
Rapid Profiling via Stratified Sampling

S.Subramanya Sastry
Computer Sciences Dept.

University of Wisconsin-Madison
sastry@cs.wisc.edu

Rastislav Bod´ık
Computer Sciences Dept.

University of Wisconsin-Madison
bodik@cs.wisc.edu

James E. Smith
Dept. of ECE

University of Wisconsin-Madison
jes@ece.wisc.edu

Abstract

Sophisticated binary translators and dynamic optimizers de-
mand a program profiler with low overhead, high accuracy, and the
ability to collect a variety of profile types. A profiling scheme that
achieves these goals is proposed. Conceptually, the hardware com-
presses a stream of profile data by counting identical events; the
compressed profile data is passed to software for analysis. Com-
pressing the high-bandwidth event stream greatly reduces software
overhead. Because optimizations can tolerate some profiling er-
rors, we allow the stream compressor to be lossy, thereby enabling
a low-cost sampling-based hardware design. Because the hard-
ware compressor is insensitive to the event content, it supports var-
ious profile types and can process multiple types simultaneously.

Basic components of our framework are periodic and random
samplers, counters, and hash functions. These components are
composed to form a variety of stream compressors. One design
is both simple and very effective: the input stream is hash-split into
multiple substreams, each of which is fed into a simple periodic
sampler that selects everykth event. Thisstratified periodic sam-
pler performs better than conventional random sampling because
it biases each substream towards a small number of unique events,
thereby reducing sampling error, and allowing faster convergence
to an accurate profile. For example, convergence to a given level of
accuracy is about twice as fast forgcc . When sampling overhead
is considered, the stratified periodic profiler achieves less than 3%
error while incurring an overhead of only 3.5% forgcc .

1 Introduction

Profile-directed optimizations improve program performance by an-
alyzing a program’s dynamic profile that provides information that
static compile-time analysis typically cannot infer. Recent evo-
lution of profile-directed optimizations has been shaped by two
trends. First, profiles have become indispensable in a spectrum
of advancedoptimizations that include trace scheduling [20] and
extend well beyond it: basic-block and path profiles [6,43] identify
hot spots in the program; call-graph profiles [1] guide procedure
inlining [3,9,10]; dynamic-type profiling removes indirect calls in
object-oriented languages [25,26]; value-invariance profiles lead to
program specialization [8,11,32,36]; and memory-conflict profiles
allow aggressive load-store reordering [18,21].

The second trend is towarddynamicoptimizations [4, 7, 19, 29,
34, 40]. By optimizing the program during its execution, dynamic
optimizers not only make the tedious compile/profile/re-compile
cycle transparent to the user, but are also freed from some prob-
lems inherent in static optimization; namely, they gain access to
the fully-linked binary and the actual input data values.

Our interest is in providing profiling support for dynamic op-
timizations. Ideally, a profiler suitable for dynamic optimization
should have the following properties:

• Low overhead.Because profiling takes place during execu-
tion, its overhead must be significantly smaller than the op-
timization benefit. A typical benefit of about 10% speedup
severely constrains the tolerable profiling overhead.

• High accuracy.The higher the accuracy of the profiler, the
faster the profile converges to within an acceptable error.
Rapid profiling, in turn, leads to earlier optimization and
correspondingly longer execution in the optimized mode. In
Dynamo [17], rapid selection of hot paths was important for
maximizing returns from dynamic optimizations.

• Broad applicability.The diversity of dynamic optimizations
calls for a versatile profiler that can measure diverse proper-
ties of control flow, addresses, and data values.

• Simultaneous profiling.Sometimes it is convenient to col-
lect multiple profiles simultaneously. For example, if the dy-
namic behavior of an optimized procedure changes, the opti-
mizer may want to trigger its reoptimization. If multiple pro-
files can be collected simultaneously, monitoring of changes
can run on the background of continuous optimizations.

• Low cost and complexity.Minimal hardware support and
simple software algorithms bring the well-known benefits of
reduced power consumption and verifiability.

Related Work. Let us review related work with respect to the
above ideal properties, focusing on three distinct implementation
categories: smart software profilers, custom hardware profilers, and
hybrid profilers.

Smart software profilers:The first group of software profilers in-
struments the program with profiling instructions. One method
for reducing the overhead of executing the additional instructions
is to exploit the program structure: Ball-Larus edge profiling [5]
and path profiling [6] use program analysis and manage to restrict
overheads to 10-30%. Other tricks for reducing the instrumenta-
tion overhead include restricting profiling to a subset of instruc-
tions [8,36] and turning off profiling after the profile stabilizes [8].
Despite recent advances, profiles that measure more than the con-
trol flow incur high overheads. For example, the best software value
profiler slows down the program 10–30 times [8,32].

The second software approach is sampling. Recently, sampling
techniques have been used to obtain value profiles with low over-
head (about 10%) [33]. However, the low sampling rate (1 every



32,000 instructions) increases the time before optimizations can be
performed.

Custom hardware support:Conteet al. proposed aprofile buffer[13]
and Mertenet al. described ahotspot detector[35]. While these
specialized designs work very well for their specialized purpose,
they cannot be used to collect other kinds of profiles.

Hybrid profilers: In these solutions, programmable hardware col-
lects profiling information, potentially performs some simple pro-
file preprocessing, and passes on the information to software which
then does a more complete profile analysis. ProfileMe [15], the Re-
lational Profiling Architecture (RPA) [42], and the programmable
profiling co-processor [14] are examples of this approach. Pro-
fileMe [15] provides mechanisms of instruction-based profiling whe-
rein the hardware picks instructions and collects a variety of infor-
mation as instructions flow down the pipeline. The information is
post-processed by software. The other two solutions (RPA and the
profiling co-processor) provide more flexible profiling abilities than
ProfileMe, by supporting a wider range of profiles to be collected
in hardware and by enabling hardware preprocessing of profile in-
formation that reduces post-profile analysis overheads in software.

Proposed Solution: We explore a method that combines the ad-
vantages of hardware and software. While hardware is suitable for
high-bandwidth data processing, software is a better fit for irregular
processing of small amounts of data. We choose a hybrid hardware-
software approach because purely hardware approaches are usually
inflexible and are targeted at specific optimizations. Purely soft-
ware approaches tend to incur relatively large overheads and/or re-
quire low sampling rates which can lead to long profiling times.

Our solution is motivated by the observation that most kinds of
profiles computeexecution countsof certain events of interest (val-
ues computed by an instruction, targets of a branch, targets of a call,
or addresses of a load). This observation leads to astream com-
pressionprofiling model. In this model, the processor generates a
stream of profiled events whose type is selected by software. The
stream is a sequence of data tuples: for example, a value-profiling
tuple contains the PC of a load instruction and the loaded value.
Dedicated hardware compresses this stream before passing it on
to software. The basic compression method collapses and counts
identical tuples. Consequently, profiling overhead is reduced be-
cause software processes a shorter stream.

A conceptual view of the hybrid stream compression profil-
ing model is shown in Figure 1. Theselectorcreates a tuple for
each retired instruction chosen for profiling and sends the tuple
to the compressor. The compressor, placed off the processor’s
critical path, consumes the selected tuple stream. The compres-
sor summarizes the input stream and feeds it to profiling software
through an intermediate buffer. In Figure 1, the input tuple stream
t1, t2, t1, t2, t3, t2 may be compressed into an output tuple stream
(t1, 2), (t2, 3), (t3, 1). The second element in the output pairs de-
notes the number of occurrences of the tuple.

Core

CPU

S
el

ec
to

r

Compressor
Software
Profiler

t1, t2, t1, t2, t3, t2

Tuple

Stream

(t1, 2), (t2, 3), (t3, 1)

Compressed

Message Stream

Figure 1: Abstract diagram of the stream-compression profiling
model.

