-
tors that contribute to or limit the performance of control
independence. Data dependences between control depen-
dent and control independent instructions play an impor-
tant role. In Figure 1, there is atrue data dependence
(register r4) between thecorrect control dependent

instructions in block 3 and subsequent control indepen-
dent instructions in block 4. Similarly, there is afalse data
dependence(register r5) produced by theincorrect con-
trol dependent instructions in block 2. Resolving both
types of data dependences is delayed by the branch mispre-
diction in spite of control independence. Another important
factor is the waste of fetch and execution resources by
incorrect control dependent instructions. Having to first
fetch the misspeculated instructions delays filling the
instruction window with correct, control independent
instructions. Also, if there are more incorrect control
dependent instructions than correct ones, e.g. block 2 is
larger than block 3, window space is wasted that might
have gone to more control independent instructions.

The third objective is toassess the complexity of imple-
menting aggressive control independence mechanisms in
superscalar processors. Although it is beyond the scope of
this paper to put forth detailed designs, implementation
requirements are identified and hardware/software alterna-
tives for meeting the requirements are proposed. We have
also developed a detailed execution-driven simulator that
implements the outlined requirements.

Several conclusions emerge from our study. First, the
performance gap between branch prediction with conven-
tional speculation and oracle branch prediction is quite
large, but control independence holds the potential for clos-
ing the gap by as much as half. Second, the effects of incor-
rect control dependent instructions -- both wasted
resources and false data dependences -- significantly limit
the benefits of control independence, with wasted
resources being the chief problem. The impact of true data
dependences is slightly smaller than that of false data
dependences. Third, for the chosen design alternatives in
the detailed execution-driven model, performance
improvements ranging from 10% to 30% are measured.

In order to keep the study manageable, we limit our
scope to one of two major schemes for exploiting control
independence. In particular, the study targets processors
that use a single flow of control, i.e. a single fetch unit, as
in today’s superscalar processors. Other schemes, using
multiple flows of control, are not studied here.

1.1  Prior work

Lam and Wilson’s limit study [9], and a similar study by
Uht and Sindagi [1], demonstrates that control indepen-
dence exposes a large amount of instruction-level parallel-
ism, on the order of 10 to 100. Although these results are
important, full interpretation is obscured for both technical
and practical reasons. As pointed out in an analysis by
Sundararaman and Franklin [20], the limit study makes
certain assumptions that may inflate the apparent benefits
of control independence. Static branch prediction based on
profiling is used, as opposed to more accurate dynamic



branch predictors. More importantly, because the simula-
tion is fully trace-driven, it does not account for false data
dependences created on mispredicted paths, thus allowing
incorrect-data dependent instructions to be scheduled ear-
lier than they would be in practice. Furthermore, limit stud-
ies, by definition, are unconstrained in order to measure
inherent parallelismin programs, and do not consider fun-
damental processor features. There is no concept of a lim-
ited instruction window or instruction fetch bandwidth,
whether considering a single or multiple flows of control.
The entire dynamic instruction stream is scheduled at once;
exposing the observed parallelism may require buffering
speculative state for thousands of instructions and using an
impractical number of parallel fetch units.

Multiscalar processors [10,13] and other speculatively
multithreaded architectures [14-17,19] exploit control
independence by pursuing multiple flows of control. In the
case of multiscalar, the compiler partitions the program
into tasks, or subgraphs of the CFG, which may contain
arbitrary control flow. Branch mispredictions within a task
may not cause subsequent tasks to squash if they are con-
trol independent of the branch. To date, however, there has
been no study that separates the impact of control indepen-
dence and determines its contribution to performance in the
multiscalar paradigm.

