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ABSTRACT
Trace caches enable high bandwidth, low latency instruction
supply, but have a high miss penalty and relatively large working
sets.  Consequently, their performance may suffer due to capacity
and compulsory misses.  Trace preconstruction augments a trace
cache by performing a function analogous to prefetching.  The
trace preconstruction mechanism observes the processor's
instruction dispatch stream to detect opportunities for jumping
ahead of the processor.  After doing so, the preconstruction
mechanism fetches static instructions from the predicted future
region of the program, and constructs a set of traces in advance of
when they are needed.

Trace preconstruction can significantly increase both the
performance of the trace cache and the robustness of the trace
cache to varying workloads.  All but one of the SPECint95
benchmarks see a notable reduction in trace cache miss rates from
preconstruction.  The three benchmarks that have the largest
working set (gcc, go and vortex) see a 30% to 80% reduction in
trace cache misses.  We also consider the integration of
preconstruction with another trace-specific mechanism
(preprocessing) to produce a high performance frontend.  When
combined, preconstruction and trace preprocessing produce an
average speedup of 14% for the SPECint95 benchmarks.

1. Introduction
Trace caches [10][9] have been proposed as a mechanism to
enable low latency, high bandwidth instruction fetching.  Trace
caches store programs in a representation that is a hybrid of the
static program representation and the dynamic instruction stream.
Traces are snapshots of short segments of the dynamic instruction
stream that are cached.  When a dynamic path is taken
repetitively, instructions are provided from the trace cache,
yielding a contiguous block of dynamic instructions that may
correspond to noncontiguous blocks of code from the static
representation.

Previous work has shown the potential benefit of adding trace
caches to traditional processor cores [10][9], and of developing
processors specifically around the trace cache [11][4][8].  The
latter approach provides reduced complexity and localized
communication, as well as the ability to optimize programs
dynamically.

The dynamic behavior of traces, which enables the trace cache to
provide high instruction fetch bandwidth, also makes trace caches
vulnerable to compulsory and capacity misses.  A compulsory
miss problem occurs because traces are "learned" from observing
previous dynamic program behavior.  If a given dynamic trace has
not been observed before, the trace cache will not be able to
provide the trace. The learning time for traces is longer than for
conventional instruction caches.   Furthermore, there can be a
number of unique traces as different paths are followed through a
piece of code.  Each static instruction may occur in several
different dynamic sequences.  Consequently the working set size
of traces is larger than the comparable static representation.  This
can cause capacity misses and exacerbate the compulsory miss
problem.  It also reduces the robustness of trace caches to varying
workloads and environments.

Instruction prefetching is a common remedy for capacity and
compulsory misses in conventional instruction caches
[12][14][15].  When applying the concept of prefetching to trace
caches, the dynamic aspect of traces presents a number of
obstacles.  First, trace caches are not part of a true memory
hierarchy, as there is no base level that contains all possible
traces.  Therefore the term "prefetching" is not entirely accurate,
as there is nowhere from which to fetch complete traces.  We use
the term trace preconstruction because traces need to be
constructed from static instructions, in advance of when they are
needed.

Second, predicting the composition of future traces is a difficult
problem.  Traces are defined by their starting instruction and the
outcomes of branches within the trace. To be effective, the
preconstruction mechanism must identify a future point in the
program that the processor will reach, and then identify the most
likely dynamic paths that will pass through that point.  A critical
sub-problem is that the preconstruction mechanism must identify
the trace alignment along each future path.  Two traces are
aligned if one terminates exactly where the next begins.  For a
single path through a region of code there are many possible
sequences of traces that can be identified, depending on where the
first trace starts.  If the trace starting points identified by the
preconstruction mechanism do not match the starting points
needed by the processor, the preconstruction effort will have been
wasted.

Third, is the issue of timeliness.  The preconstruction mechanism
must stay sufficiently ahead of the processor to accommodate the
high latency of constructing traces.  The preconstruction
mechanism must be responsive to the processor "catching up" to
it; i.e., knowing when to give up on a region of the program and
move farther ahead of the processor.  The preconstruction
mechanism must also avoid getting too far ahead of the processor;



the preconstruction mechanism should not tie up resources with
traces that will not be needed in the near future.