The variety of profiles that can be collected by the stream-
compression model depends on the flexibility of the software-con-
trolled selector. As a case study, we collect value profiles required

for value reuse optimizations (software-directed instruction reuse
and program specialization), a demanding profiling application. Fur-
thermore, we will show that the hybrid profiling scheme can collect
multiple profiles simultaneously. As an application, we show that
edge profiles can be collected simultaneously with call target pro-
files with high accuracy and low overhead.

In this paper, we primarily focus on designing “efficient” com-
pressors that incur low overhead by means of high compression of
the tuple stream, while preserving adequate profile accuracy. We
present a set of profiling components that can be composed in a
number of ways to yield different compressors. Because optimiza-
tions can tolerate some profiling errors, we allow the stream com-
pressor to be lossy, thereby enabling a low-cost sampling-based
hardware design. Conventional simple random sampling, simple
periodic sampling, stratified random sampling, and stratified peri-
odic sampling are among the compressors considered.Stratified
samplingis a technique in which the population is split into multi-
ple disjoint sub-populations (strata) which are then sampled inde-
pendently [22]. In our implementation, we use a hash function to
split the input stream. Using load value profiling as a case study,
we experimentally show that given a fixed overhead budget and a
desired level of accuracy, the stratified periodic sampler achieves
the desired accuracy the fastest.

The contributions of this paper can be summarized as follows:

• We present a h/w-s/w hybrid profiling model based on the
stream compression metaphor.

• We present a framework of components for constructing a
variety of compressing profilers.

• Specifically, we propose stratified periodic sampling as the
compression method of choice. Our evaluation shows that
with fixed profiling overheads and accuracy levels, the strat-
ified sampler achieves the desired accuracy at least twice as
fast as a random sampler.

The rest of this paper is organized as follows. Section 2 presents
more details on the tuple selector as well as the software side of the
hybrid profiler. Section 3 focuses on the various sampling compres-
sors and their properties obtained using Monte Carlo simulations.
Section 4 describes a more sophisticated, tagged compressor that
serves as a reference point in our experiments. Section 5 evaluates
the compressors using real benchmarks. Finally, Section 6 summa-
rizes our findings.

2 Details of the hybrid profiling scheme

There are three main components of the hybrid profiling model: the
selection mechanism, the compression mechanism, and the com-
munication of information to software. In this section, we discuss
the first and third of these components. Compression mechanisms
are central to our work and are discussed in greater detail in the
following section.

2.1 Selecting profile information

Referring to Figure 1, the “front-end” of the profiler is a selec-
tion mechanism. Although specific selector implementations are
not our main focus, one possibility is programmable selector hard-
ware. In particular, registers in the selector can be written by pro-
filing software via special instructions. These registers can then be
used by hardware to select the specific instructions to be profiled.
Heil and Smith [42] describe such mechanisms as part of their re-
lational profiling architecture. Below, we describe a few selection
mechanisms.



• Selection by opcode: A number of profiling applications can
be implemented by selecting instructions on the basis of op-
code. This strategy is a low-cost solution that does not re-
quire any modification to the ISA or the program binary. This
mechanism is proposed in [42] and [14].

• Selection by PC range: This strategy is useful for focus-
ing on hot segments of a program or for reducing the pro-
file bandwidth to the hardware profiler. This mechanism was
proposed in [14].

• Binary modification : This mechanism places explicit in-
structions in the binary immediately before an instruction to
be profiled. This mechanism requires one extra opcode in the
ISA and also introduces overheads in the instruction stream.
However, this method can be used to supplement the above
two selection methods because it enables profiling sets of in-
structions that are not otherwise easily selected.

In this paper, we simply select instructions for profiling based on
opcode. Furthermore, for the common profiling applications we
study, two word profile tuples are sufficient.

Because the compressor does not interpret the contents of pro-
file tuples, the same hardware can be used without modification for
collecting a variety of profiles as listed below.

• Value Profile: the tuple is<PC, instr-output> .

• Edge Profile: the tuple is<PC, branch-target> .

• Call Target Profile: the tuple is<PC, call-target> .

• Type Profile: the tuple is<PC, method-table-addr> ;
this profile enables feedback-directed inlining [3] and poly-
morphic inline caching [26].

Furthermore, because the compressor does not interpret the tu-
ple, it is possible to run multiple profiling applications simultane-
ously. The software is responsible for distinguishing between the
incoming tuple messages. When profiles being collected can be
distinguished solely on the basis of opcode (e.g., edge profile and
call target profile; the former profiles branches and indirect jumps
and the latter profiles profiles direct and indirect calls), the soft-
ware can distinguish between incoming messages on the basis of
the message PC. On the other hand, if edge profiles and a profile of
mispredicted branches are to be collected, this approach cannot be
used because branches are common to both profiles. In such cases,
the selector hardware can assign different tags to instructions that
belong to different profiling applications. For example, the selector
can assign mispredicted branches with a different tag than correctly
predicted branches.

To demonstrate the feasibility of running multiple profiling ap-
plications concurrently, we collect edge profiles and call-target pro-
files simultaneously and present accuracy and overhead results in
Section 5.

2.2 HW-SW communication mechanisms

There are two mechanisms for communicating tuple messages to
software. The first mechanism is based on processor interrupts and
the second is based on message passing.

Interrupt-based approach. In this approach, tuple information
is stored in a hardware buffer. When the buffer fills, the main pro-
cessor is interrupted. The interrupt handler reads the buffer and
folds the tuple information into the profile data being collected.
This approach is used in [2,14].

Message-passing based approach. In this approach, profile
information is communicated to concurrent software threads via
shared queues in memory. These concurrent threads read profile
messages from the shared queues and compute the profile. An ex-
ample of this approach are theservice threadsoutlined in [42]. Ser-
vice threads running on simple service processors read and process
the messages. The relevant overhead metric for this approach is
the time between consecutive messages sent to the service threads.
The time should be long enough that the profile service thread can
completely process the message.

In our experimental evaluation, we use the interrupt-based com-
munication model because it is readily implementable in current
generation processors.

3 A framework for designing compressors

This section focuses on the lossy stream compressor, which is the
most novel part of our hybrid profiling scheme. Instead of present-
ing a few independent compressor designs, we describe a frame-
work of components from which various compressors can be built.

3.1 Samplers as compressors

Samplers can serve as stream compressors because selecting a sub-
set of the input stream reduces the bandwidth of the output stream.
Samplers count the input events statistically: an eventt selected by
a sampler operating at a rater can be interpreted by software asr
occurrences of tuplet compressed into one. Clearly, such stream
compression islossy, because events skipped by the sampler may
have been different thant. However, when the stream isbiased
towards tuplet (i.e., the stream is dominated byt), the sampler’s
accuracy may be sufficient for profiling purposes. This subsection
presents two basic samplers used in our framework, and the follow-
ing subsection focuses on increasing the bias in the input stream.

• A random samplerwith rater, denotedRr, selects an ele-
ment of the input stream with probabilityp = 1/r. Note
that random samplers in [2,15,33] are slightly different; they
select an element via a countdown register initialized with a
random number from the interval〈1, 2r〉.

• A periodic samplerwith rate r, denotedPr, selects every
rth element of the input stream. In statistical literature, this
sampler is known as asystematicsampler [22].

In order to design an accurate compressor, the inherent accuracy of
the two samplers must be understood. In this section, we assume
an idealized input stream in which tuples are randomly permuted
(the reason for this assumption is that an input stream with periodic
behavior may cause large errors with the periodic samplerPr). In
Section 5, we will evaluate compressors on real workloads.