Trace processors [12,21] are a variant of multiscalar
processors where the dynamic instruction stream is divided
into traces -- frequently executed dynamic instruction
sequences. An internal mispredicted conditional branch
causes its trace to be squashed, but subsequent traces are
not squashed if, after repairing the mispredicted branch and
predicting a new sequence of traces, the new traces are the
same as those already residing in the processing elements
[12]. Only modest improvements are reported because no
optimization in trace selection or processor assignment was
done to expose control independence.

The instruction reuse buffer [18] provides another way
of exploiting control independence. It saves instruction
input and output operands in a buffer -- recurring inputs
can be used to index the buffer and determine the matching
output. In the proposed superscalar processor with instruc-
tion reuse, there is complete squashing after a branch is
mispredicted. However, control independent instructions
after the squash can be quickly evaluated via the reuse
buffer. Overall speedups due to reuse are on the order of
10%, over half of which is due to squash reuse.

1.2  Paper organization

In Section 2, we consider a series of idealized machine
models in order to better understand the relative impor-
tance of some of the bigger issues affecting control inde-
pendence. Section 3 lists the key features in a superscalar
processor for exploiting control independence and dis-

cusses implementation alternatives for each of the features.
Next, in Section 4, we study performance considering tim-
ing constraints imposed by practical implementations.

2.  The potential of control independence

In this section we begin evaluating the performance
potential of control independence in superscalar proces-
sors. It is an idealized study in the sense that some of the
models have oracle knowledge so that (1) performance
bounds can be established and (2) aspects that limit the
performance of control independence can be isolated. The
latter has important implications: by understanding the
limiting aspects, techniques may be developed to overcome
them. On the other hand, the study isnot an unconstrained
“parallelism limit study” -- a particular class of implemen-
tations is targeted, and fundamental resources are limited.

2.1  Control independence models

In the models given below, the performance impact of
three important aspects of a control independent design are
singled out for study.

• The first aspect concerns true data dependences
between correct control dependent instructions and
control independent instructions. In such cases, issuing
the control independent instructions is delayed until
after the misprediction is resolved and the correct con-
trol dependent instructions are fetched/issued.

• The second aspect is the handling of false data depen-
dences created by incorrect control dependent instruc-
tions. As discussed earlier, these cause the selective
reissue of some control independent instructions.
Delays brought on by this repair and selective reissue
can inhibit performance gains.

• The third aspect is the use of machine resources by
instructions on an incorrect path that are eventually
squashed. Even if control independence is ideally
implemented otherwise, this waste of resources and
time will reduce performance.

Six different models are evaluated. Figure 2 illustrates
the differences among these six models, using the example
CFG in Figure 1. Only two resources, instruction fetch and
issue, are shown. Time progresses downward in the fetch/
issue schedules. Fetching each basic block consumes fetch
bandwidth; this is shown using basic block labels within
their respective fetch slots. Likewise, instructions consume
issue bandwidth, and are labeled first with the correspond-
ing basic block, followed by the production/consumption
of a value. For clarity, only instructions that ultimately
retire (i.e. correct instructions) are shown; for these, only
the final issue time is shown. The labels “M” and “D” in
the diagrams indicate the time of the branch misprediction
(M) and the time that the misprediction is detected (D).



FIGURE 2. Fetch and issue timing for the six models, corresponding to the example CFG in Figure 1.

The oracle model (Figure 2(a)) uses oracle branch pre-
diction and therefore the branch terminating block 1 is not
mispredicted. Blocks 1, 3, and 4 are fetched in correct
dynamic program order.

The next four models use real branch prediction coupled
with complete knowledge of control dependences to
exploit control independence. The following notations are
used.

• WR (“Wasted Resources”): Misspeculated instructions
consume window resources and bandwidth, thus delay-
ing other, correct instructions.

• FD (“False Data Dependences”): The effects of false
data dependences between incorrect control dependent
instructions and control independent instructions are
modeled.

The inverse notations,nWRand nFD, indicate the corre-
sponding factor isnot modeled. Thus, there are four possi-
ble models:nWR-nFD, nWR-FD, WR-nFD, andWR-FD.

