
Vector Instruction Set Support for Conditional Operations

J. E. Smith Greg Faanes Rabin Sugumar
Dept. of Elect. and Comp. Engr. Silicon Graphics Inc. Sun Microsystems Inc.
University of Wisconsin-Madison 1168 Industrial Blvd. 901 San Antonio Road

Madison, WI 53706 Chippewa Falls, WI 54729 Palo Alto, CA 94303
jes@ece.wisc.edu gjf@sgi.com Rabin.Sugumar@Eng.sun.com

Abstract
Vector instruction sets are receiving renewed interest because of
their applicability to multimedia. Current multimedia instruc-
tion sets use short vectors with SIMD implementations, but long
vector, pipelined implementations have a number of advantages
and are a logical next step in multimedia ISA development.

Support for conditional operations (as occur in loops containing
IF statements) is an important aspect of a vector ISA. Seven
ISA alternatives for implementing conditional operations are
systematically explored. Performance considerations are dis-
cussed through evaluation of a typical IF loop over a range of
vector lengths and true conditional values. An approach using
masked operations is shown to be one of the better methods,
especially if its implementation is able to skip over blocks of
false mask bits. Additional analyses of complex IF loops and
parallel pipeline implementations support the masked operation
approach. The paper concludes with a practical implementation
of masked operations that skips over power-of-2-length blocks
of false values. This implementation is simpler than skipping
arbitrary-length blocks and provides similar performance.

1. Introduction
Vector instruction set architectures (ISAs) can express large
amounts of data parallelism in a very compact manner. Further-
more, vector implementations are hardware efficient with sim-
ple, counter-based control structures. Historically, vector ISAs
have been used in large scale numeric processors [1-9], and, as
is the case with many supercomputer concepts, they have
migrated to microprocessors where they show promise for mul-
timedia applications. Many microprocessor companies have
developed short vector multimedia extensions which are imple-
mented in a parallel SIMD fashion. For example, one of the
more advanced is the Motorola PowerPC AltiVec extension
[10]. In contrast, a long vector ISA is one that specifies many
operands (typically several 10s to 100s) in a single instruction.
These instructions are executed in a pipelined fashion and
require many cycles to execute. Long vector instructions sets
with pipelined implementations have been proposed for mul-
timedia applications [11-14] and have been shown to have

significant advantages in terms of die area, power requirements,
and performance.

Ultimately, the effectiveness of a vector ISA depends on its abil-
ity to vectorize large quantities of code. The basic memory,
arithmetic, and logical operations are sufficient for vectorizing
many straight-line loops. For higher levels of vectorization,
however, it is important to vectorize loops containing condi-
tional operations. In terms of high level language programs,
these are loops containing IF statements.

Fig. 1 is a simple code example and a compilation for a Cray-1-
like vector instruction set. Throughout this paper we assume
pipelined vector implementations using vector registers.
Because we are focusing our attention on control constructs, and
not data types, the results should be equally applicable to float-
ing point, fixed point, long or short precision data.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

for (i=1, i<=looplen, i++) {
if (a(i) == b(i)) {

c(i) = a(i) + d(i);
}

}

V1 <- a .load a(i)
V2 <- b .load b(i)
VM1 <- V1 == V2 .compare a and b; result to VM1
V3 <- d .load d(i)
V4 <- V1 + V3 .add a and d
V5 <- c .load c(i)
V5 <- V4; VM1 .merge sum into c
c <- V5 .store new c(i)

Fig. 1. Compilation of an IF-loop using a Cray-1-like vector
instruction set.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

In the above example, the elements of a and b are compared
pair-wise with a vector mask (VM1) containing the results of
the comparisons. Then, the individual mask bit values are used
to merge the values of c and a+d.

The "merge under mask" implementation is but one of several
ways that conditional operations can be implemented with vec-
tors. The primary focus of this paper is vector ISA design. This
is accomplished by examining a number vector instruction set
alternatives for implementing conditional loops, discussing the
important tradeoffs, and arriving at conclusions regarding the
better alternatives.

An important characteristic of several alternatives is that they
provide performance proportional to the numbers of "true"
results from the IF statement. To achieve this performance



characteristic when using vector masks requires implementa-
tions that are able to skip over zeros in the vector mask. Skip-
ping arbitrary numbers of zeros each cycle is relatively com-
plex, however, so a second objective of this paper is to propose
and evaluate a simpler method that provides good performance.

Following are important considerations and definitions we will
use when studying vector instructions for implementing condi-
tional operations.

Performance VL-time vs. Density-time performance In some
implementations, performance is directly proportional to the
vector length (VL) -- as is the case with unconditional vector
operations. For other ISA implementations, performance may
be sensitive to the number of true (or false) cases. If the perfor-
mance is directly proportional to (VL) and independent of the
true/false values, then the implementation has VL-time perfor-
mance. If the performance is related to the fractions of
true/false cases, the implementation has density-time perfor-
mance (referring to the density of true (or false) values.)

A good way of estimating vector performance is to measure
time as chain times or chimes. A group of vector instructions
that execute in parallel, either because they are independent or
because they can be chained together, are considered to con-
sume a single chime. The number of chimes required is related
to the hardware resources available. Assuming a single
load/store vector pipeline, the example in Fig. 1 consumes 5
chimes. The first instruction is one chime, the next two instruc-
tions chain together and consume a second chime. The fourth
and fifth instructions consume a third chime. The sixth and
seventh consume a fourth chime, and the final store instruction
consumes the fifth chime. If there were two load/store vector
pipelines, three chimes would be required.

