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C O V E R  F E A T U R E

Instruction-Level
Distributed
Processing

F
or nearly 20 years, microarchitecture research
has emphasized instruction-level parallelism,
which improves performance by increasing the
number of instructions per cycle. In striving
for such parallelism, researchers have taken

microarchitectures from pipelining to superscalar pro-
cessing, pushing toward increasingly parallel proces-
sors. They have concentrated on wider instruction fetch,
higher instruction issue rates, larger instruction win-
dows, and increasing use of prediction and speculation.
In short, researchers have exploited advances in chip
technology to develop complex, hardware-intensive
processors.

Benefiting from ever-increasing transistor budgets
and taking a highly optimized, “big-compile” view
of software, microarchitecture researchers made sig-
nificant progress through the mid-1990s. More
recently, though, researchers have seemingly reduced
the problem to finding ways of consuming transis-
tors, resulting in hardware-intensive, complex proces-
sors. The complexity is not just in critical path lengths
and transistor counts: There is high intellectual com-
plexity in the increasingly intricate schemes for
squeezing performance out of second- and third-order
effects.

Substantial shifts in hardware technology and soft-
ware applications will lead to general-purpose
microarchitectures composed of small, simple, inter-
connected processing elements, running at very high
clock frequencies. A hidden layer of implementation-
specific software—co-designed with the hardware—
will help manage the distributed hardware resources
to use power efficiently and to dynamically optimize
executing threads based on observed  instruction
dependencies and communication. 

In short, the current focus on instruction-level 
parallelism will shift to instruction-level distributed
processing (ILDP), emphasizing interinstruction com-
munication with dynamic optimization and a tight
interaction between hardware and low-level software. 

TECHNOLOGY SHIFTS
During the next two or three technology generations,

processor architects will face several major challenges.
On-chip wire delays are becoming critical, and power
considerations will temper the availability of billions of
transistors. Many important applications will be object-
oriented and multithreaded and will consist of numer-
ous separately compiled and dynamically linked parts.

Wire delays 
Both short (local) and long (global) wires cause prob-

lems for microprocessor designers. With local wires,
the problem is congestion: For many complex, dense
structures, transistor size does not determine area
requirements—wiring does. Global wire delays will not
scale as well as transistor delays largely because shrink-
ing wire sizes and limits on wire aspect ratios will cause
resistance per unit length to increase at a faster rate
than wiring distances shrink. Hierarchical wiring, with
thicker long-distance wires will certainly help, but it is
unlikely that the number of wiring levels will increase
fast enough to stay ahead of the problem.1 For exam-
ple, in future 35-nanometer technology, the projected
number of static RAM cells reachable in one clock cycle
will be about half of that today.2

Of course, reachability is a problem with general
logic, too. As logical structures become more complex
and consume relatively more area, global delays will
increase simply because structures are farther apart.

Shifts in hardware and software technology will soon force designers to
look at microarchitectures that process instruction streams in a highly 
distributed fashion. 
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Put another way, simple logic will likely improve per-
formance directly by reducing critical paths, but also
indirectly by reducing area and overall wire lengths.
This is not a new idea: All of Seymour Cray’s designs
benefited from this principle.

Power consumption
Dynamic power is proportional to the clock fre-

quency, the transistor switching activity, and the sup-
ply voltage squared, so higher clock frequencies and
transistor counts have made dynamic power an impor-
tant design consideration today. Dependence on volt-
age level squared forces a countering trend toward
lower voltages.  

In the future, the power problem is likely to get
much worse. To maintain high switching speeds with
reduced voltage levels, developers must continue to
lower transistor threshold voltages. Doing so makes
transistors increasingly leaky: Current passes from
source to drain even when the transistor is not switch-
ing. The resulting static power consumption will likely
become dominant in the next two or three chip-tech-
nology generations.

There are few solutions to the static power problem.
The design could selectively gate off the power supply
to unused parts of the processor, but doing so is a rel-
atively slow process that can create difficult-to-man-
age transient currents. Using fewer transistors or at
least fewer leaky ones is about the only other option.