We compareRr andPr using a very simple profiling problem.
Assume theoutputstream of the compressor containsk elements.
The problem is to determine how many elements were in the input
stream. Clearly, the answer for bothRr andPr is rk. More pre-
cisely,rk is themost likelynumber of elements seen in the input.
The important difference between the two samplers ishow likely it
is that their input actually containedrk elements. ThePr sampler
is more confident about its answer because it effectively counts the
input stream; its input stream length isguaranteed to contain be-
tweenrk andrk +(r− 1) elements. On the other hand, the length
of the input stream forRr can range fromk to infinitely many el-
ements. Therefore,Rr estimatesthe lengths of the input stream.
This explanation is validated experimentally. The error of the two
samplers is shown in Figure 4 using an experiment described in
detail in Section 3.3.



We can address the drawback ofRr by adding to it a counter
that measures the length of the input stream. We useC to denote
a counter component of our framework, andCRr to denote a ran-
dom sampler equipped with such a counter. With this enhancement,
CRr has access to the same information asP and the two are thus
equivalent.

3.2 Stratified sampling via hashing

As mentioned in the previous subsection, the accuracy of sampling
increases with the bias in the input stream: the more a tuple dom-
inates the stream, the less likely is the sampler to make a mistake.
An effective technique for increasing the bias is to stratify the input
population into disjoint sub-populations which are then indepen-
dently sampled. This technique, known asstratified sampling[22],
can be conveniently implemented in the profiling context using
hashing. Because the input stream is split based on tuples having
the same hash signature, it can be reasoned that any given sub-
stream has a greater bias (or, smaller entropy, in information the-
oretic terms; lower variance, in statistical terms) than the original
input stream. Hence, the samples that are selected from each sub-
stream are more accurate representatives of the input stream than
a corresponding same-size sample selected from the original input
stream.

We useH [Xr]n to denote ahash-based splitterthat splits the
input stream inton disjoint substreams using a hash function. Each
of the substreams is independently sampled at the rate ofr using
any samplerX. We discuss the stratified sampler in more detail in
the following subsection. Its implementation details are described
in Section 3.5.

3.3 Composing profiling components

Figure 2 pictorially shows the four profiling componentsRr, Pr,
C, andH [X]n that we presented in the previous subsections.

C H

P R

Stream Stream Substreams

Stream Sample

Stream
Length

Stream Sample

Counter

Periodic  Sampler Random  Sampler

Hash-Based Splitter

Figure 2: Hardware profiling components.

The input to each of these components is the input stream. The
random and periodic samplers produce on the output a sample of
the input stream. The hash-based splitter produces multiple disjoint
input streams. The counter produces the length of the input stream,
i.e. the number of input tuples. We now show how these compo-
nents can be composed to produce different sampling schemes.

Figure 3 shows six different samplers created by combining
the four basic components:Pr, Rr, CRr, H [Pr]n, H [Rr]n, and
H [CRr]n. All samplers compress the input stream into a stream of
messages〈tuple, count〉. For the samplers with the counter com-
ponentC, the valuecount equals the count since the last sample
was taken. For samplers without the counter component, the value
count is implied and equals the sampling rater.

We will show that thestratified periodic samplerH [Pr]n sam-
pler is the most successful design. In statistical literature, such a
sampler is called stratified systematic sampler [22]. We evaluate
the accuracy of these samplers using the problem of estimating the
number of times,t, that a given tuplep occurs in the input stream
of lengthN (note that this is a slightly harder problem than the one
introduced in Section 3.1). We evaluate the samplers using Monte

C

R
Stream

Tuple

P
P

P

H
Stream

Tuple

H
Stream

Tuple Message

Stream

Message

Stream

C

C

C
R

R

R

H
Stream

Tuple

P R
Message

Stream

Message

StreamStream

Tuple

Stream

Tuple

Message

Stream

Sample

Stream Length

CR - Random  Sampling with known stream lengths

Sample

HP - Periodic  Sampling on hashed streams

Sample

Sample

HR - Random  Sampling on hashed streams

R
R

R

Sample

Sample

Sample

Stream

Message

HCR - Random Sampling on hashed streams with known stream lengths

Sample

Stream Length

Stream Length

Sample

Stream Length

Sample

P - Periodic  Sampling R - Random  Sampling

Figure 3: Six samplers built from the basic components.

Carlo simulations. We generated the input stream by randomly per-
muting a sequence ofN tuples containingt copies of the tuplep
(t = 0.3N ). The randomly generated stream is input to each sam-
pler and the output stream is used to estimate the value oft, as
follows. For each sampler without a counter, if the output stream
containsi copies of tuplep, thent is estimated to beEST = ir.
For each sampler with a counter,t is estimated to be the sum of
count’s from all messages that contain the tuplep. We plot the
error in the estimateERR = |100(t − EST )/EST |.

Figure 4 shows the error in estimating the frequency of the tu-
ple for stream lengths ranging from 1000 to 20000, for a sampling
rate of 10. For each input stream lengthN , we performed 2500
experiments and plotted the mean value ofERR. As expected, the
graph shows that with increasing stream length, the error decreases.

Note that all the samplers in Figure 4 have the same sampling
rate and hence incur the same overhead. It is therefore interesting
to compare their convergence rate. Assuming that we fix the maxi-
mum tolerable error at 4%, Figure 4 shows thatRr needs to sample
almost three times longer thanH [Pr]n (12000 versus4600). This
experiment shows that, with a fixed profiling overhead, the strati-
fied periodic sampler reduces the error below a maximum tolerable
error faster than a random sampler. Most importantly, experiments
with real benchmarks yield similar results, as we will show in Sec-
tion 5.

Furthermore, the graph shows that, based on their accuracy, the
samplers divide into three equivalence classes. In decreasing er-
ror order, the three classes are{Rr, H [Rr]n}, {Pr, CRr}, and
{H [Pr]n, H [CRr]n}. Let us now explain why some samplers
have the same accuracy. The intuition behind the equivalence ofPr

andCRr was explained in Section 3.1. This intuition also explains
the equivalence ofH [Pr]n andH [CRr]n. Perhaps more surpris-
ing is the equivalence ofRr andH [Rr]n. Intuitively, it may appear



1000 3000 5000 7000 9000 11000 13000 15000 17000 19000
0

2

4

6

8

10

12

14
Mean error in estimating ‘t’ for different stream length (r = 10)

Stream length

P
er

ce
nt

ag
e 

E
rr

or

P
R
CR
HP
HR
HCR

length=4600 length=12000 

error=4% 

Figure 4: Estimating the frequency of a tuple: Mean error for dif-
ferent input stream lengths.

thatH [Rr]n should perform better thanRr. The reason why this
is not the case stems from the fact that our random samplerRr is
stateless, i.e., each element in the input stream is selectedindepen-
dentlyfrom the other elements, with a probability1/r. This obser-
vation allows us to think ofRr, equivalently, as if each of its input
elements was directed into a separate substream (of length one),
which is sampled with a separateRr sampler. This alternative view
is equivalent toH [Rr]n, which explains why stratification with our
proposedRr is of no benefit.1

Finally, let us intuitively explain why the most successful de-
sign, H [Pr]n, is superior toPr. Consider the simple example of
an input stream consisting of eight 1’s and eight 0’s, randomly per-
muted. AP8 sampler produces a sample size of 2. Using this
sample, we would estimate the ratio of 1’s and 0’s accurately only
half the time. Now assume thatH [P8]2 splits the input stream into
separate 1 and 0 substreams.H [P8]2 will also produce two mes-
sages. But, since the substreams are fully biased, the messages will
alwaysconvey the correct ratio of the number of 1’s and 0’s.