Generality A good vector instruction set must be able to vector-
ize conditional loops of any structure and complexity. We will
perform an initial performance analysis using the simple vector
loop in Fig. 1, and then discuss the vectorization of more com-
plex, nested-IF structures.

Implementation Efficiency The vector ISA can clearly affect
the underlying implementation. For example, some methods
may require more vector registers or multiple vector masks for
efficient implementations. Other methods affect data path con-
nectivity; we will see that this is the case with parallel-pipeline
implementations.

Safety When a high level language (HLL) is used to specify a
vectorized program, the vectorized version should be true to the
semantics of the HLL. A vector ISA implementation is unsafe
if it can cause exception conditions that do not occur when high
level language (HLL) semantics are strictly followed. The vec-
tor code in Fig. 1 is unsafe because a(i) and d(i) are added for all
values of i, regardless of whether the IF condition is true. It is
possible that one of these additions could trigger an overflow
even though the IF condition is false; this overflow would not
occur if the HLL semantics were followed. Similarly, the load
of d and store to c are unsafe because they may generate an out-
of-range address that would not occur in the HLL version.

2. Simple IF Loops
We first consider a number of vector ISA alternatives for vector-
izing simple IF loops. The loop in Fig. 1 is a good example that
is adequate to clearly illustrate the important tradeoffs and
issues that are involved. The IF loop in Fig. 1 has one operand
(a(i)) that is first accessed in its entirety (to perform the IF test),

and is then accessed again within the scope of the IF statement.
A second operand (d(i)) is loaded from memory only within the
scope of the IF statement.

Below we vectorize the Fig. 1 loop using a number of vector
ISA alternatives. Each is shown in a pseudo-assembly
language, and for clarity, loop setup and surrounding strip-mine
code is not shown. Following the discussion of the various
compilations, we evaluate the performance of each.

2.1. Compilations
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 1: merge only

V1 <- a .load a(i)
V2 <- b .load b(i)
VM1 <- V1 == V2 .compare a and b; result to VM1
V3 <- d .load d(i); assume safe
VM2 <- !VM1 .complement VM1
V3 <- 0; VM2 .merge zeros into d(i)
V4 <- V1 + V3 .safe add a and d
V5 <- c .load c(i); assume safe
V5 <- V4; VM1 .merge sum into c
c <- V5 .store new c(i)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The first "style" of vectorizing is similar to Fig. 1, but eliminates
the unsafe addition of a(i) + d(i). This code uses the vector
merge instruction as the primary masked operation; ordinary
vector instructions are not masked. This code is simplified by
using an ISA that supports multiple VM registers. A single VM
could be used with some means for backing it up; e.g. spills to
memory. Masked versions of the individual vector instructions
are not required. This method of vectorizing conditionals was
supported in the original Cray-1 [5].

The addition of arrays a and d is made safe by merging safe
operands into all the vector positions where the IF predicate is
false prior to doing the add. The above code does this by forc-
ing a zero into the false positions of one of the vectors; adding 0
can not result in overflow. In general, methods of this type can
be used to make any arithmetic operation safe.

Memory operations may still be unsafe, however. In some
situations, the compiler can guarantee safety by discerning the
relative sizes of the arrays and the number of loop iterations.
Unfortunately, this cannot always be done. The compiler or
programmer can also insert runtime checks. Even if something
is done to avoid out-of-range address, spurious page faults can
still occur in a virtual memory implementation.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 2: masked operations

V1 <- a .load a(i)
V2 <- b .load b(i)
VM <- V1 == V2 .compare a and b; result to VM
V3 <- d; VM .load d(i) under mask
V4 <- V1 + V3; VM .add under mask
c <- V4; VM .store to c(i) under mask
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The second vectorization method uses an ISA where all the
basic vector operations can be performed under a mask specified
as part of the instruction. Only operations for "true" mask
values are performed; "false" masked operations are effectively



no-ops. Additional instruction bits are needed to specify the
vector mask register (if multiple VMs are used). This method is
supported by the Fujitsu, Hitachi, and NEC processors [1-4]. A
similar form was also supported in the memory-to-memory
ISAs used in the CDC Cyber 200 series [8] and the BSP [9].

The code is straightforward. The a and b operands are loaded
and compared to form a mask. Then, all instructions
corresponding to operations within the scope of the IF statement
are performed under the mask. All operations are "safe"; only
real exceptions occurring in the HLL program are reported.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 3: memory gather/scatters

V1 <- a .load a(i)
V2 <- b .load b(i)
VM <- V1 == V2 .compare a and b; result to VM
V3 <- IOTA (VM) .form index set
VL <- pop (VM) .find new VL
V4 <- a, V3 .gather a(i) values
V5 <- d, V3 .gather d(i) values
V6 <- V4 + V5 .add a and d
c(i),V3 <- V6 .scatter sum into c(i)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 3 uses memory gather/scatters as the means for imple-
menting the IF. The IOTA instruction [5] forms a vector of
index values that indicate the true bit positions in the vector
mask. The "pop" instruction is a population count that counts
the number of ones in the VM register. The gather instruction
uses the address of a as a base address and the indices in a vec-
tor register to gather (load) non-contiguous values from
memory. The scatter (store) to memory is the complementary
operation. All operations are safe. Some members of the a
array are loaded from memory twice: all members of array a are
loaded for the compare, and a subset is gathered for the add.
This is one of the fundamental vectorization methods and is sup-
ported by the Cray-2 [5], the Cray X-MP-4 [7], the
VP100/VP200 [2-3], and NEC SX processors [4].
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 4: memory compress/expand