The primary objective of this paper is to propose and evaluate a
trace preconstruction method.  The trace preconstruction
mechanism observes the processor's instruction dispatch stream to
detect opportunities for jumping ahead of the processor.  After
doing so, the preconstruction mechanism fetches static
instructions from the predicted future region of the program, and
constructs a set of traces in advance of when they are needed.  In
this paper we propose the concept of trace preconstruction in the
context of a trace processor.  Trace preconstruction is equally
applicable to more conventional superscalar processors that use a
trace cache.  In order to evaluate the potential of preconstruction a
specific microarchitecture is modeled.

A secondary objective of this paper is to place the trace
preconstruction in the context of an extended pipeline model for
high performance processing.  Trace preconstruction is a good
complement to trace preprocessing [4][8].  We propose an
integrated, high performance front-end that combines trace
preconstruction and preprocessing. We evaluate this extended
pipeline model and show that the overall performance
improvement is greater than the sum of the parts.

In the next section, we describe the general trace preconstruction
method to be used.  Then in section 3, we discuss an
implementation that we propose.  This implementation includes
the basics and some performance optimizations.  In Section 4 we
explain our simulation and methodology.  In Section 5 we
quantify the benefits of incorporating preconstruction, based on
the performance of the SPECint95 benchmarks.  Finally, in
Section 6, we show how prepreprocessing fits into an extended
pipeline model that is enabled by the trace cache.  A model that is
also used for another trace specific optimization, preprocessing.
We show that preconstruction and preprocessing are
complementary, and together produce a speedup greater than the
sum of the individual contributions.

2. Trace Preconstruction
As stated above, we perform preconstruction in the context of a
trace processor model [11].  The main components of the trace
processor frontend are the next-trace predictor [7] and the trace
cache [10][9] (see Figure 1).
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Figure 1 Trace processor frontend.

Next-trace prediction implicitly performs branch prediction and
branch target prediction with sufficient bandwidth to permit the
high fetch rate of the trace cache.  During normal operation, the
next-trace predictor and the trace cache provide a stream of
instructions to the processor's execution engine.  When the

execution engine detects a branch misprediction, the next-trace
predictor backs up and makes a new prediction.  If the next-trace
predictor can not generate a prediction to match the needed
instructions, or if the trace cache does not have the needed trace,
the slow path is used. The slow path uses a conventional branch
predictor and instruction cache to provide instructions to the
execution engine.

During periods of time that the trace cache is able to provide the
correct instruction sequence to the processor, the slow path
hardware is idle (including the instruction cache).  This provides
an opportunity to fetch instructions from the instruction cache and
preconstruct valid traces that may be useful in the future.

2.1  Preconstruction Method
The overall preconstruction method scans the dynamic instruction
stream and identifies region start points.  For preconstruction to
be successful, the region start points must identify instructions
that the actual execution path will reach in the future.  This
requires start points that are many instructions ahead of the
currently executed instructions.  To "leap ahead" in the instruction
stream, our preconstruction method uses a heuristic based on two
common program constructs: loops and procedures.  When a loop
back edge or a procedure call is observed, the preconstruction
mechanism assumes that the code after the loop exit or procedure
return point will be reached in the near future.

Given a region start point, the preconstruction mechanism begins
traversing a "dynamic execution tree" -- essentially a series of
dynamic paths beginning at the region start point.  Traces are
preconstructed and placed in a buffer during the traversal of the
dynamic execution tree.  This process is best described via an
example.
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Figure 2 Static representation of example code.

Figure 2 illustrates a static piece of code as a directed graph.  Arcs
are basic blocks (or transfers of control) and lower case letters
label the basic blocks.  The static program segment begins with
block a; then there is a procedure call via a Jump and Link (JAL)
instruction.  The called procedure executes block b, then loops
through block c a number of times and finishes with an if-then-
else construct which contains blocks d, e, f and g.  Then there is a
jump (JMP) back to the calling routine.  Subsequently, block h is
executed, there is a loop of i blocks, and, finally, block j.

The operation of the trace preconstruction method is shown in
Figure 3.  The bold line from left to right illustrates the actual



dynamic flow of instructions.  The bold line is divided into traces,
labeled with the basic blocks they contain.  The JAL  procedure
call points to a start point for preconstruction.  The start point is
the instruction immediately following the JAL; eventually,
dynamic execution will reach this point.
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Figure 3 Dynamic representation of example code.