While we have shown six specific compressor designs, it should
be clear that within this framework, other combinations of compo-
nents are possible. A complete and systematic study of other sam-
pling schemes is outside the scope of the current work.

3.4 Two-Level Compressors

While sampling techniques are lossy stream compression methods,
a straightforward lossless stream compression method can be built
using a cache-like associative table of counters that accumulate fre-
quency counts of the input tuples. When a table entry must be re-
placed, or when the counter reaches a maximum value, the tuple is
dispatched to software with its corresponding frequency count. Al-
though this method works, it is hardware-intensive. First of all, the
table entries can be quite wide. Assuming a 4-byte word (32 bits),
two words of profiling information per tuple and a 1-byte counter
yields 9 bytes per entry. Furthermore, to avoid frequent tuple re-
placements (and frequent communication with software), the table

1Stratification of the input population improves performance when the size of the
subpopulations is known ( [22],CRr , Pr ) or when the samples are not picked inde-
pendently (Pr , countdown random sampling used in [2, 15, 33]).

needs to capture the working set of the profiling application. For a
table with as few as 4K entries the total is 36 KB of storage. With
64-bit words, this grows to 68 KB. Finally, accessing such a table
associatively would require compare/match logic the width of the
tuples being held in the table. Hence, any practical implementation
of a compressor would not use this straightforward approach. How-
ever, we will show that the associative counter table is nevertheless
a useful profiling component besides being an useful starting point
for exploring other compression schemes. We useAk to denote an
associative counter table withk entries.

While the associative counter table alone is an unrealistic com-
pressor, it can be combined with the samplers we presented in
the previous section as a second-level compressor. Compressing
the messages generated by the samplers will further reduce over-
heads without affecting accuracy. The accuracy is not affected
since the compression performed byAk is lossless. Therefore,
theH [Pr]nAk and theH [Pr]n compressors have equivalent error
characteristics, but theH [Pr]nAk compressor incurs lower over-
head than theH [Pr]n compressor.

Furthermore, since the tuple stream that is input to theAk com-
ponent is already a compressed stream, the compression require-
ments of theAk component are not stringent. Therefore, a table as
small as 16 entries suffices to achieve a further compression ratio
between 1.15 and 2.5 for our benchmarks.

3.5 Stratified periodic sampling

We now look at the stratified sampling scheme(H [Pr]n) in greater
detail.

Counter +1
Method

HashTuple

Index

Message to S/W

Threshold
Reached?

Dispatch
Message

Figure 5: Stratified Sampling Technique

Figure 5 shows the design of a stratified sampler. Each cycle,
a tuple is picked from a tuple queue (that absorbs burstiness in the
incoming tuple stream). The hash function computes asignature
of the tuple. The signature is used as an index to select a counter
in the counter table. The selected counter is then incremented. If
the counter reaches its maximum threshold valuer, the counter is
reset to zero, and a message consisting of the complete tuple (with
an implied occurrence count ofr) is sent to profiling software via
the output queue.

In our implementation, we use the following hash function.
Given a tuple<pc, w> , the index is computed as follows:
npc = flip(randomize(pc)); nw = randomize(w);
index = xor-fold(npc xor nw, index-size).
The functionrandomize(w) looks up a 256-entry random num-
ber table for each of the individual bytes ofw and composes the
new bytes together.flip(w) reverses the bytes ofw. xor-
fold(w, n) splitsw into n-bit chunks andxor s the chunks to-
gether.

We used this elaborate hashing function since it provides the
best accuracy of all the hashing functions that we experimented
with. We have not systematically studied different hashing func-
tions and the trade-offs between profile accuracy and hardware cost.
In practice, an actual implementation of the stratified sampler might
use a cheaper hash function.



4 Reducing Collisions: Adding tags to stratified sampling

The stratified periodic sampling described in Section 3.3 makes no
effort to resolve tuples that hash to the same substream. At the
other extreme, the associative table of counters described in Sec-
tion 3.4 avoidsall aliasing, by comparing tuples against complete
tags. Unfortunately, the latter design is relatively expensive. This
section presents a compromise solution that reduces (but does not
eliminate) aliasing by maintainingpartial tags.

4.1 Design detail

In this design, the signature generated by the hash function has
more bits than are required for indexing into the table. The more
additional bits, the better the ability to discriminate amongst tuples.
The signature is subsequently divided into an index and a tag.

Given a tuple<pc, w> , the index is computed as described
in Section 3.5. The tag is computed astag = xor-fold(pc
xor w, tag-size) . The index is used to select a table entry;
if the tags match, there is a hit in the table, otherwise there is a
miss. Like a cache memory, the table can be direct-mapped, set-
associative, or fully-associative.

Each entry in the table contains the tag, a hit counter, and a miss
counter. The hit counter keeps track of the number of occurrences
of a tuple. The miss counter is used in making replacement deci-
sions and is discussed below, following an informal description of
the replacement process.

At some point, it becomes necessary to evict a tuple’s entry
from the table, either because its hit count has reached a maximum
threshold or because another tuple (with a different tag) maps to the
same table entry. If it reaches the maximum threshold, the current
tuple is reported to software. In the case of an eviction, the replaced
tuple and its occurrence countshouldbe passed to software, but this
is not possible because only the hashed signature is available in the
entry, not the complete tuple. This problem is solved by deferring
eviction and placing the to-be-evicted entry into aneviction statein
which it waits for the same signature to be seen once again.

If the to-be-evicted tuple occurs frequently, then it is likely to
occur again soon, and the entire tuple is available so complete in-
formation can be passed to the software. If the to-be-evicted tuple
occurs only rarely, and it does not occur again soon, its value will
eventually be discarded.

Figure 6 shows a state machine diagram that describes the de-
tailed operation of a table entry, including the states that an entry
goes through, and conditions under which an entry is allocated,
evicted, or replaced.

Initially, all entries in the table areEmpty . When an incom-
ing profile tuple accesses an entry, the entry is allocated for the
tuple and the entry transitions to aValid state (Transition E1). In
this state, the entry accumulates matching tuples in the hit counter
(Transition E3). When the hit counter saturates, a summary mes-
sage containing the counter value and the tuple is sent to the mes-
sage queue and the entry transitions toEmpty (Transition E2).

If there is a miss in theValid state, some other tuple is seeking
access to the entry. Because the necessary tuple information for
the to-be-evicted entry is not available, the entry transitions to an
Evict state (Transition E4). The entry is left in theEvict state
until the matching tuple is seen again (Transition E6). However,
the state machine waits until “enough” hits have accumulated in
the counter (Transition E6a). This reduces the flood of messages
that can be caused by repeatedly aliasing tuples. TheShouldEvict
condition in the state diagram specifies the exact value of “enough”.

In theEvict state, misses to the entry will accumulate in the
miss counter (Transition E5a), but if “too many” misses are accu-
mulated, the state machine gives up and replaces the current tuple
with the new conflicting tuple (Transition E5). In this case the orig-

Hit         : Signatures of T_new and T_orig match
Miss     : Signatures of T_new and T_orig do not match

T_orig  : Tuple in table entry
T_new  : Incoming tuple

Empty

ValidEvict

E1 : Condition: Miss for T_new
     Action   : Allocate Entry to T_new 

     Action   : Allocate Entry to T_new

E4 : Condition: Miss
     Action   : Increment miss counter

     Action   : Increment hit counter
E3 : Condition: Hit & hit counter does not saturate

     Action   : Send summary message to s/w
E2 : Condition: Hit & hit counter saturates

     Action   : Increment hit counter
E6a: Condition: Hit && !Should-Evict

E6 : Condition: Hit && Should-Evict
     Action   : Evict T_orig & send eviction message to s/w

     Action   : Increment miss counter

                Entry.hits = T_orig.misses;

                T_new.hits = T_orig.hits + T_orig.misses;

E5 : Condition: Miss && Should-Replace

E5a: Condition: Miss && !Should-Replace

Should-Evict       : ((hits >= triggerThreshold/4) && (misses >= triggerThreshold/hits))

E1

E2

E4
E5a, E6a E3

                               ||  (hits ==1)
                               ||  (hits >  1) && (hits < 2*misses))

Should-Replace : (      Miss counter saturates

E5

E6

                Reset Entry (hits = misses = 0)

                Reset Entry (hits = misses = 0)

                Reset Entry (hits = misses = 0)

Figure 6: State diagram describing the states of a profile entry

inal entry is lost. TheShouldReplacecondition in the state diagram
specifies the exact value of “too many”. This replacement policy
is similar to the replacement policy in the value profiling algorithm
presented in [14].