In the nWR-nFD model (Figure 2(b)), mispredicted
branches delay fetching the correct control dependent
instructions. But between the time that a branch is mispre-
dicted and the misprediction is detected, fetch and window
resources are kept busy with control independent instruc-
tions. Incorrect control dependent instructions are not con-
sidered (for example, block 2 is not fetched into the
window), thereby eliminating false dependences and
devoting resources solely to control independent work
while the misprediction is resolved.

The only difference between this model andoracle is
that instructions are fetched in a different order following
mispredicted branches. This has a negative performance
impact only when true data dependences are delayed with
respect tooracle. For example, instruction “4: <=r4” issues
later because the producer instruction in block 3 is delayed
by the misprediction.

Interestingly, there are situations where performance of
nWR-nFDmay actually exceed that oforacle. For exam-
ple, instruction “4: <=r5” issues slightly earlier with

respect tooracle, because block 4 is fetched out-of-order
and earlier. If this instruction is on the critical path, sched-
uling it earlier may improve overall performance.

The nWR-FD model, shown in Figure 2(c), also does
not waste time with misspeculated instructions, however
their effects on data dependences are felt. For example, we
do not know the true producer of “r5” until the mispredic-
tion is resolved, delaying instruction “4: <=r5” until that
time. The repair of false data dependences is assumed to
occur in a single cycle, at the time a misprediction is
resolved -- this is the best that can be achieved.

The dual of this model isWR-nFD(Figure 2(d)): mis-
speculated instructions take up time and resources (indi-
cated by shaded regions), but false dependences are
hidden. Performance degradation with respect to
nWR-nFD is caused by an underutilized window and
delayed fetching of correct (control independent) instruc-
tions.

TheWR-FDmodel (Figure 2(e)) uses no oracle knowl-
edge regarding misspeculated instructions -- they waste
both time and resources, and interfere with data depen-
dences. This model represents an upper bound on the per-
formance of superscalar processors exploiting basic control
independence.

Finally, the base model (Figure 2(f)) squashes all
instructions after a branch misprediction.

2.2  Hardware constraints and assumptions

We are interested in the performance impact of instruc-
tion window size and machine width (peak fetch, issue, and
retire rate) on control independence. In our study, the
machine width is 16 instructions per cycle for all simula-
tions, and window size is varied. We implement the follow-
ing additional hardware constraints and assumptions:

• Instruction fetch is ideal: up to 16 instructions, includ-
ing any number of branches, can be fetched every cycle.

• Instruction fetch, dispatch, issue, execute, and retire
stages are modeled. Fetch and dispatch take 1 cycle
each. Issue takes at least 1 cycle, possibly more if the
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instruction must stall for operands. Execution takes a
fixed latency based on instruction type, plus any time
spent waiting for a result bus. Address generation takes
1 cycle, and all data cache accesses are 1 cycle (i.e. per-
fect data cache). Instructions retire in order.

• Any 16 ready instructions may issue in a cycle.

• Output and anti-dependences for both registers and
memory are eliminated (i.e. perfect renaming).

• Oracle memory disambiguation is used. (However,
stores fetched down the wrong control path may still
interfere with subsequent, control independent loads.)

• A 216-entry gsharepredictor [22] is implemented for
predicting the direction of conditional branches. All
direct target addresses are assumed to be predicted cor-

rectly. For indirect calls and jumps, a 216-entry corre-
lated target buffer [23] is used. Returns are predicted
using a perfect return address stack [24].

2.3  Benchmarks

Dynamic instruction traces, including both correctly
speculated and misspeculated instructions, are generated
by the Simplescalar simulator [25]. Five integer SPEC95
benchmarks -- chosen to reflect a variety of prediction
accuracies (Table 1) -- were simulated to completion.

2.4  Results

Results of simulating the six machine models are in
Figure 3. Performance is measured in instructions per cycle
(IPC) and is shown as a function of window size.