This region start point is pushed onto a "start point stack."  As the
dynamic execution proceeds, other region start points may be
pushed onto the start point stack.  This stack is basically a priority
device -- details are given in Section 3.  When the preconstruction
process is ready to begin a new region, it takes the start point at
the top of the region start point stack.  In our example this will be
the return point following the JAL, and the region to be explored
is labeled "Region 1".

The preconstruction process follows a breadth first approach to
constructing traces within a region.  The basic algorithm we
implement for traversing paths is based on identifying where
traces may potentially start, trace start points.  Note that trace
start points may be different from region start points. When
preconstruction for a region begins, the region start point is the
first trace start point. While traversing the region, additional trace
start points are generated.  A small worklist of trace start points is
maintained and acts as the primary director of preconstruction.
When a trace start point is identified the preconstruction process
generates a number of valid traces that originate from that one
point.  When a valid trace is completed, the instruction following
the trace is identified as a new potential trace start point and is
placed in the worklist.  In Region 1 of our example, the
preconstruction process will first identify the first instruction of
the region as a trace start point and construct traces <h,i,i> and
<h,i,j>.   This will produce two new trace start points, one that
begins with block i and one that begins after block j.  The
preconstruction process will then attempt to construct traces
beginning from each of these points.

The preconstruction effort for a region will terminate if the
processor reaches the region of code (catches up).  The
preconstruction effort for a region may also terminate when it
reaches a resource bound.  These bounds are a feature of the
implementation, and are described in Section 3.  Briefly, the
resource limitations are a fixed number of trace preconstruction
buffers (Section 3.1) and a fixed number of static instructions that
may be fetched from a given region (Section 3.4.1).  The
preconstruction effort may also be bounded by reaching jump
instructions for which the target cannot be resolved.

Returning to the example, as the dynamic execution proceeds, the
loop closing branch Br1 denotes another region start point, and
another set of potential traces are preconstructed on the fall-
through path (shown in Region 2).  When Br1 is again
encountered, the algorithm will detect that it is already being
processed so preconstruction is not re-initiated for this start point.
As the actual execution proceeds further, the trace containing
basic blocks <d,e,g> is eventually encountered, and this trace has
already been preconstructed in Region 2.  Similarly, <h,i,i> and
<i, i> will have been preconstructed in Region 1 before they are
reached.

There is potentially a very large number of paths in any of the
preconstruction regions.  To reduce this number, we use a
heuristic that follows highly-biased branches only through their
dominant direction.  This can be done by using state in the slow-
path dynamic branch predictor.  We assume a bimodal branch
predictor (table of 2-bit saturating counters indexed by branch
address [13]).  During preconstruction, the predictor is referenced
for each forward branch.  If the branch is strongly taken (or
strongly not taken) only the strongly biased path is followed
during preconstruction.

There may also be a number of traces that are preconstructed, but
not used.  For example, trace <d,f,g> from Region 2 is not used
(at least in the portion of the example shown).  There may also be
overlap among regions. That is, the regions may contain identical
traces, and this could lead to redundant trace preconstruction
effort.  Our trace algorithm terminates preconstruction at jump
indirect instructions (the target is unknown) Consequently, this
often avoids overlap.  In the example, overlap between Regions 1
and 2 is avoided in this manner.  On the other hand, Regions 1
and 3 do overlap in the example.  In this case, redundant work
may be performed.  An effort could be made to avoid this
redundant work, but our studies have shown the penalty to be
small.

2.2 Trace Alignment
In order for a preconstructed trace to be useful, it must "align"
with the actual execution path.  In the example of Figure 3, this is
achieved when the preconsructed trace <d,e,g> aligns with the c
loop exit.  To enhance the probability of correct alignment, we
implement some heuristics to guide trace selection.

The trace processor uses a trace selection heuristic that forces
traces to end at return instructions [11], so the first trace of a
region following a return will start at the first instruction.
Consequently alignment will naturally occur for traces that begin
at return points.  Trace alignment is more complicated for regions
starting at a loop exit points.  When the loop exits there may be a
trace that contains some instructions from the last iteration of the
loop and some instructions from beyond the exit of the loop. In
this case, the trace ends at an arbitrary point, and the chances of
correct alignment with a preconstructed trace are small.  One
solution is to force the trace to end at the loop exit, but this would
lead to shorter traces than necessary.  A compromise solution is to
force traces to end at some even multiple of instructions beyond a
loop exit [6]. For our later simulations we use the heuristic of
stopping a multiple of four instructions beyond a backward
branch for both the base trace processor and the trace processor
with preconstruction.  This heuristic also limits the overall
number of unique traces, helping the compulsory and capacity
miss problems of the trace cache.