V1 <- a .load a(i)
V2 <- b .load b(i)
VM <- V1 == V2 .compare a and b; result to VM
V3 <- a, VM .compress-load a(i) values
V4 <- d, VM .compress-load d(i) values
VL <- pop(VM) .get no. elts.
V5 <- V3 + V4 .add a and e
c,VM <- V5 .expand-store sum into c(i)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 4 uses memory compress/expand operations as the
means for implementing the IF. These instructions are like
gather/scatters except they use the VM directly to determine
which operands to load or store; the index vector does not have
to be generated via an IOTA instruction. All operations are
safe. As with gather/scatter, some members of the a array are
loaded twice. Note that the memory compress-load as shown
above assumes unit stride; for non-unit strides, the scalar stride
value has to be provided to the memory compress/expand
instructions. This method of vectorization is supported by
VP100/200 [2-3], and a similar form was supported by the
memory-to-memory vectors in the Cyber 200 series [8].

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 5: register compress/expand

V1 <- a .load a(i)
V2 <- b .load b(i)
VM <- V1 == V2 .compare a and b; result to VM
V3 <- V1 c VM .compress a values
V4 <- d .load d(i); assume safe
V5 <- V4 c VM .compress d values
V6 <- c .load c(i); assume safe
A1 <- VL .save VL
VL <- pop (VM) .find new VL
V7 <- V3 + V5 .add
V6 <- V7 e VM .expand into c
VL <- A1 .restore VL
c <- V6 .store modified c(i)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 5 uses register compress/expand operations as the
means for selecting operands. In this form, the equivalent of
gathers and scatters are implemented by combining ordinary
load/stores with register-to-register compress/expands. With
this method, some memory operations may be unsafe because
all elements of the arrays are first loaded, then elements are
selected via compress/expands. The arithmetic operations are
safe because they are done after the compresses. Register
compress/expand operations are supported by the NEC SX vec-
tor processors [4].
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 6: gather/scatter plus register compress/expand
V1 <- a .load a(i)
V2 <- b .load b(i)
VM <- V1 == V2 .compare a and b; result to VM
V3 <- IOTA (VM) .form index set
V4 <- V1 c VM .register compress a(i) values
VL <- pop (VM) .find new VL
V5 <- d, V3 .gather d(i) values
V6 <- V4 + V5 .add a and d
c,V3 <- V6 .scatter sum into c(i)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 6 is a "hybrid" solution that assumes both memory
gather/scatters and register compress/expand. Mostly, the
gather/scatter is used, but the register compress is used to avoid
a re-load of data that is already in a register (the a(i) values in
this example.) All operations are safe.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 7: memory plus register compress/expand

V1 <- a .load a(i)
V2 <- b .load b(i)
VM <- V1 == V2 .compare a and b; result to VM
V4 <- d, VM .compress-load d(i) values
V3 <- V1 c VM .register compress a(i) values
VL <- pop(VM) .get no. elts.
V5 <- V3 + V4 .add a and d
c,VM <- V5 .expand-store sum into c(i)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Method 7 is another hybrid solution, very similar to method 6.
Here, the second load of the a array values is avoided. As in
method 6, all operations are safe.



2.2. Performance Analysis
To study performance tradeoffs, simulation was used to time
vector loops. Following are the simulator characteristics.

--single-width pipelined functional units
--one memory port (supports both loads and stores)
--memory and function unit chaining enabled
--load vector startup time: 18 clock cycles
--function unit startup time: 6 clock cycles

An important performance issue is whether sequences of zeros
in the VM can be skipped simultaneously. In particular, there
are two basic ways of implementing masked operations. One is
to perform the false operations as no-ops where the control
hardware initiates the operations, and they consume functional
unit pipeline slots. Results (and errors) are simply cancelled
and don’t modify the machine state. This type of masked opera-
tion consumes time that is independent of the values of the VM
bits and is proportional to the vector length, hence it is a "VL-
time" implementation of the masked operations. The other
implementation selects only the true VM operations and skips
over blocks of false operations in a single clock cycle. Pipeline
slots (and time) are only used by the true operations. Conse-
quently, time is proportional to the number of true values in VM
(or the "density" of true values), so this is a "density-time"
implementation of masked operations.

Fig. 2 shows performance for all seven of the vectorization
methods. Each graph shows performance in clock periods as a
function of the "true" density ranging from 0 to 100 percent.
The graphs are organized in pairs, with one pair for each loop
length simulated (10, 100, 1000). The left member of the pair
shows performance with a VL-time implementation of masked
operations, and the right member shows performance with a
density-time implementation of masked operations. The
density-time assumption extends to IOTA instructions where a
mask is converted into a set of index values. This particular
loop was chosen because it highlights fundamental performance
differences and the results correlate well with simulations for
other IF loop variations.