Software issues
General-purpose computing has shifted emphasis to

integer-oriented commercial applications, where irreg-
ular data is common and data movement is often more
important than computation. Highly structured data

remains important for multimedia applications that tend
to use integers and low-precision floating-point data.
Often library-oriented, however, special processors or
instruction-set extensions support these applications.

Microarchitecture researchers typically assume a
high level of compiler optimization, sometimes using
profile-driven feedback, but in practice many appli-
cation binaries are not highly optimized. Further,
global compile-time optimization is incompatible with
object-oriented programming and dynamic linking.
Consequently, microarchitects face the challenge of
providing high performance for irregular, difficult-to-
predict applications, many of which have not been
compiler-optimized. 

On-chip multithreading 
Multithreading, which brings together microarchi-

tecture and applications, has a lengthy tradition, pri-
marily in very-high-end systems that have not enjoyed
a broad software base. For example, multiprocessing
became an integral component of large IBM main-
frames and Cray supercomputers in the early 1980s.
However, the widespread use of multithreading has
been a chicken-and-egg problem that now appears
nearly solved.

To continue the exponential complementary metal-
oxide semiconductor (CMOS) performance curve,
many chips now support multiple threads and others
soon will. Multiple processors3 or wide superscalar
hardware capable of supporting simultaneous multi-
threading (SMT) provide this support.4,5 Software that
has many parallel, independent transactions—such as
many Web servers-—will take advantage of hardware-
supported on-chip multithreading, as will many gen-
eral-purpose applications.

INSTRUCTION-LEVEL DISTRIBUTED PROCESSING
The exploitation of technology advances and the

accommodation of technology shifts have both fos-
tered computer architecture innovation. For example,
the cache memory innovation helped avoid tremen-
dous slowdowns by adapting to the widening gap in
performance between processor and dynamic RAM
(DRAM) technologies.

At this point, shifts in both technology and appli-
cations are driving microarchitecture innovation.
Innovators will strive to maintain long-term perfor-
mance improvement in the face of increasing on-chip
wire delays, increasing power consumption, and irreg-
ular throughput-oriented applications that are incom-
patible with big, static, highly optimized compilations.

ILDP microarchitecture
The ILDP microarchitecture paradigm deals effec-

tively with technology and application trends. A
processor following this paradigm consists of several
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Figure 1. An example
of instruction-level
distributed process-
ing, microarchitec-
ture, consisting of an
instruction fetch (IF)
unit, integer units
(IU), floating point
units (FU), and cache
units (CU). The units
communicate via
point-to-point
interconnections that
will likely consume
one or more clock
cycles each. 



consume power even when idle, keeping them busy
with active work is preferable—which a fast clock
does. In addition, the replicated distributed units make
implementing selective power gating easier. Also, some
units may be just as effective if built with slower tran-
sistors, especially if multiple parallel copies of the unit
are available to provide throughput.

For on-chip multithreading, ILDP provides the
enticing possibility of combining a chip multiproces-
sor with simultaneous multithreading, particularly by
partitioning computation elements among threads.
With simple replicated units, different subsets of units
can be assigned to individual threads. As in SMT, the
units share the processor as a whole, but as in a mul-
tiprocessor, any unit services only one thread at a time.
The challenge for developers will be managing the
threads and resources of such a fine-grained distrib-
uted system.

Dependence-based microarchitecture
An important ILDP processor class, clustered

dependence-based architecture,7 organizes processing
units into clusters and steers dependent instructions
to the same cluster for processing, as in Compaq’s
Alpha 21264 microarchtitecture. This processor has
two clusters and routes different instructions to each
cluster at issue time, as Figure 2 shows. One cluster’s
results require an additional clock cycle to route to
the other. The 21264’s data dependencies tend to steer
communicating instructions to the same cluster. A
faster clock cycle compensates for an additional inter-
cluster delay, leading to higher overall performance.

Generally, developers can divide a dependence-
based design into several clusters; within a cluster
there can be further division of instruction process-
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distributed functional units, each fairly simple and
with a very high-frequency clock, as Figure 1 shows.