3. Implementing Trace Preconstruction
The previous section outlines the overall method to be followed
when preconstructing traces.  We now turn to an implementation
of the trace preconstruction method.  This description includes the
required hardware structures for implementing the basic algorithm
plus some performance optimizations.  More implementation
detail can be found in the PhD thesis [6].

Figure 4 shows the full processor implementation.  The main
hardware feature of trace preconstruction is that the trace cache is
supplemented with trace preconstruction buffers.  Otherwise, trace
preconstruction can be implemented by adding additional control
and bookkeeping logic to the trace construction unit and making
use of the slow-path hardware when it is idle.  The additional
hardware includes logic to monitor the instruction stream of the
processor and a small stack to record region startpoint events.

To further optimize the performance of trace preconstruction,
additional hardware can be incorporated into the
microarchitecture.  This additional hardware consists of extra
trace constructor units (shown in Figure 4) that allow multiple
traces to be constructed in parallel.  Then, to extend the
instruction cache's bandwidth, a set of small prefetch caches are
added to service the multiple constructor units.  The benefit of this
extra hardware can be substantial, and our performance results in
section 5 use these performance enhancements.

3.1  Preconstruction Buffers
When prefetching into conventional instruction caches, it is
common to use prefetch buffers [12][14][15].  The prefetch
buffers and cache are accessed in parallel.  If the cache misses, but
the line is in the prefetch buffer, then it is copied into the cache.
Using prefetch buffers in this way avoids polluting the instruction
cache whenever prefetched instructions are not actually used.
Similarly, our design includes a set of preconstruction buffers to
hold preconstructed traces until they are used (or discarded).  At
the time it is created, a preconstructed trace is allocated a
preconstruction buffer.  The preconstruction buffers are accessed
in parallel with the trace cache.  If a trace is found in a
preconstruction buffer, then it is copied into the trace cache.

An important optimization is to avoid redundancy between the
trace cache and the preconstruction buffers.  After a trace is
copied from a preconstruction buffer to the trace cache, the buffer
is invalidated.  Furthermore, before a trace is assigned to a
preconstruction buffer, the trace cache is first checked to see if the

trace is already present.  In our proposed implementation, the
preconstruction buffers are arranged as a 2-way set associative
structure indexed by hashing the starting address of the trace with
the branch outcomes of a trace [6].  This is the same general
organization as the primary trace cache.  Each trace in a
preconstruction buffer corresponds to the preconstruction region
(either current or past) from which it was originally formed.  The
replacement policy for the preconstruction buffers is based on the
relative priorities of the corresponding preconstruction regions.
Active regions have priority over past regions.  The more recent
the active region, the higher its relative priority.  A trace
generated for a region will not displace an existing trace from the
same region. Consequently, the availability of preconstruction
buffers is the primary implementation feature that bounds the
preconstruction process within a region.

3.2 Identifying Start Points: Start Point Stack
As described in Section 2, the preconstruction process relies on
two common, easily identifiable constructs for initiating trace
preconstruction: procedure calls and loop terminations [1][6].
These constructs delineate region start points, and it is beneficial
to prioritize them for trace preconstruction in newest-first order.
Because of loop and subroutine nesting, this priority will tend to
preconstruct regions more likely to be encountered sooner.

Consequently, potential region start points are maintained in a
small hardware stack.  We have found a stack of depth 16 works
well.  In order to stay ahead of the processor, the dispatch
instruction stream, including speculative instructions, is observed.
Start points are pushed onto the stack when a call or backward
branch is observed in the dispatch stream.  When the stack fills,
the oldest entry on the stack is discarded to make room for newer
entries.  To avoid redundancy, a new start point is not pushed if it
corresponds to the same region as the current top of the stack (as
happened in the example of section 2).  The retirement stream of
the processor is observed to determine when a start point should
be removed.  Start points are removed from the stack if they
correspond to misspeculation or when the processor's execution
has reached the region to which they correspond.

To avoid redundant work, the preconstruction mechanism
remembers the most recent regions for which preconstruction has
completed, and preconstruction is not performed for these start
points.  These regions are held in extra entries in the start point
stack.  A few entries (four in our implementation) are reserved for
this purpose.
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Figure 4 Trace preconstruction hardware.