The unusual manipulation of the hit and miss counters by Tran-
sitions E5 and E6 illustrates an important point – it is important not
to drop counts when assigning the entry to a new tuple. We found
after extensive experimentation that resetting counters almost al-
ways leads to lower accuracies because valuable information con-
cerning the input stream is discarded. For every entry, the hit and
miss counters together maintain the length of the stream that access
that entry. The examples in Section 3.1 implied that it is this exact
knowledge of the stream length that leads to increased accuracy.
Resetting the hit/miss counters to zero would obscure this valuable
information.

Transition E5 represents replacement of a previous tuple by a
new tuple. The hit counter isnot reset as might be expected. In-
stead, the hit count of the evicted tuple is assigned to the new tuple
along with the miss count. Although the hit count does not belong
to the new tuple, this avoids losing track of the stream size.

During Transition E6, we initialize the hit counter of the entry
with the miss count of the evicted entry. The next tuple to hit in
this entry (hopefully the tuple that caused the miss count to be in-
cremented via Transitions E4 and E5a) will assume the new count.
Again, the exact stream size is maintained.



4.2 Hardware cost

The tagged profiler incurs extra space overhead beyond the strati-
fied sampler. Besides the hit counter, every entry requires a tag, a
miss counter, and bits to code the current state of the FSM. Using
a 1-bit tag to encode the FSM state (the Evict state can be inferred
by a non-zero value in the miss counter), a 3-bit miss counter, and
a 1-bit tag, this is 5 extra bits per counter. With the same sized
counter table, and a 8-bit hit counter, this is at least a 62% increase
in space requirements over the stratified sampler, in addition tot he
the logic required to implement the state machine.

5 Experimental Results

We evaluate the proposed profiling hardware designs through a tim-
ing simulation of the value profiling application described below.
The timing simulation is needed for measuring the profiling over-
head.

5.1 Example Application: Value Profiling

Recently, a number of studies have demonstrated that programs ex-
hibit significantvalue locality, the phenomenon that a small num-
ber of values occur repeatedly in the same register or memory lo-
cation [23, 27, 31, 38, 41]. In the compiler domain, it has been
known for some time that value locality can be used to speed up
programs by exploiting the fixed/invariant inputs. Partial evalua-
tion [28], data specialization [30], DyC [24], Tempo [12], ’C [37],
and code specialization using value profiles [36] are different soft-
ware techniques for exploiting value locality. Collectively, we refer
to these asvalue reusetechniques because the input/output behav-
ior involving the invariant values can be repeatedly reused as op-
posed to being recomputed each time they occur.

While there exist different techniques for exploiting value reuse,
all techniques rely on some kind of value profiling to identify the
value locality of instructions [8,11,32,36]. Value profiling support
is very important if value reuse optimizations are to be deployed
at runtime. We focus on value profiling of loads to evaluate our
proposed profiler and compare them with other profilers.

5.2 Methodology

We used the Simplescalar toolset [16] to model a 4-way machine
with 64-KB L1 data and instruction caches, 1-MB unified L2 data
cache, and a gshare branch predictor. The cycle-level timing model
is used for computing profiling overheads and does not affect the
actual sampling algorithms.

We use a collection of SpecINT95 benchmarks and Java pro-
grams listed in Table 5.2. The SpecInt95 benchmarks were com-
piled for the SimpleScalar ISA bygcc with optimization flags “-
O3”. The Java programs (includingstrata) were compiled bystrata
[40], a bytecode-to-simplescalar compiler for the SimpleScalar ISA.
For all programs, simulation was performed after skipping the ini-
tialization phases. For the SpecInt95 benchmarks, the recommen-
dations of Sherwood and Calder [39] were used in determining the
simulation starting points. For the Java benchmarks, the starting
points were determined empirically (by examining the source code,
knowledge of benchmark and output, and experimentation).

5.3 Evaluation Metrics

5.3.1 Profiling Error

The errors in our value profiles is computed using an ideal value
profile. Examining the same stream as our profilers, the ideal pro-
file accumulatesall generated events, rather than just the samples.

Benchmark Comment Input
go SpecInt95 5stone21 files (Ref)
li SpecInt95 8-queens.lsp (Test)

m88ksim SpecInt95 Ref input
gcc SpecInt95 cccp.i
perl SpecInt95 primes.pl, primes.in

raytrace SpecJVM98 Speed 100
strata bytecode to Some class file

Simplescalar compiler
jess SpecJVM98 speed 100
jack SpecJVM98 Jack.jack
db SpecJVM98 speed 100

Table 1: Benchmarks used in this study

When computing the error, we remove from both profiles all
(load, value) tuples that are highly unlikely to be used by a realis-
tic value-reuse optimizer. Taking these tuples into account would
introduce error that is irrelevant to the optimizer. Analogous to the
error metric in [14], from both profiles, we discard loads that exe-
cute infrequently, as well as values that are infrequent for a given
static load. Namely, we select for profiling a static load only if it
executes at least 1000 times. Furthermore, only sufficiently invari-
ant tuples are selected. A (load, value) tuple issufficiently invariant
if it accounts for at least 10% of the executions of the load. Finally,
we select only those loads that have at least40% of their dynamic
execution accounted for by sufficiently invariant tuples.

The profiling error is computed as follows. Letv = (pc, val)
be a tuple that has been selected from the ideal value profile. The
ideal invariance ofv is computed asIi(v) = ni(v)/ni(pc) where
ni(v) is the number of timesv occurs in the ideal profile, and
ni(pc) is the execution count ofpc. Let Ip(v) = np(v)/np(pc) be
the tuple’s invariance estimated by our profiler;np(v) andnp(pc)
denote the number of times our profiler sees the tuplev and the
loadpc, respectively. Then, the error in profiling the invariance is
e(v) = |ii(v) − ip(v)|. We compute the error for the entire profile
by taking a frequency-weighted average ofe(v) over all selected
tuples, i.e., the errore =

∑
f(v)/f × e(v) over all selected tu-

plesv, wheref(v) is the cumulative execution frequency ofv, and
f is the execution frequency of all selected tuples.

5.3.2 Profiling Overhead

Our evaluation assumes interrupt-driven communication between
the compressor and the software profiler (see Section 2.2). We use
an analytical model to compute profiling overhead. The overhead
is dependent on:

• Per-interrupt fixed costs: This is a fixed cost that depends on
the OS and the specific processor. Andersonet al [2] show
that for their system, per-interrupt fixed costs are about 214
cycles. We use this value in our model.

• Number of messages processed per interrupt: In our model,
we assume at least 100 messages per interrupt to amortize
the per-interrupt fixed cost.

• Processing time per message: This is the time required to
fold the message into the profile; the actual value is specific
to the profiling application. We assume a fixed cost in our
model, as described below.