2.2.1. VL-time mask operations
First, consider performance of the VL-time implementations of
masked operations. These graphs are in the left column of Fig.
2. Note that even though these results are for VL-time mask
implementations, the methods that use data in a compressed
form (via gathers or compresses) still exhibit some density-time
behavior.

Overall, the best method appears to be Method 7. Method 3 is
sometimes better for longer vectors and sparse VMs because
method 3 has more chimes that can run in density-time.
Method 2 is insensitive to the true density. Consequently, it is as
good as Method 7 for very high densities, but not as good for
sparse densities; the performance difference is larger for longer
vectors as the effects of vector startup overheads diminish.

All the other methods appear inferior to methods 2, 3, and 7.
Method 1 has one more chime than many of the other methods
because it has to merge zeros into the d(i) vector to assure
safety. Method 4 also has one chime more than the better-
performing methods because it must re-load array a in a
compressed form. Consequently it gives mid-to-low perfor-
mance. Method 5 has only register compress/expand at its
disposal, and it consumes the most chimes of any of the
methods. This loop is dominated by memory operations, and

with only register compress/expand, all the memory operations
must be performed for the full VL.

Method 6 gives worse performance than method 3, which seems
counter-intuitive because it can use both gather/scatter and
register compress/expand while method 3 can only use
gather/scatter. Method 3 performs better because the a array
values are selected in density-time via a memory gather.
Method 6 does the compression of the a array values from a
register, but this is based on VM and takes VL-time. Although
Method 6 has one less memory operation, it takes more time.
Method 6 is slower than method 7 because it was assumed that
the register compress and IOTA instructions use the same func-
tional unit and can not be executed in the same chime. With
separate units, the performance of Methods 6 and 7 would be
similar.

2.2.2. Density-time Mask Operations
The performance with density-time mask operations are in the
right column of Fig. 2. Comparing the two columns, we see that
across the board the density-time implementations perform
better than the VL-time implementations, as would be expected.

Method 2 is the best performer with a density-time implementa-
tion. There is no additional overhead for IOTA, reloading data
etc.; it only does operations that are actually needed, and does
them in the minimum (density) time. Method 7 improves with a
density-time implementation, and gives performance equal to
method 2 except for short vectors where method 2 is better.
This happens because method 7 has a register compress, adding
pipeline latency to a chime.

Methods 1 and 5 show no performance difference when going to
a density-time implementation because density-time instructions
(if any) are in the same chime as a VL-time instruction. Method
3 shows no performance difference because its VM-sensitive
instructions are all gathers based on an index vector; they are
not dependent on masked operations that use VM. Methods 4
and 6 improve with density-time masked operations, but remain
in the middle of the pack, performance-wise.

2.2.3. Preliminary Conclusions
Based on this initial evaluation, a preliminary conclusion is that
Method 2, which relies solely on masked operations, is the best
method for vectorizing IF statements. Method 2 generates safe
code, and is one of the better performers for both VL- and
density-time implementations. It provides the best performance
overall when coupled with a density-time VM implementation.
Practical density-time implementations are discussed in Section
5. Method 7 produces safe code and also produces very good
performance for both VL and density-time implementations.
However, the next section will show that Method 7 is inferior
for more complex IF loops.

3. More Complex IF loops
The evaluation in the previous section was for simple IF loops.
Simple IF loops are the most common, and performance for
these common cases is very important. However, more complex
IF structures often occur in practice, and a vectorization method
must be able to handle them in an efficient manner. We now
consider more complex IF structures to evaluate the flexibility
of the alternative vector ISAs. In the process, we will discuss
other issues of vector ISA design.



60

80

100

CPs

% True Density

VL Time Mask Ops
looplength = 10

0 20 40 60 80 100

1 1 1 1 1 1

2 2 2 2 2 2
3

3
3

3
3

3

4 4 4 4 4 4

5 5 5 5 5 5

6
6

6
6

6
6

7 7 7 7 7 7

200

300

400

500

600

CPs

% True Density

VL Time Mask Ops
looplength = 100

0 20 40 60 80 100

1 1 1 1 1 1

2 2 2 2 2 2

3

3

3

3

3

3

4 4 4 4 4 45 5 5 5 5 5

6
6

6
6

6
6

7 7 7 7 7 7

2000

3000

4000

5000

6000

7000

CPs

% True Density

VL Time Mask Ops
looplength = 1000

0 20 40 60 80 100

1 1 1 1 1 1

2 2 2 2 2 2

3
3

3

3

3

3

4 4
4

4
4

45 5 5 5 5 5

6 6 6
6

6

6

7 7
7

7
7

7

Fig. 2. Performance in clock periods for a variety of vectorization methods as a function of the density of "trues" in VM.