3.3 Optimizations
We now describe two complementary hardware structures that
work together to optimize the preconstruction process.  The first
optimization decouples the instruction fetch and trace
construction operations with a small buffer called a prefetch
cache.  The second optimization incorporates parallel trace
constructors to increase the bandwidth at which traces can be
constructed.

3.3.1 Prefetch Caches
The same static instructions are often used in many traces.  And,
fetching a block of instructions from the instruction cache and
decoding them will likely require a number of cycles.
Consequently, it is inefficient to always fetch instructions from
the instruction cache.  In our implementation we incorporate
special prefetch caches that can hold 256 instructions.
Instructions that are fetched as part of a preconstruction region are
placed into one of these prefetch caches. In our implementation
we include four prefetch caches that service the parallel
constructor units.  The caches are assumed to be fully associative
in our simulations, and they are allowed to "fill up".  That is, we
don't replace lines; when the cache is full, preconstruction from its
associated region is terminated.  In general, a lower associativity
cache could likely be used with similar results.

3.3.2 Parallel Trace Construction
By incorporating multiple prefetch caches, the instruction fetch
bandwidth from a single instruction cache port is sufficient to
support the parallel construction of multiple traces.  Our
implementation makes use of this by incorporating multiple (four)
trace construction units.  Each trace constructor follows the
algorithm to be discussed in the next section; each working on a
different start point (from the same or different region).

3.4  Constructing Traces
In our proposed implementation there are four prefetch caches,
each holding one region at a time.  Each prefetch cache has a
small worklist for maintaining trace start points belonging to its
region.  The four parallel trace constructors can operate on any of
the four regions in a time-multiplexed fashion.

As soon as preconstruction for a region is complete and a prefetch
cache/worklist is freed up, the worklist is initialized with the
starting address of the highest priority region from the top of the
region start point stack.  This address is the first trace start point
of a new region.  Then, each time a trace constructor completes
work with a given trace start point, it takes a new trace start point
from the highest priority worklist.  The trace constructor will then
attempt to construct traces beginning at the start point.  The
needed instructions are fetched, and decoded to identify jump and
branch instructions.  When a strongly-biased conditional branch
instruction is identified, the biased path is followed.  If the branch
is not strongly-biased, the constructor initially follows the not-
taken path and pushes the decision point onto a small internal
stack.  After generating a trace, the trace constructor will pop the
last decision point from its internal hardware stack and backup to
start generating the alternative trace.  Finally, as each new trace is
constructed, a new trace start point is identified and pushed on the
worklist.

3.5  Hardware Complexity
Trace preconstruction takes advantage of the slow path hardware,
when it would otherwise be idle.  The most costly hardware -- the
instruction cache and branch predictor -- are completely shared.
The trace cache hardware is effectively partitioned into two
comparable components, the primary trace cache and
preconstruction buffers.  In theory a single trace cache could be
used by simply reserving some entries for preconstruction.  Our
simulation results compare the performance of a trace cache and
separate prefetch buffers with a larger trace cache containing the
same total area.  The results show that reducing the trace cache
size to support preconstruction buffers is a very attractive tradeoff.

The extra logic and hardware mechanism to support the control
logic for preconstruction are relatively minor.  Furthermore, the
preconstruction hardware is decoupled from the main processor
core.  Consequently it does not add to critical paths in the
processor core, and the logic is also isolated for the purpose of
design verification.

To optimize the performance of trace preconstruction we
incorporate additional hardware in the form of prefetch buffers
and extra trace constructors.  Compared to the size of the trace
cache, the size of the prefetch caches is small.  E.g., the combined
size of the prefetch caches is 1/16th the size of the trace cache.
The hardware for the trace constructors is relatively simple and
requires minimal area.

4. Simulation Methodology
4.1  Simulator
Simulation is performed with a detailed execution-driven
simulator that models a trace processor with a distributed
backend, based on the design proposed in [11].   It is composed of
a number of processing units each with a register file, instruction
window and execution units. Synchronization of register
communication between traces is implemented through the global
renaming of registers.  Synchronizing of dependences through
memory is enforced by special hardware [3] in the memory
subsystem.