First of all, a performance upper bound is established
with the oracle results. These results, assuming perfect
branch prediction, are typically over 10 IPC for window
sizes of 256 to 512. The machine width upper bound is 16,
and most of the benchmarks come close to this mark. Com-
paring theoracleandbaseresults indicates a large perfor-
mance loss due to branch mispredictions with a complete
squash (but otherwise ideal) model. For a 512 instruction
window, the loss is between 40% and 70% for four of the
five benchmarks. The benchmark that has the least perfor-
mance loss isvortex-- but its prediction accuracy is quite
high. Performance for thebasemodel typically saturates at
a window size of 128 or 256. There is no such saturation
point for the oracle model. These results are consistent
with those produced by others and indicate the importance
of branch mispredictions on overall performance.

The difference betweenoracleandnWR-nFDillustrates
performance losses from deferring instructions on a correct
control dependent path until after a mispredicted branch is
resolved. InnWR-nFD, however, machine resources do not
sit idle while the mispredicted branch is resolved -- all
machine resources are kept as busy as possible fetching
and executing the control independent path. The perfor-
mance loss is typically only 1 to 2 IPC for the medium to
large windows.

The basemodel also defers execution of the correct
control path following a misprediction, but it gets no bene-
fit from the machine resources before the mispredicted
branch is resolved -- any work done after the branch is
squashed. Viewed in this way,nWR-nFDindicates that the
otherwise wasted resources inbasecan lead to large per-
formance benefits. In terms of the way control flow is man-
aged, nWR-nFD is most similar to Lam and Wilson’s
model [9], because misspeculated instructions are ignored.

With nWR-FD, the impact of false data dependences is
isolated. For four of the five benchmarks, the performance
drop is significant, another 1 to 2 IPC belownWR-nFD.
Compressexperiences a much larger drop in performance.
False dependences incompresslimit IPC to under 5 for all
window sizes.

With WR-nFD, we isolate the effects of wasting
resources by executing incorrect control dependent instruc-
tions until the branch is resolved. Some resources are still
used for the control independent path -- but not until and
unless the fetch unit reaches the control independent
region. This results in a major drop in performance, bigger
than the drop caused bynWR-FD. For all benchmarks
exceptcompress, the effect of wasted time and resources
dominates that of false dependences, by about a factor of 2.

With WR-FD, we see the combined impact of wasted
resources and false dependences caused by incorrect con-
trol dependent instructions. Fortunately, the effects are not
additive. TheWRcomponent already dominates, so there is
little additional penalty caused by repairing and reissuing
false data dependent instructions in the control independent
stream (except forcompress). At this point performance
gains are about 100% over thebase machine.

2.5  Summary and applications of the study

This initial study has established performance bounds
for control independence in the context of superscalar pro-
cessors. TheWR-FD model reduces the gap between the
oracleandbasemodels by half, and a realistic implemen-
tation will fall somewhere betweenbase andWR-FD.

The other three control independence models also have
interesting implications. A major performance limiter is
the incorrect control dependent path, primarily because of
wasted fetching and window space (WR-nFD), but also
false data dependences (nWR-FD). If these limitations

TABLE 1. Benchmark information.
benchmark input dataset dyn. instr. count misp. rate

gcc -O3 genrecog.i 117 M 8.3%
go 9 9 133 M 16.7%
compress 400000 e 2231 104 M 9.1%
ijpeg vigo.ppm 166 M 6.8%
vortex modified train input 101 M 1.4%



could be mitigated in some way, performance of the
nWR-nFDmodel indicates the remaining problem is less
significant, i.e. the problem of true data dependences
between the deferred, correct control dependent path and
control independent instructions.