Relatively long wire delays imply processor microar-
chitectures that explicitly account for interinstruction
and intrainstruction communication. As much as pos-
sible, the microarchitecture should localize communi-
cation to small units while organizing the overall
structure for communication. Communication among
units will be point-to-point with delays measured in
clock cycles. A significant part of the microarchitecture
design effort will involve partitioning the processor to
accommodate these delays. To keep the transistor
counts low and the clock frequency high, the microar-
chitecture core will keep low-level speculation to a rel-
ative minimum. Determinism is inherently simpler than
prediction and recovery.

With high-intraprocessor-communication delays,
the number of instructions the processor executes per
cycle may level off or decrease, but developers can
increase overall performance by running smaller dis-
tributed processing units at a much higher clock rate.
The processor’s structure and clock speeds have impli-
cations for global clock distribution. The processor
will likely contain multiple clock domains, possibly
asynchronous from one another.

Clock speed
Developers show growing awareness that clock

speed holds the key to increased performance. For the
past several years, they have pushed instruction-level
parallelism, making some gains, but now, with results
diminishing, they are turning to higher clock speeds.
It’s not a new approach: reduced-instruction-set com-
puter (RISC) proponents have long debated the role of
clock speed, Cray’s approach used a very fast clock,
and the Intel processor evolution follows a trend
toward faster clocks by using successively deeper
pipelines. The original Pentium procssor had a rela-
tively short pipeline of five stages. This grew to 12
stages in the highly successful Pentium Pro/II/III series
of processors, and the recent Pentium 4 uses 20 stages.
In contrast to Intel processors, in which the pipelines
have become extremely deep, the challenge will be to
emphasize simplicity to keep pipelines shallow and
efficient, even with a very fast clock.

Using a very fast clock in an ILDP computer tends
to increase dynamic power consumption, but the
processors’ very modular, distributed nature permits
better microarchitecture-level-power management.
With replication of most units, clock gating can man-
age resource usage and dynamic power consumption.
In particular, control logic can monitor computation
resources and use or not use subsets of replicated units,
depending on computation requirements.6

Regarding static power, a high-frequency clock uses
fast leaky transistors more effectively. If transistors
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Figure 2. Alpha 21264 clustered microarchitecture. Instructions are steered to one of
two processing clusters that have duplicated register files. Communicating the results
produced in one cluster to the other cluster takes a full clock cycle. 
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ing, cache processing, integer processing, floating-
point processing, and so on. The compiler can form
dependent instructions or the processor can do it at
various stages in the pipeline. If instruction decode
logic can steer dependent instructions to the same clus-
ter prior to issue, it simplifies instruction control logic
within a cluster because instructions can be issued in
first-in, first-out (FIFO) order. Meanwhile, instruc-
tions in different clusters can be issued out-of-order.
Waiting until the issue stage, as in the 21264, slightly
reduces interunit communication, but at the expense
of more complex issue logic.

Heterogeneous ILDP
A heterogeneous ILDP model has outlying helper

or service engines surrounding a simple core pipeline,
as Figure 3 shows. Because these helper engines lie
outside the critical processing path, their communi-
cation delays with respect to the main pipeline are
noncritical; thus, they can even use slower transistors
to reduce static power consumption.

Amir Roth and Guri Sohi have proposed a  helper
engine that preloads data by performing speculative
pointer chasing.8 Glenn Reinman’s branch engine pre-
executes instruction sequences to arrive at branch out-
comes early.9 An even more advanced helper engine
is Yuan Chou and John Shen’s instruction coprocessor
that executes its own instruction stream to optimize
instruction sequences.10

CO-DESIGNED VIRTUAL MACHINES
An ILDP computer clearly needs some type of

higher-level management of the distributed instruc-
tion execution resources. This management includes
routing instructions and data among the processor’s
units and allocating distributed resources for multi-
ple simultaneous threads and power management.