The trace processor has 4 processing elements each with a
window of 16 instructions (one trace length) for a total window
size of 64 instructions.  The processor has 2-way issue per
processing element, for a total issue width of 8.  For the data
memory subsystem, we model realistic level-one caches and a
perfect level-two cache.  We model a four ported level-one data
cache of which any single processing element can only access two
ports per cycle.  The data cache is non-blocking and is write-back.
Both the data cache and instruction cache have 64 byte lines, are
4-way set associative and have a total size of 64Kbytes.   The data
cache has two cycle hit latency, the instruction cache has a one
cycle hit latency and the level-two cache has ten cycle hit latency.

The simulator executes the Simplescalar instruction set [2].  The
latency of each operation is equivalent to the latency of the
corresponding operation in the MIPS R10000 processor.  Each
processing element has full bypasses internally and can support
back-to-back dependent operations.  For communicating register
values between processing elements there are global result busses.
There are 8 total global result busses.  It takes a full cycle for
global results to be broadcast on the result bus.  If an instruction is
executed in one processing element in cycle N the result can be



broadcast in cycle N+1 and dependent operations can be executed
in other processing elements in cycle N+2.

Traces have a maximum length of 16 instructions.  We vary the
size of the trace cache from 64 entries up to 1024 entries (4
Kbytes to 64 Kbytes).  The trace cache is 2-way set associative
and uses LRU replacement.  We vary the size of the
preconstruction buffer from 32 entries up to 256 entries (2 Kbytes
to 16 Kbytes).  The buffer is also 2-way set associative.  The
preconstruction hardware corresponds to the description in
Section 3.  There are four prefetch caches (each holding 256
instructions) and four trace constructors available for
preconstruction.  A region start-point stack of depth 16 is used to
keep track of potential preconstruction opportunities.

4.2  Benchmarks
We use all SPECint95 benchmarks for our studies.  The training
input sets are used for all the benchmarks and each benchmark is
run for the first 200 million instructions.  The benchmarks are
compiled with the Simplescalar compiler, which is a derivative of
gcc-2.6.3.  The benchmarks gcc and go have the largest
instruction working sets of the SPEC95 benchmarks and therefore
stress the trace cache the most.  Many of the benchmarks have
such small working sets that even very small trace caches perform
well, and there is little room for improvement.

5. Performance
5.1  Impact on Trace Cache Performance
The reduction in trace cache misses is a good first-cut metric of
preconstruction performance.  Figure 5 gives the trace cache miss
rates, in the units of misses per 1000 instructions for a variety of
trace cache and preconstruction configurations for the SPECint95
benchmarks.  The graphs present the miss rate as a function of the
combined size of the trace cache and the preconstruction buffer.
The trace cache size varies over a range of 64 to 1K entries for the
larger benchmarks and 64 to 256 entries for the smaller
benchmarks.  In section 5.3 the performance implications of
reducing the trace miss rate are discussed.

The largest benchmarks, gcc and go, both see significant benefit
from trace preconstruction.  For a given trace cache size, there is a
30% to 40% decrease in miss rate for the smallest preconstruction
configuration and a 45% to 50% decrease in miss rate for the
largest preconstruction configuration.  The benefit from
preconstruction is noticeably more significant than allocating
comparable area to the trace cache.  This is most pronounced for
go, where the benefit from increasing the trace cache size rapidly
diminishes.  For comparable area, the best preconstruction
configurations offer approximately 30% to 40% lower miss rates
for both benchmarks.

The benchmark gcc sees the most benefit from incorporating a
small preconstruction buffer and allotting most of the area to the
trace cache.  On the other hand, the benchmark go sees the most
benefit from a relatively large preconstruction buffer.  Because of
this behavior either a compromise has to be made, or a design that
dynamically allocates space for the preconstruction buffer may
need to be used.  We do not investigate dynamically partitioning
space between the trace cache and preconstruction buffer, but this
could likely be done.

Two of the benchmarks, compress and ijpeg have such small
working sets that the even a very small trace cache performs very

well and there is little opportunity to improve.  The other
benchmarks, lisp, m88ksim, perl and vortex, have larger working
sets that limit the performance of a trace cache.  The benchmarks
lisp, m88ksim and perl show notable benefits with
preconstruction.  The benchmark vortex strains the trace cache
almost as much as gcc or go.  Preconstruction works extremely
well for vortex, reducing the miss rate by 80%.