A possible approach to mitigating the effects of incor-
rect control dependent instructions is to design instruction
windows and fetch units that are less sensitive to wasted
resources. The multiscalar architecture is a candidate due
to its multiple program counters and “expandable,
split-window” [10]. Although strictly speaking our study is
only applicable to processors with a single flow of control,
we at least get a hint of the control independence potential
for somemultiscalar design points. For example, Vijayku-
mar’s thesis [26] indicates average task sizes on the order
of 15 instructions (comparable to the fetch width of 16
instructions) and effective window sizes of under 200
instructions for integer benchmarks. Given a multiscalar
processor with aggressive resolution of inter-task data
dependences and selective reissuing capability, the
nWR-FDmodel rather thanWR-FDgives the more appro-
priate performance bound due to the expandable window.

The large performance drop betweennWR-nFD and
WR-nFD, the result of wasted fetch and execution
resources, tends to indicate that both hardware and soft-
ware forms of multi-path execution should be performed
carefully. These techniques are applied to both correctly
predicted and incorrectly predicted branches. We have
shown that wasted resources caused by incorrect predic-
tions alone is a problem; adding some fraction of correct
predictions worsens the problem.

3.  Implementation issues

In this section we discuss important implementation
issues for exploiting control independence in superscalar
processors. This discussion allows us to better understand,
qualitatively, where implementation complexities may lie.
We do not mean to suggest that the methods we describe
are the only ones possible, but we feel the approaches out-
lined here are adequate for highlighting the major imple-

mentation issues that must be considered, and they form a
basis for our later performance simulations in Section 4.

FIGURE 3. Performance of the six models.

2

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

go

oracle

nWR-nFD

nWR-FD

WR-nFD
WR-FD

base

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048

IP
C

window size (log2)

compress

oracle

nWR-nFD

nWR-FD
WR-nFD

WR-FD

base

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048

IP
C

window size (log2)

ijpeg

oracle
nWR-nFD
nWR-FD

WR-nFD
WR-FD

base

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

vortex
oracle
nWR-nFD
nWR-FD
WR-nFD
WR-FD

base

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

gcc

oracle

nWR-nFD

nWR-FD

WR-nFD

WR-FD

base



3.1  Handling of branch mispredictions

When a branch misprediction is detected in a traditional
superscalar processor, the processor performs a series of
steps to ensure correct execution. Instructions after the
mispredicted branch are squashed and all resources they
hold are freed. Typically, freeing resources includes return-
ing physical registers to the freelist and reclaiming entries
in the instruction issue buffers, reorder buffer, and load/
store queues. In addition, the mapping of physical registers
is backed up to the point of the mispredicted branch. The
instruction fetch unit is also backed up to the point of the
mispredicted branch and the processor begins sequencing
on the correct path.

Exploiting control independence requires modifications
to the recovery sequence, as illustrated in Figure 4 and
described below. Steps 1-3 below constitute therestart
sequence, and step 4 theredispatch sequence.

1. After detecting a branch misprediction, the first control
independent instruction (if it exists) must be found in
the window. We call this thereconvergent point,
because, in general, control independence exists when
control flow diverges and subsequently re-converges.

2. Instructions are selectively squashed, depending on
whether they are incorrect control dependent instruc-
tions or control independent instructions. Squashed
instructions are removed from the window, and any
resources they hold are released.

3. Instruction fetching is redirected to the correct control
dependent instructions, and these new instructions are
inserted into the window which may already hold sub-
sequent control independent instructions.

4. Based on the new, correct control dependent instruc-
tions, data dependences must be established with the
control independent instructions already in the window.
Any modified data dependences cause already-executed
control independent instructions to be reissued.

FIGURE 4. Misprediction recovery sequence.

3.2  Key microarchitecture mechanisms

To support the above recovery steps, we have identified
four underlying microarchitecture mechanisms. These are:
detecting the reconvergent point, supporting arbitrary
insertion and removal of instructions within the window,
establishing correct data dependences following a mispre-
diction, and selectively reissuing instructions.