60

80

100

CPs

% True Density

Density Time Mask Ops
looplength = 10

0 20 40 60 80 100

1 1 1 1 1 1

2
2

2
2

2
2

3
3

3
3

3
3

4
4

4
4

4
4

5 5 5 5 5 5

6
6

6
6

6
6

7 7 7 7 7
7

200

300

400

500

600

CPs

% True Density

Density Time Mask Ops
looplength = 100

0 20 40 60 80 100

1 1 1 1 1 1

2
2

2
2

2
2

3

3

3

3

3

3

4
4

4

4

4

45 5 5 5 5 5

6

6

6

6

6

6

7 7
7

7
7

7

2000

3000

4000

5000

6000

7000

CPs

% True Density

Density Time Mask Ops
looplength = 1000

0 20 40 60 80 100

1 1 1 1 1 1

2
2

2

2

2

2

3
3

3

3

3

3

4
4

4

4

4

4
5 5 5 5 5 5

6
6

6

6

6

6

7 7
7

7

7

7



IF statements select subsets of arrays to be operated on, and the
different methods of vectorizing IF loops use different ways of
representing these subsets. The masked operation method holds
array elements in a vector register with their original relative
positions retained. A vector mask register is used to indicate
those elements that belong to the selected set. This is illustrated
in Fig. 3a. Here, a vector register holds a portion of an array
from memory (in this example, loaded at the beginning of the
array, stride one.) The elements of the array are in the same
relative positions in the vector register as in memory. The VM
selects a subset of the vector elements, and consequently, a sub-
set of the memory array. Other subsets of the same vector can
be represented by filling in more elements of the vector register
and using additional vector masks. Fig. 3b uses two VM regis-
ters to represent two subsets of the vector; the data for both sub-
sets is held in the same vector register, and the relative positions
of the elements are the same as in memory.

This points out a valuable ISA characteristic: there are multiple
VM registers, and VMs are not associated with specific vector
registers (VR). This allows a VM to identify subsets of dif-
ferent vectors, and a vector can hold data from multiple subsets
if it has multiple VMs associated with it.

The pure gather/scatter method, as exemplified by Method 3,
represents subsets of data differently (see Fig. 4a). Here, a vec-
tor register (densely) holds only the members of the selected
subset. A second vector register holds their indices. The
compress/expand methods (e.g. Method 7) are similar (Fig. 4b).
In this case data is still held densely, but a VM is used to indi-
cate the elements in the set. If one wants to hold multiple sub-
sets, then a separate vector register is required for each data sub-
set and a different vector register or VM is needed for each sub-
set.

Other efficiencies become apparent when one does set opera-
tions on the data, as is done when complex IF loops are vector-
ized. To illustrate this point, consider Fig. 5, where array sub-
sets for a number of IF structures are represented in Venn
diagram notation. Fig. 5a shows a simple IF loop where a sub-
set of array elements are selected. In the IF ELSE, a subset is

(b)

(a)

VM2

VM1 01 0 1 0 ...

memory ana0 a1 a2 a3 .... aVL

0 1 1 0 ...

X a1 a2 X ... aVL

1

V register

VM

aVLV register a0 a1 a2 a3 ...

10 1 1 0 ...

Fig. 3. Using masked operations to represent vector subsets.

VM

V register 1 2 ...VL

(a)

memory ana0 a1 a2 a3 .... aVL

V register a1 a2 ...aVL

0 1 1 0 ... 1

(b)

V register a1 a2 ...aVL

Fig. 4. Methods of representing vector subsets;
a) Gather/scatter b) Compress/expand

selected by the IF, and all the other elements are selected by the
ELSE. The other two cases show subsets selected by IF ELSE
IF and nested IF constructs. Of course, even more complex sub-
set structures are possible by using combinations of IFs, ELSEs,
and nested IFs.

Given the relationship between set operations and nested IF
structures, we now consider the ease with which set operations
can be performed when sets are represented as in Figs. 3 and 4.
To perform set operations on the sparse vector representation of
Fig. 3, one only has to do bit-wise logical operations on the VM
values (e.g. set union is a bit-wise OR), and make sure that the
selected values have been copied from memory into the vector
register. If the data values are already in the vector register,
only VM operations are required.

Performing set operations on the dense representations as in Fig.
4, however, requires the merging of index vectors and/or dense
data vectors. Merging index vectors would likely require a

d) nested IFs

IF2

IF1

c) IF ELSE IF

ELSE IF

b) IF then ELSE

ELSE

IF

a) Simple IF

IF

IF

Fig. 5. Vector subsets for various types of IF loops.



special instruction for that purpose, or a sequence of 1)a conver-
sion to VM, 2) logical operations on VM, and 3) conversion
back to an index set. Even if the VM form is used, the dense
data representation still poses problems.

Consider the following example loop. It has two examples of
"subsetting". First, all the elements of the b array are loaded
and tested; later a subset of b is used (in c(i)=d(i) + b(i)).
Second, a subset of the d array is first modified, and at an outer
IF-level, a superset is used to compute c.

for (i=1, i<=looplen, i++) {
if (b(i) != 0) {

if (c(i) == 0) {
d(i) = a(i) + b(i);

}
c(i) = d(i) + b(i);

}
}

Following is code to do implement the above loop using VM
operations (strip mine code not shown).

V1 <- B(i) .load b(i)
VM1 <- V1 != 0 .test b != 0
V2 <- C(i); VM1 .load c(i) under mask
VM2 <- V2 == 0; VM1 .test c == 0 under mask
V3 <- A(i); VM2 .load a under mask
V4 <- V1 + V3; VM2 .add under mask
D(i) <- V4; VM2 .store d under mask
VM3 <- VM1 & !VM2 .mask for d elements in memory
V4 <- D(i); VM3 .load new d(i) under mask
V5 <- V4 + V1; VM1 .add under mask
C(i) <- V5; VM1 .store under mask

First, all the b elements are loaded into V1 and tested to form
VM1. Later V1 is used, unchanged, but with VM2 selecting the
subset of b, as determined by the c values. The first subset of
the d array is formed using the mask VM2 and is placed in V4
(and stored to memory). When the larger subset of d is needed,
simple logical operations (VM3 <- VM1 & !VM2) select the
elements that are in the set identified by the outer IF, but not in
the set identified by the inner IF (these are already in V4).
Then, V4 is loaded from memory using mask VM3 to select
only the elements of array d that haven’t already been loaded.