5.2 Impact on instruction cache performance
By increasing the number of trace cache hits, the number of
instructions that need to be supplied from the instruction cache is
reduced.  Table 1 shows the number of instructions that are
fetched from the instruction cache for the two benchmarks gcc
and go with and without preconstruction.  For both benchmarks
the number of instructions supplied from the instruction cache is
reduced by over 20%.

Table 1 Instructions supplied by the I-cache (per 1000 instr).

Bench
-mark

512 entry trace cache 256 entry trace cache &
256 entry pre-construct
buffer

gcc 233 181
go 326 213

Table 2 I-cache misses (per 1000 instructions).

Bench
-mark

512 entry trace cache 256 entry trace cache &
256 entry preconstruct
buffer

gcc 3.0 6.2
go 7.8 11

Table 3 Instructions supplied by I-cache misses (per 1000
instructions).

Bench
-mark

512 entry trace cache 256 entry trace cache &
256 entry preconstruct
buffer

gcc 10 7.1
go 35 14

The potential drawback of any prefetching scheme is an increase
in memory traffic.  Preconstruction requires large bandwidth from
the instruction cache, but this does not interfere with other
memory requests to lower levels of the memory hierarchy.
Preconstruction may also increase the number of instruction cache
misses that are issued to lower-levels of memory.  These
instruction cache misses will compete with other memory
requests, so quantifying the increase is important.  Table 2 gives
the instruction cache miss rates with and without preconstruction.
For the benchmarks gcc and go, preconstruction approximately
doubles the number of instruction cache misses.  But, the absolute
number of misses is small, so the overall effect is not significant.

Preconstruction increases the total number of instruction cache
misses, but it reduces the number of instruction cache misses
observed by the slow-path.  Table 3 shows the number of
instructions supplied from instruction cache misses with and
without preconstruction.  Part of the reduction is due to fewer
instructions being supplied by the instruction cache.  But, the
reduction in instructions supplied from instruction cache misses is
greater than the reduction in total instructions supplied from the
instruction cache.  This suggests that the preconstruction engine is
prefetching instruction cache lines that are used by the slow-path
fetch mechanism.
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Figure 5 Trace cache performance for the SPECint95 benchmarks.
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Figure 6 Performance improvements from preconstruction.

5.3 Impact on overall performance
The real metric of any optimization is how much it reduces the
execution time. Figure 6 shows the performance improvements for
four of the benchmarks, gcc, go, perl and vortex.  The benchmarks
lisp and m88ksim has similar performance benefits as perl and the
remainder of the benchmarks see little impact from incorporating
preconstruction.  For the benchmarks gcc, go, perl and vortex, the
performance benefit of adding preconstruction is between 3% and
10%.  The benefit of preconstruction is more pronounced when
combined with other optimizations that increase the execution
engines throughput, as is seen in section 6.

6. Extended Pipeline Model
A traditional processor microarchitecture consists of the frontend
(instruction fetch pipeline) and backend (execution pipeline).  The
instruction window in an out-of-order superscalar processor
decouples these pipelines.  Using a trace cache enables an
extended pipeline organization (see Figure 7).  The extended
pipeline model contains a new preprocessing pipeline, distinct
from the fetch and execute pipelines.  The preprocessing pipeline
works on instructions before they are fed into the normal
processing phases.  The trace cache decouples this preprocessing
engine from the traditional processor core.

The primary source of the performance improvement is the
reduction in trace cache misses.  By reducing the trace cache miss
rate, preconstruction increases the peak rate at which instructions
can be fetched into the instruction window.   The focus is the peak
fetch bandwidth, not the average fetch bandwidth.  The average
instruction fetch rate can not be higher than the number of
instructions retired per cycle, which is less than a basic block per
cycle.  Trace caches (and preconstruction) helps performance by
filling the instruction window quickly, to expose potentially

independent instructions, when the window is nearly empty.  A
nearly empty instruction window is most commonly caused by
control mispredictions, which force a significant part of the
window to be flushed.

Instruction WindowTrace Cache

INSTRUCTION
FETCH/DECODE

PIPELINE

INSTRUCTION
EXECUTION

PIPELINE

INSTRUCTION
PRE-PROCESSING

PIPELINE

Figure 7 Extended pipeline model.

We now place trace preconstruction hardware in the larger context
of the extended pipeline model.  Only when integrated into an
overall microarchitecture is it possible to realize the full
performance potential of a number of trace cache optimizations.
In particular, we will integrate trace preconstruction with two
other trace-oriented optimizations.