3.2.1  Detecting the reconvergent point

Ideally, one would find reconvergent points by associat-
ing with every branch instruction itsimmediate post-dom-
inator : the basic block nearest the branch which lies on
every path between the branch and the CFG exit block
[27]. In Figure 1, for example, block 4 is the immediate
post-dominator of the mispredicted branch. Although the
post-dominator does not directly specify the program’s
control dependences, it is sufficient for identifying all
reconvergent points. Finding immediate post-dominators
could be difficult using hardware alone. Software can aid
the hardware by encoding this information. For example,
the compiler could encode this information by including in
each branch instruction a small offset to its post-dominator
instruction. A second option is to incorporate post-domina-
tor registers into the architecture. Software can load these
registers with the addresses of post-dominator instructions
for soon-to-be-executed branches and then specify a
post-dominator register in each branch instruction.

Hardware-only solutions for detecting reconvergent
points probably require imprecise heuristics. One alterna-
tive is to exploit easily-identified control flow constructs
such as loops and functions. The targets of subroutine
return instructions and backward branches are detectable
by hardware, and they may serve as “global” reconvergent
points. While these points are not the precise, i.e. nearest,
reconvergent point of any particular branch, they often
identify a subset of control independent instructions com-
mon to many branches in a region. Hardware can easily
detect and record the location of such points in the window,
and when a misprediction is detected, the nearest such
point is assumed to be the correct reconvergent point.

3.2.2  Instruction removal/insertion

The restart sequence requires selectively removing and
inserting instructions while maintaining a correct ordering.
The reorder buffer (ROB) of a traditional superscalar pro-
cessor can be augmented to support this. One option is to
have the ROB support arbitrary physical shifting of instruc-
tions to collapse and expand the window for restart
sequences. This first option causes the physical ROB slots
to move, and any instruction tags in the pipelines pointing
to them will become out-of-date.

A second option is to implement the ROB as a linked
list. Then, any outstanding instruction tags do not change
as the ROB is repaired, but dispatch and retirement will be
complicated by multiple linked list operations being done
in parallel. The complexity of manipulating the linked list
can be reduced by implementing it at a granularity larger
than a single instruction. That is, ROB space can be parti-
tioned into multi-instruction blocks. For example, a 256
instruction ROB can be implemented as 16 blocks of 16

Incorrect
Instructions

Correct Instructions

Control Independent Instructions

Redispatch SequenceRestart Sequence

Mispredicted Branch Reconvergent Point



instructions each. Then, a block at a time can be inserted or
removed from the ROB in a more-or-less conventional
way. This reduces complexity but also reduces full utiliza-
tion of the window as ROB blocks will often not be fully
utilized. For example, when the processor needs to insert
eight instructions into the middle of the ROB, it will allo-
cate a full block of 16 but use only half the entries.

During the restart sequence, resources (physical regis-
ters and load/store buffers) of squashed control dependent
instructions are iteratively reclaimed. In parallel, as the
correct control dependent path is fetched, new instructions
may acquire the resources freed by the old instructions. If
there are more correct control dependent instructions than
incorrect ones, the resources of control independent
instructions, youngest first, are reclaimed to make room.

3.2.3  Forming correct data dependences

Although instructions may becontrol independent with
a preceding block of instructions, they may not bedata
independent. Consequently, both register and memory
dependences of control independent instructions must be
repaired after a misprediction.

When the restart sequence completes, the register
rename maps reflect state up to the re-convergent point.
Control independent instructions are redispatched [12]
using the up-to-date register maps. During redispatch,
source operands are remapped while destination operands
maintain their original assignments. If an instruction’s
source operand is mapped to a new physical register, the
instruction reissues with new data.

To repair memory dependences, the memory-ordering
mechanism detects when a preceding store is removed or
inserted by a restart sequence and directs affected loads to
reissue. An implementation can be found in [12].