For comparison, a version using a dense representation for sub-
sets is shown below. This method uses gathers and scatters.

V1 <- b .load b(i)
VM1 <- V1 != 0 .test b != 0
V2 <- IOTA(VM1) .form index set for c
VL <- pop(VM1) .find vl for gather
V3 <- c, V2 .gather c(i) values
VM2 <- V3 == 0 .test c == 0

.

.
Generating the gather/scatter code begins well, but when we try
to load the a array, we are stymied. The index set for array a is
not easily formed without a register compress. VM2 is based on
memory indices in different locations than VM1; hence we can’t
simply AND the two masks. There are ways of arriving at the
correct subset, but these involve extra (and very clumsy) gathers
and scatters to memory. An alternative is to load the full c array
(potentially unsafe), test it, then AND the VMs.

If we use memory and register compress/expand instructions as
in Method 7, the first several instructions are given below (a
total of 22 instructions are required).

V1 <- b .load b(i)
VM1 <- V1 != 0 .test b != 0
V3 <- c, VM1 .compress-load c(i) values
A1 <- VL .save VL
VL <- pop (VM1) .adjust VL for compressed register
V4 <- V3 e VM1 .expand c values
VL <- A1 .restore VL
VM2 <- V4 == 0 .test c == 0
VM3 <- VM1 & VM2 .form subset of VM1 elements
V6 <- a, VM3 .compress-load a values

.

.
The subset selected by the test of b is identified by VM1. A
compress-load instruction is used to load the selected subset ele-
ments of the c array. The c values are then register expanded to
allow a later set operation on VMs. After c is tested (more
values than required by the source code are examined), the
resulting VM2 is ANDed with the VM1 (set intersection) to
determine the sets operated on in the inner IF nest. Overall, this
method works, but is clumsy (and slow) compared with the
method using masked operations given above because the sub-
sets have to be expanded in registers before the required set
operations can be done.

This exercise re-enforces our earlier choice of masked opera-
tions and shows that this method is preferable to Method 7.
Masked operation allow simple representations and operations
on data subsets selected by complex nested IF structures.

4. Multiple Pipe Implementations
We now consider an important hardware implementation issue.
To allow for implementations having a range of cost and perfor-
mance levels, a vector instruction set should be efficiently
implementable in both single and multiple pipe versions. In a
multiple pipe version, the vector elements are interleaved among
identical sets of functional units and memory ports. For exam-
ple, in a four pipe implementation vector elements 0, 4, 8, 12,
16, etc. are operated on by pipe 0; elements 1, 5, 9, 13, 17 are
operated on by pipe 1, etc. This type of implementation first
appeared in the CDC 200 series processors [8], was popular in
the Japanese vector supercomputers [1-4], and was adopted by
Cray Research beginning with the CRAY-C90 [15].

Usually, each pipeline only has to operate on the elements that
are naturally associated with it; however, some vector instruc-
tions result in "cross-pipe" communication where data or other
information must be passed among the pipes. The degree and
type of cross-pipe communication can have a significant bearing
on the cost, complexity, and/or performance of a multi-pipe
implementation. We will examine the instructions and methods
under consideration for IF loops to see how well they extend to
multi-pipe implementations.

4.1. Masked Operations
First, consider masked operations. Here, the VM register(s)
have their bits interleaved in the same way as the vector register
data elements. Each pipe only needs its VM bits to do the
masked operations. At least for the masked operations, includ-
ing masked loads and stores, no cross-pipe communication is
required.

Density-time implementations pose some difficulties, however.
If the pipelines work in lock-step, then they can only skip VM
zeros if all pipes have zeros, and performance will suffer.
Furthermore, this will require cross-pipe communication of the



mask values. A less restrictive approach allows the pipelines to
proceed independently, synchronizing only when they all finish.
With this implementation, the pipes may take different lengths
of time to complete their work. Consequently, some pipes may
sit idle while the one with the highest VM density finishes.
Consider the following VM:

1011 0000 1000 1000 0101 0001 1011 0000
In a four pipe implementation, pipe 0 will hold VM bits 0, 4,
etc. All four pipes hold the following VM subsets:

pipe 0: 10110010 pipe 1: 00001000
pipe 2: 10000010 pipe 3: 10001110

In this above example, pipe 0 will take four clock periods in a
density-time implementation, pipe 1 will take one clock period,
pipe 2 will take two clock periods, and pipe 3 will take four. If
all four pipes are run independently, but synchronize at the end,
the overall time will be four clock periods, the maximum time
required by any of the pipes. In this example, the density of the
entire VM is 11, so the speedup of four pipes versus a single
pipe is a little less than three, not four as one might expect.