1. An accurate control flow predictor capable of predicting
multiple branch instructions per cycle; We use a path-based
next trace predictor [7] that treats traces as basic units of
prediction and explicitly predicts sequences of traces. The
predictor collects histories of trace sequences (paths) and
makes predictions based on these histories.  The basic
predictor is enhanced to a hybrid configuration that reduces
performance losses due to cold starts and aliasing in the
prediction table.  The Return History Stack was introduced in
[7] to increase predictor performance by saving path history
information across procedure call/returns.



2. A trace preprocessing mechanism [4][8];  The trace cache
enables a new class of hardware optimizations that transform
the instructions within traces to increase the performance of
the processor's execution engine. Traces are preprocessed for
both optimizing common dynamic instruction sequences and
to utilize implementation-specific execution resources.
Three specific optimizations are implemented: instruction
scheduling, constant propagation and targeting a new ALU.
The new ALU adds two register operands, each of which can
be shifted left by a small immediate amount, and a third
immediate operand.  Refer to [4] or [8] for more details.

Of particular interest is the combination of trace-based
mechanisms.  Trace prediction and preconstruction attempt to
increase the instruction supply (frontend) bandwidth while
preprocessing attempts to increase the instruction execution
(backend) bandwidth.  The frontend and backend mechanisms can
be incorporated independently and will not interfere with each
other. However, if only the backend is improved, the frontend
may be a bottleneck, and vice versa. Only if both are
simultaneously improved can their full potential be realized.  In
other words, the performance improvement of the combination
may be greater than the sum of the parts; our results to follow
show that this is indeed the case.

The extended pipeline organization takes advantage of two
characteristics of traces.  First, a valid trace can be placed into the
trace cache at any time, independently of what the rest of the
processor is doing.  Second, the instructions within a trace need
not be identical to the instructions specified in the static program
representation, just functionally equivalent.  The first
characteristic is important for implementing preconstruction,
while the second is exploited for implementing instruction
preprocessing.
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Figure 8 Speedup from extended pipeline model.

Figure 8 shows the speedup from preconstruction and
preprocessing independently and together for the four benchmarks
gcc, go, perl and vortex.  Four bars are shown for each
benchmark: 1) the speedup from preconstruction, 2) the speedup
from preprocessing, 3) the speedup from combining the
mechanisms and 4) the sum of the individual speedups for
reference.  The preconstruction results compare a processor with a
256 entry trace cache to a processor with a 128 entry trace cache
and a 128 entry preconstruction buffer.  The speedup from
preconstruction is in the range of 2% to 8%.  Preprocessing leads
to a more substantial speedup, in the range of 8% to 12%.  The
speedup from combining the two mechanisms is greater than the

sum of the two optimizations alone, in the range of 12% to 20%.
This demonstrates the complementary nature of these
optimizations.  This also demonstrates that the potential benefit
from preconstruction can be larger than the results seen in the last
section if the processor execution engine has sufficient throughput
to utilize the extra fetch bandwidth.

7. Conclusions
We have proposed the general concept of trace preconstruction, as
well as a specific implementation.  Trace preconstruction
augments the trace cache by performing a function analogous to
prefetching.  The preconstruction mechanism sequences ahead of
the processor and constructs potentially useful traces from the
static program representation. Preconstruction addresses the
weakness of the trace cache to compulsory and capacity misses
caused by the dynamic nature of traces.  Trace preconstruction
takes advantage an extended pipeline organization that is enabled
by the trace cache, and which decouples the preconstruction
mechanism from the main processor core.

Our implementation of trace preconstruction can reduce the trace
cache miss rates from 30% to 80% for the SPECint95 benchmarks
with large working set sizes (gcc, go and vortex).  By reducing
trace cache misses, preconstruction produces a 3% to 10% overall
performance improvement for these benchmarks.  We believe that
preconstruction is necessary to enable the trace cache to scale to
large real world applications that are often much larger than the
SPEC benchmarks and stress the instruction fetch mechanism
much more.

When preconstruction is combined in conjunction with
preprocessing, another trace specific optimization, an overall
speedup of 14% is seen for the SPECint95 benchmarks.  The
speedup is greater than the sum of the individual speedups of
preconstruction and preprocessing.  With the introduction of
preconstruction, preprocessing and other optimizations that take
advantage of the trace cache, the trace cache becomes a more
compelling microarchitectural feature.
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