In their paper, Zilles and Sohi [14] state that with careful assembly
coding of their interrupt handler, every message can be processed
in 10-30 cycles. Because we do not perform convergent profiling
checks as in [14], at least 3 cycles per message are saved. On the
other hand, by processing at least 100 messages per interrupt, we



4 8 12 16 20 24 28 32 36 40
0

1

2

3

4

5

6

7

8

9

10

# of profiling events (x 100K)

%
 e

rr
o

r 
in

 in
va

ri
a

n
ce

gcc

R−256
P−256
H[P−256]−2048
H[P−512]−2048
tag−2−256−2048

16 32 48 64 80 96 112 128 144 160
0

1

2

3

4

5

6

7

# of profiling events (x 100K)
%

 e
rr

o
r 

in
 in

va
ri
a

n
ce

gcc

16 32 48 64 80 96 112 128 144 160
0

1

2

3

4

5

6

7

8

9

# of profiling events (x 100K)

%
 o

ve
rh

e
a

d

gcc

Figure 7: Results forgcc: The first graph shows the variation of % error with program progress (up to 4M events). The second graph shows
errors for a longer duration (up to 16M events). The third graph shows the variation of cumulative % overhead with increasing time (up to
16M events). In the third graph, the plots for theR256 andP256 compressors overlap.

incur under 3 cycles in fixed interrupt costs per message (214 cycles
per 100 messages). Therefore, in the worst case, we assume the
interrupt overheads will be 30 cycles per message. Based on this
number, we estimate the profiling overhead to beOverhead =
30 × NumMessages, whereNumMessages is the number of
messages dispatched. The percentage overhead is computed with
respect to the total simulation time.

5.4 Evaluating compressors

In this section, we evaluate the following compressors:R256, P256,
H [P256]2048, H [P512]2048 (presented in Section 3.3), and a 2-bit
tagged compressor (presented in Section 4) with an 8-bit hit counter
(equivalent to a sampling rate of 256) and a 2-way set associative
2048-entry counter table. We do not present results for other tagged
compressors since our results indicate that for our tagged imple-
mentation, the 2-bit tagged compressor has the best error-overhead
behavior among all tagged compressors.

Figure 7 shows forgcc the variation of % error and % over-
heads with program progress. We selectedgccbecause it is one of
the hardest programs to profile and has a much bigger working set
than the other programs. The first graph in Figure 7 is plotted for
4M profiling events (17M instructions). The other two graphs are
plotted for 16M profiling events (70M instructions).

We first compare the random and periodic samplers. The graphs
show that the two are almost identical in performance both in er-
ror and overhead. It is interesting to compare these results with the
Monte Carlo simulation results presented in Section 3.3. For ran-
domly generated input streams, Monte Carlo simulations showed
that the periodic sampler performs better than the random sam-
pler. However, in practice, programs do not generate random input
streams and this seems to explain whyP256 does not perform bet-
ter thanR256 on real workloads. For the rest of the discussion, we
discuss the random profiler only.

Next, we discuss the tagged compressor. The error graphs show
that the tagged compressor has the best accuracy of all compres-
sors, but the low error comes at the cost of almost three times the
profiling overhead, as shown in the third graph. Furthermore, from
the graphs, we conjecture that forgcc, the improvement in accuracy
over the much simpler stratified sampler is not significant enough
to merit the higher overheads and the higher hardware complex-
ity of the tagged compressor design. At this juncture, we wish to
point out that the tagged compressor design presented in Figure 6

is only one of many possible implementations of a tagged compres-
sor. Preliminary experimentation indicates that other advanced im-
plementations (based on the sampling idea) are possible and these
may improve on the stratified sampler both in error and overheads.
These more sophisticated designs are left for future work.

We now compare theH [P256]2048 and theR256 compressor.
Assuming a maximum tolerable error of 5%, the first two graphs
in Figure 7 show thatH [P256]2048 reaches this error threshold af-
ter 200K events whereasR256 reaches this threshold after 600K-
700K events. However, if one requires the error to drop below
5% and stay below that limit, theR256 compressor reaches the
5% error threshold only after about 7M profiling events, about 23
times longer than theH [P256]2048 compressor which reaches the
5% threshold after 300K events. The overhead graph shows that
the stratified sampler always has a lower overhead than the ran-
dom sampler because theH [P256]2048 compressor retains up to
256× 2048 = 512K tuples in the counter table, which means that
up to2K fewer messages are dispatched to the software when com-
pared to the random sampler. However, if the programs are profiled
for a long time, this advantage vanishes as shown by the converging
overhead plot.

Let us now examine how to reduce profiling overheads for the
stratified samplers while maintaining the same accuracy as a ran-
dom profiler. If we compare theH [P512]2048 and theR256 com-
pressors, we find both have similar accuracy, but theH [P512]2048
incurs half the overhead when compared toR256. This shows that
with the stratified sampler, we can achieve the same accuracy as a
random sampler at a lower sampling rate, and hence at lower pro-
filing overheads. The factor by which the sampling rate can be
reduced is benchmark-specific as can be seen from Figure 8.

One final conclusion that we can draw from the error graphs is
that the stratified sampler and the tagged compressor stabilize more
quickly than the random and periodic samplers, i.e. they converge
to their “final” errors much more quickly than the random and pe-
riodic samplers.

By using profile convergence checks and instruction filtering
techniques proposed in [14], the performance of the stratified sam-
pler can be improved further. Instruction filtering reduces aliasing
in the hashed substreams and can lead to faster convergence of pro-
files.

The preceding discussion focused ongcc. Figure 8 shows the
error curves for the five compressors for all the other benchmarks.



16 32 48 64 80 96 112 128 144 160
0

1

2

3

4

5

6

7

8

9

10

11

12

%
 e

rr
o

r 
in

 in
va

ri
a

n
ce

go

16 32 48 64 80 96 112 128 144 160
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
li

16 32 48 64 80 96 112 128 144 160
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2
m88ksim

R−256
P−256
H[P−256]−2048
H[P−512]−2048
tag−2−256−2048

16 32 48 64 80 96 112 128 144 160
0

0.5

1

1.5

2

2.5

3

%
 e

rr
o

r 
in

 in
va

ri
a

n
ce

perl

16 32 48 64 80 96 112 128 144 160
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2
db

16 32 48 64 80 96 112 128 144 160
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
jack

16 32 48 64 80 96 112 128 144 160
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

# of profiling events (x 100K)

%
 e

rr
o

r 
in

 in
va

ri
a

n
ce

strata

16 32 48 64 80 96 112 128 144 160
0

0.5

1

1.5

2

2.5

3

3.5

4

# of profiling events (x 100K)

raytrace

16 32 48 64 80 96 112 128 144 160
0

0.5

1

1.5

2

2.5

3

3.5

4

# of profiling events (x 100K)

jess

Figure 8: Results for all the other benchmarks: The graphs show the variation of % error with program progress (up to 16M events).



4 8 12 16 20 24 28 32 36 40
0

1

2

3

4

5

6

7

# of profiling events (x 100K)

%
 e

rr
o

r 
in

 in
va

ri
a

n
ce

gcc

H[P]−512
H[P]−1024
H[P]−2048
H[P]−4096

4 8 12 16 20 24 28 32 36 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

# of profiling events (x 100K)

%
 e

rr
o

r 
in

 in
va

ri
a

n
ce

li

H[P]−512
H[P]−1024
H[P]−2048
H[P]−4096

Figure 9: Sensitivity results of the stratified sampler for four different table sizes forgccandli (up to 4M profiling events)

5.5 Sensitivity study of the stratified sampler

We now present results of a sensitivity study of the stratified sam-
pler by considering four different table sizes (512, 1024, 2048, and
4096). Figure 9 shows error plots for theH [P256]512, H [P256]1024,
H [P256]2048, andH [P256]4096 compressors forgccandli .