4.2. Gather/Scatter
An important step in a gather/scatter IF loop is the IOTA
instruction that takes a VM and forms an index set. Because the
VM bits are interleaved among the pipes, the VM values must
be shared among all the pipes so that each pipe can determine
which element numbers of the index values it should hold.
Referring again to the above example VM, the iota vector is:
0,2,3,8,12,17,19,23,24,26,27. Interleaved among the pipes, the
iota vector is:

pipe 0: 0,12,24 pipe 1: 2,17,26 pipe 2: 3,19,27 pipe 3: 8,23

In order for pipe 3 to determine that element 3 of the iota vector
is 8, for example, it must be able to see all the VM bits up
through the 8th. Sharing the VM bits is a form of cross-pipe
communication, but it is a relatively small amount of informa-
tion that must be shared. Once the index set is distributed
among the pipes, the actual gather and scatter require no addi-
tional cross-pipe communication.

The memory compress/expand is similar to the gather/scatter,
but the index vector is formed implicitly from the mask. Once
again, the VM values must be communicated among the pipes,
but nothing else.

4.3. Register Compress/Expand
Register compress/expand instructions use VM to control the
movement of certain elements from one vector register into
another. This means that in general, an element in any pipe can
be transferred to any other pipe. In a four pipe implementation,
if an element were equally likely to move to any of the four
pipes, an average of 3 words of data would have to move every
clock period if all four pipes were to work at full speed (i.e. 4
times the speed of a single pipe.) This large amount of cross-
pipe data communication is a significant disadvantage for the
compress/expand implementations.

5. Density Time Implementations
Thus far, vector ISAs that rely on masked operations appear to
provide a number of advantages. For full performance, how-
ever, they rely on density time implementations of masked
operations. Although true density-time implementations have

some complications, approximate density-time implementations
seem feasible. In this section, we propose and evaluate an
approximate density-time implementation.

Fig. 6 shows density-time implementations of vector register
read/write control and memory addressing logic. A block of
logic counts the number of leading zeros in the VM; the zeros
indicate elements that must be skipped to get to the next true
VM value. (VM value of 1 enables a vector operation, and a 0
inhibits). The VM must be shifted by the leading zero count
plus one: i.e. some variable amount between one and the max-
imum VL value. This is in contrast with the VL-time imple-
mentation which simply shifts VM by one every cycle and uses
counters to keep track of the head and tail elements.

The leading zero count plus one is added to the current vector
register head or tail pointer to arrive at the next valid vector
operand. Logic is more complex for memory addressing logic.
Here, the leading zero count must be multiplied by the stride
before being added to the previously computed memory address.
With this implementation, the logic path to compute successive
addresses is much longer than in the VL-time implementation
(which simply adds the constant stride to get consecutive
memory addresses).

5.1. An Approximate Density-Time Implementation
The added complexity of a density-time implementation is a
potential problem. To help solve this problem, a density-time
approximation was developed with a much simpler implementa-
tion [16]. The approximation can skip ahead in VM, but only
by powers-of-two. The implementation is shown in Fig. 7.

Fig. 7 shows the vector register control and memory addressing
hardware. Here, the VM register is inspected for only leading
zero counts of 1,3,7,15,..maxVL-1 (maxVL is the maximum
hardware vector length.) That is, it checks for zero counts that
are a power-of-two minus one. Hence, the arbitrary leading
zero counter is replaced by a small number of leading zero

vector register
head/tail

count+1

1 to VL

VM

leading
zero

shift by

adder multiplier

stride

memory address

adder

shift count

Fig. 6. Density-time implementation of of vector register
control and memory addressing logic.



1,3,7,...

detect

1,2,4,8,16...

VM
shift by

shift count

zero

leading

+1,+2, +4, +8...
adder

vector register head/tail

shifter
1,2,4,8,...

stride

adder

memory address

Fig. 7. Power-of-two approximations to density-time
implementations of vector register control and address
generation logic.

detectors (seven for length 64 vectors). Then, the appropriate
power-of-two is added to the current count to get the next vector
register head/tail count. Because only powers of two are being
added, the adder logic is slightly simplified. Finally, the VM
register is shifted only by powers of two, rather than arbitrary
counts. This requires a number of gates, but few logic levels.
The proposed method can take longer than actual density time
when the number of leading zeros is not a power-of-two minus
one. When this happens a no-op has to be performed. An
analysis to follow will indicate how good the performance is.

In the memory address logic for the proposed approximation
method, the major simplification is that the stride multiplier can
be replaced by a shifter. As an example consider the VM:

1011 0000 1000 1000 0101 0001 1011 0000.
An actual density-time implementation takes 11 clock periods --
the number of ones in VM (assuming a single-pipe implementa-
tion). With the power-of-two approximation, the first element
will be executed, then one zero will be skipped to get to the next
one on the very next clock period. The third one will be done
immediately. Then, there is a run of four zeros. The 3-zero
detector will be active and the 7-zero detector will be inactive.
Consequently three zeros will be skipped. The next element is
still a zero, so there will be a no-op. This run of four zeros will
take two cycles to skip. The processing of VM continues until,
at the end, the last one is finished; then all remaining zeros can
be skipped, and the entire vector is finished. Overall, this exam-
ple vector operation takes 13 clock periods, or two clock periods
more than actual density-time.