One option uses compiler-level software to analyze
instruction interactions. At compile time, the soft-
ware determines or predicts interinstruction depen-
dencies and communication and encodes this

information into machine-level instructions. At run-
time, the hardware uses this information to steer
instruction control and data information through the
distributed processing elements.

Another option uses hardware to determine impor-
tant instruction interactions, with hardware tables
collecting dynamic history information as programs
execute. Later, instructions can acquire steering con-
trol and data information by accessing this history
information.

Overall management of processor resources is
another important consideration. For example, an
ILDP will likely need resource load balancing for good
performance—at both the instruction level and thread
level. For power efficiency, gating off unused or
unneeded resources requires usage analysis and coor-
dination, especially if power gating is widespread
across a chip.

The ILDP optimization and management functions
can be done either by hardware or software. Although
viable, software approaches based on conventional
operating systems and compilers require recompila-
tion and OS changes to fit each ILDP hardware plat-
form—as well as intimate knowledge of the hardware
implementation. The disadvantages of a hardware-
based approach include the need for additional com-
plex, power-consuming hardware and a limited scope
for observing and collecting information related to the
executing instruction stream.

A more radical solution uses currently evolving
dynamic optimizing software and virtual machine
technologies. A co-designed virtual machine combines
hardware and software to implement a virtual archi-
tecture. This combination provides hardware imple-
mentors with a software layer in a hidden portion of
DRAM main memory, allowing relatively complex
dynamic program analysis and implementation-
dependent optimization. The Transmeta Crusoe
processor11 and the IBM Daisy research project12 use
this base technology primarily to support whole-
system binary translation to very long-instruction
word (VLIW) sets. The IBM 390 processor uses a sim-
ilar technology—millicode—to support execution of
complex instructions.13

Figure 4 shows the virtual machine’s overall struc-
ture. The physical main memory space is divided into
conventional architected memory and hidden mem-
ory that a virtual machine monitor uses. The system
places VMM code and data in hidden memory at
boot time. The VMM manages ILDP resources and
modifies instructions by adding information to guide
instruction and data routing. The ILDP hardware can
perform dynamic instruction scheduling, so the sys-
tem does not require large-scale code optimization
and software scheduling, unlike the VLIW-targeted
implementations.
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Figure 3. A heteroge-
neous instruction-
level distributed pro-
cessing chip archi-
tecture. A simple
processor core is sur-
rounded by helper
engines that perform
speculative tasks off
the critical path and
enhance overall per-
formance.



At certain times during normal program execution,
hardware can save the current program counter value
and load it with a pointer to the VMM. Developers
can design the hardware to invoke the VMM in this
manner for selected instruction types, program traps,
or system calls and returns, and a VMM-controlled
timer can initiate periodic traps to the VMM so that
monitoring hardware can read the information.

After it takes control, the VMM saves the archi-
tected state and uses the processor in the normal fash-
ion, fetching instructions from hidden memory and
accessing data from its space in hidden memory. It can
use this information to maintain a history of resource
usage and reconfigure hardware or modify instruction
and data flow. When finished, the VMM returns con-
trol of the interrupted program, and hardware
resumes normal program execution. Meanwhile, the
system uses a conventional off-the-shelf operating sys-
tem and application software. 

INSTRUCTION SETS
Historically, designers have made major changes

to instruction set architectures in discrete steps. After
the original mainframes, industry standard architec-
tures (ISAs) more or less stabilized until the early
1970s, when minicomputers appeared. These
machines used relatively inexpensive packaging and
interconnections, giving developers an opportunity
to rethink ISAs. Based on lessons learned from rela-
tively irregular mainframe instruction sets, develop-
ers aimed toward regularity and orthogonality. To
incorporate these properties, they developed mini-

computer ISAs—such as the PDP-11 and VAX-11
instruction sets—that supported relatively powerful,
variable-length instructions.

As microprocessors evolved toward general-
purpose computing platforms, developers again
rethought ISAs, this time with hardware simplicity
as a goal. The resulting RISC instruction sets allowed
a fully pipelined processor implementation to fit on
a single chip. Because transistor densities have
increased, hardware can now dynamically translate
older, more complex microprocessor ISAs into RISC-
like operations.