The graphs show that with increasing number of table entries,
the performance gets better but onlyaftera sufficient number of tu-
ples have been seen. Because the counter table accumulates tuples
that are not sampled until the counters overflow, during the initial
phases, when the ratio of stream length to the output messages is
small, more messages are sent out from a smaller table. Hence, for
some benchmarks (li , for example, shown in Figure 9) the accu-
racy is better with fewer counters during the initial phases. As the
program progresses, this effect diminishes.

5.6 Two-level compression

0

4

8

12

16

20

gc
c

m
88

ks
im go jes

s
jac

k db
str

at
a

pe
rl li

ra
ytr

ac
e

%
 o

ve
rh

ea
ds

R-256 R-256 + A-16 H[P-256]2048
H[P-256]2048 + A-16 tag2-256-2048 tag2-256-2048 + A-16

Figure 10: Reduction in overheads due to theA16 component

If a small associative counter table is added, additional reduc-
tions in overhead can be achieved. Figure 10 shows the profiling
overheads for theR256, H [P256]2048 and the tagged profilers with
and without a 16-entry associative buffer. The figure shows that for
all these compressors, adding the second compressor results in a
reduction of overheads for all benchmarks. The reduction is pro-
nounced form88ksim, dbandjess. For these programs, the output

message stream is dominated by a few prominent tuples. It is these
repetitive output messages that enables the high second-level com-
pression of the message stream. This result shows that the asso-
ciative array of counters is a useful component in building efficient
compressors.

5.7 Simultaneous profiling: Edge and Call target profiling

In Section 2.1, we stated that the hybrid profiler can collect multi-
ple profiles simultaneously. To demonstrate the feasibility of this
application, we collected call-target and edge profiles simultane-
ously using theH [P256]2048 compressor. These profiles are used
by the runtime optimizer to select inline candidates and to build
traces, respectively. Call target profiles are especially important
for Java programs because, unlike C programs, the presence of vir-
tual calls in Java makes it difficult to statically determine the call
targets at a call site. Call target profiles enable the optimizer to
determine the likely call targets and inline sites and implement op-
timizations such as feedback-directed inlining [3] and polymorphic
inline caching [26]. Edge profiles enable the optimizer to build
traces and perform code layout optimizations.

Figure 11 shows the results of simultaneously collecting edge
and call target profiles. The graphs show that for all benchmarks,
the error is less than 3%. For six of the benchmarks, the error is
negligible. Furthermore, the overheads are also very low; the pro-
filing overheads are under 4.5% for all benchmarks. The accuracy
is significantly better than the accuracy in the preceding value pro-
filing application because branches, jumps, and calls take values
from a much smaller value set than load instructions.

6 Summary

Profile-driven optimizations require flexible profiling support that
can collect a variety of profiles accurately, rapidly, and with low
overheads. In this paper, we presented a hybrid hardware-software
profiling scheme. In the proposed hybrid profiling scheme, the
hardware compresses the input profile stream to generate a smaller
stream of output messages that is processed by software to con-
struct the required profile. Since optimizations can tolerate profil-
ing errors, we show that the compression can be lossy in that the
occurrence counts reported for tuples in the input stream need not
be exact.

On the basis of the lossy compression metaphor, we presented
a framework of profile components that can be composed in a mul-



1.29

0.24

2.68

0.15 0.18
0.01

0.65
0.47

0.14 0.13

0

0.5

1

1.5

2

2.5

3

gc
c

m
88

ks
im go jes

s
jac

k db
str

at
a

pe
rl li

ra
ytr

ac
e

%
 e

rr
or

2.56

3.88

2.12

2.8
2.42

1.96

3.04

2.58

4.07

2.11

0

1

2

3

4

5

gc
c

m
88

ks
im go jes

s
jac

k db
str

at
a

pe
rl li

ra
ytr

ac
e

%
 o

ve
rh

ea
ds

Figure 11: Final error and cumulative overhead for simultaneous call and edge profiling after 4M profiling events

tiple ways to build hardware compressors. Conventional random
sampling, periodic sampling, and stratified sampling were proposed
and studied. The stratified sampling scheme uses a hashing scheme
to split the input stream into multiple disjoint streams that index
into a table of counters. In addition, we proposed a more sophis-
ticated compression scheme that builds on the stratified sampling
scheme by using tags to detect aliasing in the counter table.

We used load value profiling as an example application for eval-
uating the proposed compressors. We showed that the stratified
sampling scheme has the best error-overhead performance among
all the compressors we studied. Forgcc, we showed that with the
same or smaller profiling overheads, the stratified sampler achieves
a desired accuracy twice as fast as a random sampler. We also
showed that forgcc, if the profiling time and the desired accuracy
level are fixed, the stratified sampler can achieve these thresholds
with half the overheads as a random sampler. The overhead fac-
tors are benchmark-specific (more than two forperl, db and other
benchmarks).

We also showed that while the tagged compressor has better ac-
curacy than the stratified sampling scheme, the improved accuracy
comes at significantly higher overheads (twice or more) and higher
hardware complexity.

We then proposed an enhancement to the different compression
schemes by introducing a second-level lossless compression that
can further reduce profiling overheads without affecting accuracy.
We show that additional lossless compression between 1.15 and
2.5 can be achieved by using an associative buffer of 16 entries that
summarize the messages from the first level compressor.

On a higher level, we also showed that our hybrid profiling
scheme is capable of collecting a variety of profiles (type, edge,
call-target, value) and that it is capable of collecting profiles simul-
taneously with high accuracy (3% error) and low overheads (4.5%).

Future work involves a systematic study of other compressors
that can be built using the proposed component framework. Fur-
thermore, while we have proposed one specific implementation of
a tagged compressor, more advanced sampling-based implementa-
tions are possible that improve over the stratified sampler in both
accuracy and overheads.

7 Acknowledgements

This work was supported by two IBM Faculty Partnership Awards,
two National Science Foundation grants CCR-9900610 and EIA-
0071924, by IBM Corporation, Sun Microsystems, and Intel Cor-
poration. This support is gratefully acknowledged.

We greatly benefited from the many interesting discussions with
Timothy Heil about statistical sampling techniques and their behav-

ior. Special thanks are due to him for helping us nail down the in-
tuition behind the good performance of the sampling compressors.
We are also grateful to Manoj Plakal, Craig Zilles, and the anony-
mous referees for their numerous comments that helped us clarify
and better present the subject matter of this paper.

References

[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hard-
ware performance counters with flow and context sensitive profiling.
In Proceedings of the ACM SIGPLAN ’97 Conf. on Prog. Language
Design and Impl., pages 85–96, 1997.

[2] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghe-
mawat, Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites,
Mark T. Vandevoorde, Carl A. Waldspurger, and William E. Weihl.
Continuous profiling: Where have all the cycles gone?ACM Trans-
actions on Computer Systems, 15(4):357–390, November 1997.

[3] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and
Peter F.Sweeny. Adaptvie Optimization in the Jalapeno JVM. In
ACM SIGPLAN Conference on Object Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA ’00), October 2000.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo:
A Transparent Runtime Optimization System. InProceedings of the
2000 ACM SIGPLAN Conference on Prgramming Language Design
and Implementation (PLDI), pages 1–12, 2000.

[5] Thomas Ball and James R. Larus. Optimally profiling and tracing pro-
grams.ACM Transactions on Programming Languages and Systems,
16(4):1319–1360, July 1994.

[6] Thomas Ball and James R. Larus. Efficient Path Profiling. InPro-
ceedings of the 29th Annual International Symposium on Microarchi-
tecture, pages 46–57. ACM Press, 1996.