A potentially important implementation issue involves the abil-
ity of vector control logic to determine when a particular vector
instruction will finish. In a VL-time implementation, it is
known at instruction issue time that a vector instruction using
one of the functional units will finish after VL clock periods
(assuming a single pipe). In an actual density-time

implementation the functional unit completion time is known
from the number of ones (pop count) in VM (again, in a single-
pipe implementation). However, with the power-of-two approx-
imation, the completion time is harder to determine. It is a
rather complex function of the specific VM bit pattern, and may
not be known until just before the vector instruction finishes.

5.2. Performance
Because it is only an approximation to actual density time
operation, we did some performance studies to see how well the
power-of-two method performs. This was done by simulating
the IF loop used in Fig. 1. Vectorization method 2 with masked
operations was used. Results are shown in Fig. 8. This loop
was simulated for VL-time, actual density-time, and approxi-
mate density-time. The approximate density time values are the
averages for a number of runs where the true values in the vec-
tor mask were randomly generated. The overall performance of
approximate density-time is quite close to actual density-time,
and both density-time curves show a significant improvement
over VL-time implementations when VM is sparse.

We conclude that the power-of-two approximation is a viable
design alternative. Actually, there is a range of implementation
choices between true density-time and the power-of-two approx-
imation. For example, one could control the vector registers and
functional units in true density-time, but generate memory
addresses in approximate density-time.

6. Summary and Conclusions
We considered a number of vector ISA implementations for
conditional operations (e.g. as in loops with IF statements). The
initial study of simple IF loops led us to conclude that using
masked operations was the best performing method provided a
density-time implementation could be found.

Considering more complex IF structures also pointed out advan-
tages of the masked operation approach because data subsets
can be efficiently represented, and set operations are easily
implemented. For multiple-pipe implementations, the masked
operation approach introduces no cross-pipe data communica-
tion, but there may be some performance degradation if all the
pipes have to wait for the pipe with the most work to be done.

The best performance of the the masked operation approach
depends on a density-time implementation of masked opera-
tions. However, a true density-time implementation may be
complex, especially for computing memory addresses where a
multiplier is in the path. Consequently, we proposed and
evaluated an approximation that only shifts the VM by powers
of two. For sparse VMs, the approximation gives considerable
speedup over VL-time (although actual density time would be
even better). With dense VMs, the times are all roughly
equivalent.

7. Acknowledgement
The authors would like to thank David Whitney for his many
valuable insights and suggestions.



50

60

70

80

CPs

% True Density

Looplength = 10

0 20 40 60 80 100

d
d

d
d

d
d

a

a
a

a
a

av v v v v v

200

300

400

500

CPs

% True Density

Looplength = 100

0 20 40 60 80 100

d
d

d
d

d

d

a

a
a

a
a

av v v v v v

2000

3000

4000

5000

CPs

% True Density

Looplength = 1000

0 20 40 60 80 100

d
d

d

d

d

d

a

a

a

a

a

av v v v v v

Fig. 8. Performance in clock periods for VL time (v) actual
density-time (d), approximate density-time (a).

8. References
[1] C. Eoyang, R. H. Mendez, and O. Lubeck, "The Birth of the

Second Generation: The Hitachi S-820/80", Proc. Super-
computing ’88, pp. 296-303, Nov. 1988.

[2] K. Miura and K. Uchida, "FACOM vector processor system:
VP-100/VP-200," Proc. NATO Advanced Res. Workshop
on High-Speed Computing, June 1983.

[3] Siemens Vector Processor System VP100/VP200 System
Description, 1984.

[4] T. Watanabe et al., "The Supercomputer SX System: An
Overview", Proc. Second International Conference on
Supercomputing, 51-56, 1987.

[5] The Cray-1 Computer System, Cray Research Inc., Publica-
tion No. 2240008B, 1976.

[6] Cray-2 Engineering Maintenance Manual, Cray Research,
Inc., Publication No. HM-2032, 1985.

[7] Cray X-MP Series Model 48 Mainframe Reference Manual,
Cray Research, Inc., Publication No. HR-0097, 1984.

[8] CDC Cyber 200 Model 205 Hardware Reference Manual,
Control Data Corp, 1981.

[9] D. J. Kuck and R. A. Stokes, "The Burroughs Scientific Pro-
cessor (BSP)", IEEE Trans. on Computers, C-31, 363-376,
May 1982.

[10] Motorola AltiVec Technology website,
http://www.mot.com/SPS/PowerPC/AltiVec/

[11] C. G. Lee and M. G. Stoodley, "Simple Vector Micropro-
cessors for Multimedia Applications", MICRO-31, Dec.
1998, pp. 25-36.

[12] K. Asanovic, et al., "The T0 Vector Microprocessor,"
Proceedings of Hot Chips VII, pp. 187-196, Aug. 1995.

[13] J. Wawrzynek, et al., "SPERT-II, A Vector Microprocessor
System," IEEE Computer, pp. 79-86, March 1996.

[14] R. Espasa, M. Valero, J. E. Smith, "Vector Architectures:
Past, Present, and Future," 1998 International Conference
on Supercomputing, June 1998.

[15] Cray Y-MP C90 System Programmer Reference Manual,
Pub. No. CSM-0500-000, 1992.

[16] J. E. Smith, "Density Dependent Vector Mask Operation
Control, Apparatus, and Method," US Patent 5,940,625,
Aug. 17, 1999.