3.2.4  Selective reissuing of instructions

If a control independent instruction reissues due to
incorrect register/memory dependences, then subsequent
data dependent instructions will also need to reissue.

Ultimately, instructions may issue and execute multiple
times before they eventually retire. Reissuing, therefore,
becomes a common case and the microarchitecture must be
modified to reflect this. To reduce the complexity and
latency of reissuing instructions, they remain in the instruc-
tion issue buffers until they retire [11,12]. Instruction issue
buffers can be built to reissue their instructions autono-
mously when they observe a new value being produced for
a source operand. This functionality can be built into the
normal issue logic. Thus, the redispatch logic need only
identify instructions directly affected by incorrect data
dependences, and the following data dependent chain of
instructions will automatically reissue.

4.  Performance of control independence in a
superscalar processor

The idealized studies of Section 2 provide insight into
the factors that govern performance of control indepen-
dence. We now proceed with a more refined analysis,
focusing on an implementation of the modelWR-FD. The
analysis is based on a detailed, fully-execution driven sim-
ulator, and reflects the performance impact of implement-
ing the basic mechanisms outlined in Section 3.

4.1  Simulator detail

Many of the basic hardware constraints are the same as
in Section 2. The machine width is 16 instructions and the
underlying pipeline is similar. Instruction fetching remains
ideal, but a more realistic data cache is modeled. The data
cache is 64KB, 4-way set associative. The cache access
latency is two cycles for a hit instead of one, and the miss
latency to the perfect L2 data cache is 14 cycles. Also, real-
istic, but aggressive, address disambiguation is performed.
Loads may proceed ahead of unresolved stores, and any
memory hazards are detected as store addresses become
available [12] -- recovery is via the selective reissuing
mechanism. Lastly, the branch predictor, while identical to
that in the ideal study, may have lower accuracy due to
delayed updates and temporarily incorrect global history.

The key mechanisms for supporting control indepen-
dence, outlined in Section 3, are modeled as follows.

Detecting the reconvergent pointis done via software
analysis of post-dominator information.

Instruction removal/insertion is implemented via the
linked list approach, using single-instruction granularity.

Forming correct data dependencesis delayed a vari-
able number of cycles after the misprediction is detected,
unlike the ideal study, because (1) the redispatch sequence
cannot proceed until after the restart sequence completes
and (2) redispatch proceeds at the maximum dispatch rate.

Selective reissuingis modeled in detail, whereas the
ideal study models only thedelay caused by repaired
dependences, i.e. only the final instruction issue. The
source of reissuing includes both register rename repairs
and loads squashed by stores, followed by a cascade of
reissued instructions along the dependence chains.

4.2  Performance results

Figure 5 shows the instructions per cycle (IPC) for three
different machines: a superscalar processor that squashes
all instructions after branch mispredictions (BASE), a pro-
cessor with control independence capability (CI), and one
with the added capability to instantaneously repair data
dependences and redispatch all control independent
instructions after the restart sequence completes (CI-I).
Measurements are made for three window sizes, 128, 256,
and 512 instructions.



For less predictable workloads, control independence
offers a significant performance advantage over complete
squashing, although less than the ideal study indicated. The
relative performance improvement of CI over BASE for
each of the window sizes is summarized in Figure 6.Go,
compress, and jpeg show improvements on the order of
20% to 30%. Whilejpeg is fairly predictable, it is also rich
in parallelism and any misprediction cycles result in a large
penalty.Go on the other hand is a very control-intensive
workload with frequent mispredictions, and it demon-
strates the most performance benefit.

Gcc also shows a substantial performance gain, about
10%. Statistics presented in the next section show that
approximately 60% ofgcc’s mispredictions have a corre-
sponding reconvergent point in the window, while forgo,
jpeg, andcompressthe same statistic is over 70%. The fact
that less control independence is exposed ingcc may par-
tially account for the lower performance gain.