[7] M.G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M.J.
Serrano, V.C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalape˜no
Dynamic Optimizing Compiler for Java. InACM Java Grande Con-
ference, June 1999.

[8] B. Calder, P. Feller, and A. Eustace. Value profiling.Journal of In-
struction Level Parallelism, March 1999.

[9] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W.
Hwu. Profile-guided automatic inline expansion for C programs.Soft-
ware—Practice and Experience, 22(5):349–369, May 1992.

[10] Pohua P. Chang, Scott A. Mahlke, and Wen-Mei W. Hwu. Using pro-
file information to assist classic code optimizations.Software: Prac-
tice and Experience, 21(12):1301–1321, December 1991.

[11] D. Connors and W. Hwu. Compiler-Directed Dynamic Computation
Reuse: Rationale and Initial Results. In32nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 158–169, 1999.



[12] Charles Consel, Luke Hornof, Francois Noel, Jacques Noye, and
Nicolae Volanschi. A Uniform Approach for Compile-time and Run-
time Specialization. Technical Report RR-2775, Inria, Institut Na-
tional de Recherche en Informatique et en Automatique, 1996.

[13] Thomas M. Conte, Kishore N. Menezes, and Mary Ann Hirsch. Accu-
rate and practical profile-driven compilation using the profile buffer.
In Proceedings of the 29th Annual International Symposium on Mi-
croarchitecture, pages 36–45, Paris, France, dec 1996. ACM Press.

[14] Craig Zilles and Gurinder Sohi. A Programmable Co-processor for
Profiling. InProceedings of the 7th International Symposium on High
Performance Computer Architecture (HPCA-7), January 2001.

[15] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos.
ProfileMe: Hardware Support for Instruction-Level Profiling on Out-
of-Order Processors. InProceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-97), pages
292–302, Los Alamitos, December 1–3 1997. IEEE Computer So-
ciety.

[16] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating Future
Microprocessors: The SimpleScalar Tool Set. Technical Report CS-
TR-96-1308 (Available from http://www.cs.wisc.edu/trs.html), Uni-
versity of Wisconsin-Madison, July 1996.

[17] Evelyn Duesterwald and Vasanth Bala. Software profiling for hot
path prediction: Less is more. InArchitectural Support for Program-
ming Languages and Operating Systems (ASPLOS-IX), November 1–
3 2000.

[18] Carole Dulong. The IA-64 architecture at work.Computer, 31(7):24–
32, July 1998.

[19] Kemal Ebcioğlu and Erik Altman. DAISY: Dynamic compilation for
100% architectural compatibility. In24th Annual International Sym-
posium on Computer Architecture, pages 26–37, 1997.

[20] Joseph A. Fisher. Trace scheduling: A technique for global microcode
compaction.IEEE Transactions on Computers, 30(7):478–490, July
1981.

[21] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyl-
lenhaal, and Wen mei W. Hwu. Dynamic Memory Disambiguation
Using the Memory Conflict Buffer. In Proceedings of the Sixth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 183–193, San Jose, California,
1994.

[22] William G.Cochran. Sampling Techniques. John Wiley and Sons,
1977.

[23] A. Gonzalez, J. Tubella, and C. Molina. Trace-Level Reuse. InPro-
ceedings of the the International Conference on Parallel Processing,
September 1999.

[24] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. DyC:
An Expressive Annotation-Directed Dynamic Compiler for C. Tech-
nical Report TR-97-03-03, University of Washington, Department of
Computer Science and Engineering, March 1997.

[25] Urs Holzle. Adaptive Optimization for SELF: Reconciling High Per-
formance with Exploratory Programming. Thesis CS-TR-94-1520,
University of Stanford, August 1994.

[26] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages with Polymorphic
Inline Caches. In Pierre America, editor,ECOOP ’91: European
Conference on Object-Oriented Programming, volume 512 ofLecture
Notes in Computer Science, pages 21–38. Springer-Verlag, 1991.

[27] Jian Huang and David J. Lilja. Exploiting Basic Block Value Lo-
cality with Block Reuse. InProceedings of the Fifth International
Symposium on High-Performance Computer Architecture, pages 106–
114, Orlando, Florida, January 9–13, 1999. IEEE Computer Society
TCCA.

[28] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.Partial Evalua-
tion and Automatic Program Generation. Prentice Hall International,
International Series in Computer Science, June 1993. ISBN number
0-13-020249-5 (pbk).

[29] Alexander Klaiber. The technology behind Crusoe(tm) Processors,
January 2000.

[30] Todd B. Knoblock and Erik Ruf. Data Specialization. InProceedings
of the ACM SIGPLAN ’96 Conference on Programming Language De-
sign and Implementation, pages 215–225, Philadelphia, Pennsylvania,
21–24 May 1996.

[31] Mikko H. Lipasti and John Paul Shen. Exceeding the Dataflow Limit
via Value Prediction. InProceedings of the 29th Annual International
Symposium on Microarchitecture, pages 226–237, Paris, France, De-
cember 2–4, 1996. IEEE Computer Society TC-MICRO and ACM
SIGMICRO.

[32] M. U. Mock and C. Chambers and S. J. Eggers. Calpa: A Tool for
Automating Selective Dynamic Compilation. InProceedings of the
33rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-33), December 2000.

[33] M.Burrows, U.Erlingson, S.T.A.Leung,
M.T.Vandevoorde, C.A.Waldspurger, K.Walker, and W.E.Weihl. Effi-
cient and Flexible Value Sampling. InArchitectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-IX), pages
160–167, November 1–3 2000.

[34] Steve Meloan. The Java HotSpot (tm) Perfomance Engine: An In-
Depth Look. Article on Sun’s Java Developer Connection site, 1999.

[35] Matthew C. Merten, Andrew R. Trick, Christopher N. George, John C.
Gyllenhaal, and Wen mei W. Hwu. A Hardware-Driven Profiling
Scheme for Identifying Program Hot Spots to Support Runtime Opti-
mization. InProceedings of the 26th Annual International Symposium
on Computer Architecture, June 1999.

[36] Robert Muth, Scott Watterson, and Saumya Debray. Code Spe-
cialization Based on Value Profiles. InProceedings of the7th In-
ternational Static Analysis Symposium (SAS 2000), pages 340–359.
Springer LNCS vol. 1824, June 2000.

[37] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek.
tcc: A System for Fast, Flexible, and High-level Dynamic Code Gen-
eration. InProceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI-97), volume
32, 5 ofACM SIGPLAN Notices, pages 109–121, New York, June 15–
18 1997. ACM Press.

[38] Y. Sazeides and J. E. Smith. The Predictability of Data Values. InPro-
ceedings of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-97), pages 248–258, Los Alamitos, De-
cember 1–3 1997. IEEE Computer Society.

[39] Timothy Sherwood and Brad Calder. Time Varying Behavior of Pro-
grams. TechReport CS99-630, University of California-San Diego,
August 1999.

[40] James E Smith, Subramanya Sastry, Timothy Heil, and Todd Bezenek.
Achieving High Performance via Co-Designed Virtual Machines. In
International Workshop on Innovative Architecture, October 1999.

[41] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse.
In Proceedings of the 24th Annual International Symposium on Com-
puter Architecture (ISCA-97), pages 194–205, June2–4 1997.

[42] Timothy Heil and James E Smith. Relational Profiling: Enabling
Thread-Level Parallelism in Virtual Machines. InProceedings of the
33rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-33), December 2000.

[43] C. Young and M. D. Smith. Better global scheduling using path pro-
files. In Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO-98), pages 115–126, Los
Alamitos, November 30–December 2 1998. IEEE Computer Society.