In retrospect, it seems that each change in packag-
ing and technology—mainframes to minicomputers
to microprocessors—has initiated instruction-set inno-
vation. Perhaps we should take another serious look
at ISAs—this time motivated by on-chip communica-
tion delays, high-speed clocks, and advances in trans-
lation and virtual machine software.

We can and should optimize ISAs for ILDP, focus-
ing on communication and dependence. To reduce
delays, we should make sure the ISA easily expresses
interinstruction communication in a natural way.
Architects should optimize ISAs for very fast execu-
tion, with emphasis on small, fast memory structures,
including caches and registers. In contrast, most recent
ISAs, including RISC and VLIW sets, have empha-
sized computation and independence—for example,
by grouping independent instructions in close prox-
imity.

Although maintaining compatibility with legacy
program binaries tends to inhibit the development of
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new ISAs, virtual machine technology and binary
translation enable new implementation-level ISAs.
Here, the VMM can translate and cache binaries in
hidden memory—basically the Transmeta Crusoe and
IBM Daisy paradigm, but applied to ILDP rather than
a VLIW set. In this case, translations can be kept rel-
atively simple with hardware and software sharing the
burden of instruction scheduling and data routing.

To make ILDP instruction set concepts less abstract,
consider an ISA that incorporates a register file hier-
archy by using

• a small fast register file for local communication
within a cluster of processing elements, and

• a larger global register file for intercluster com-
munication. 

This ISA uses variable-length instructions to provide
smaller instruction footprints and smaller caches. As
an extreme example, consider an ISA with 64 general-
purpose registers and a single accumulator for per-
forming operations. All operations must involve the
accumulator, so both dependent operations and local-
value communication are explicitly apparent. Such an
ISA needs only one general-purpose register field per
instruction, so it can be quite compact, with instruc-
tions 1, 2, or 4 bytes in length. In the basic instruction
types shown in Table 1, the first two instructions copy
data to and from a register; accumulator A is the 
single accumulator and accumulator R is a general-
purpose register. The next two instructions depict
operations on data held in the accumulator and gen-
eral register file. The last three instructions indicate
loads and stores.

With an ISA of this type, dependent instructions
naturally chain together via the accumulator and are
contiguous in the instruction stream. With a clustered
ILDP implementation, the instruction fetch/decode
hardware can steer all instructions in a dependent
chain to the same cluster, steering the next dependent
chain to another cluster. If the hardware renames the
accumulator within each cluster, the processor can

exploit parallelism among dependence chains, with
the general registers handling global communication.
The instruction queues in each cluster simply issue
instructions in FIFO order, and fast local data com-
munication is through the accumulator.

The single-accumulator ISA implicitly specifies com-
munication and dependence information, although
whether it is better to create a new ISA or simply
append hint bits containing similar information to an
existing one remains unclear. 

P rocessor design, as with most complex engi-
neering problems, is an ongoing process of rein-
venting, borrowing, and adapting—with a little

innovation thrown in from time to time. New appli-
cations and evolving hardware technology are con-
stantly changing the mix of techniques that lead to
optimal engineering solutions. 

Performance through simplicity to achieve a fast
clock rate is a reinvention of the Cray designs. But how
should this be done with modern very high-density
CMOS technologies and nonnumeric applications?
Developers can borrow distributed systems methods
and apply them at the processor level to solve load bal-
ance, resource allocation, and communication prob-
lems. But how can they effectively apply these methods
when the processing units are as small as individual
instructions? Virtual machine methods have been
around in one form or another for at least 30 years and
can now be adapted to form hidden “microoperating
systems” for managing the small distributed systems
that processors are becoming. But how should devel-
opers divide functions (and complexity) between hard-
ware and VMM software to optimize performance or
power saving? Will combining new instruction sets
with dynamic translation provide significant benefits? 

These and many other important and interesting
research issues remain to be explored as the proces-
sor architecture evolves toward instruction-level dis-
tributed processing. ✸
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