From Figure 5 we see that CI-I, as expected, gives better
performance than CI. However, the gain is small --
between 1% and 4% -- meaning the time spent during
redispatch sequences has less impact than anticipated.

FIGURE 5. Performance of the three models.

FIGURE 6. Percent improvement in IPC.

4.3  Other control independence measures

This section explores the behavior of control indepen-
dence in a superscalar processor to better understand the

performance results given in the previous section. The
results in this section are for a 256-instruction window.

The first row of Table 2 shows how often a control inde-
pendent reconvergent point is in the window at the time a
misprediction is detected. Except forvortex, a reconvergent
point is present for over 60% of mispredictions.

The second and third rows of Table 2 show the average
number of instructions removed and insertedfor those
restart sequences that reconverge in the window. On aver-
age, fewer than 14 incorrect control dependent instructions
are removed, and fewer than 20 correct control dependent
instructions are inserted. For over 80% of the restarts that
reconverge in the window, both the number of instructions
inserted and removed is fewer than 32 (not shown in table).

The fourth row in Table 2 shows that the average num-
ber of control independent instructions after the reconver-
gent point is greater than 50 for all the benchmarks. The
fifth row in Table 2 shows that on average, only 2 to 3 of
the control independent instructions will acquire new phys-
ical register names during redispatch, requiring them to
reissue (as well as subsequent data dependent instructions).

The last row in Table 2 shows the amount of useful
work that can be saved with control independent instruc-
tions. Ignoringvortex, 11% (jpeg) to 39% (compress) of all
retired instructions issue and have their final value before a
preceding mispredicted branch is resolved. Without using
control independence this work would be lost.

5.  Conclusions and future work

This research refines our understanding of control inde-
pendence, perhaps the least understood solution to the con-
ditional branch problem. The study establishes new
performance bounds that account for practical implementa-
tion constraints and incorporate all data dependences. To
gain insight, the study identifies three important factors and
isolates their impact on performance: true data depen-
dences between correct control dependent instructions and
control independent instructions, false data dependences
created by incorrect control dependent instructions, and
wasted resources consumed by incorrect control dependent
instructions. A conclusion is that both types of data depen-
dences limit the potential of control independence in per-
haps unavoidable ways, but the biggest performance
limiter is wasted resources consumed by incorrect control
dependent instructions. This limitation may be reduced in
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TABLE 2. Control independence measures.
statistic gcc go comp jpeg vortex

% of misp. that reconverge 62% 71% 91% 82% 47%
# removed ctl. dep. instr. 13.2 13.5 6.8 9.0 9.2
# inserted ctl. dep. instr. 16.5 18.1 6.6 10.7 12.8
# control indep. instr. 51.8 62.4 122 79.8 81.5
# instr. w/ new reg. names 2.8 2.2 1.7 2.2 2.1
work saved 20% 30% 39% 11% 4%



designs capable of “absorbing” wasted instruction fetch
and execution bandwidth.

This paper also discusses important implementation
issues and provides some design alternatives. Simplified
alternatives are proposed to address some of the more com-
plex aspects, such as the segmented ROB for arbitrary
insertion/removal of instructions, and hardware heuristics
for identifying reconvergent points. Detailed simulations of
a superscalar processor implementing the key features
show typical performance improvements of 10-30%,
derived from the 20% of retired instructions whose compu-
tation is saved as a result of control independence.

The purpose of this work is not so much to advocate
control independence in conventional superscalar proces-
sors as to promote other control independence architec-
tures. This research is a necessary step towards improving
control independence in trace processors, whose hierarchi-
cal structure provides a simpler implementation in many
respects, including arbitrary instruction insertion/removal.
Further, the abstractnWR-FDmodel suggests combining
the expandable window model of multiscalar processors
with the aggressive data dependence resolution and recov-
ery model of trace processors.

A much more comprehensive treatment of control inde-
pendence can be found in [28], an extension of this paper.
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