
Managing Multi-Configuration Hardware via Dynamic Working Set Analysis

Ashutosh S. Dhodapkar and James E. Smith
Dept. of Electrical and Computer Engineering,

University of Wisconsin-Madison.
{dhodapka, jes}@ece.wisc.edu

Abstract

Microprocessors are designed to provide good aver-
age performance over a variety of workloads. This can
lead to inefficiencies both in power and performance for
individual programs and during individual phases within
the same program. Microarchitectures with multi-
configuration units (e.g. caches, predictors, instruction
windows) are able to adapt dynamically to program be-
havior and enable/disable resources as needed. A key
element of existing configuration algorithms is adjusting
to program phase changes. This is typically done by "tun-
ing" when a phase change is detected – i.e. sequencing
through a series of trial configurations and selecting the
best.

Algorithms that dynamically collect and analyze pro-
gram working set information are studied. To make this
practical, we propose working set signatures – highly
compressed working set representations (e.g. 32-128
bytes total). Algorithms use working set signatures to 1)
detect working set changes and trigger re-tuning; 2) iden-
tify recurring working sets and re-install saved optimal
reconfigurations, thus avoiding the time-consuming tun-
ing process; 3) estimate working set sizes to configure
caches directly to the proper size, also avoiding the tun-
ing process. Multi-configuration instruction caches are
used to demonstrate the performance of the proposed
algorithms. When applied to reconfigurable instruction
caches, an algorithm that identifies recurring phases
achieves power savings and performance similar to the
best algorithm reported to date, but with orders-of-
magnitude savings in the number of re-tunings.

1. Introduction

As microarchitecture and chip technology evolve,
tradeoffs involving performance, power, and complexity
become increasingly difficult, and optimization methods
become increasingly sophisticated. One promising opti-
mization method is to configure microarchitecture fea-

tures dynamically to adapt to changing program
characteristics [1-13]. As a program runs, it passes
through phases of execution where its performance
characteristics and, consequently, its hardware resource
requirements may vary [14, 15]. Performance and/or
power consumption can be optimized on-the-fly if signifi-
cant phase changes can be detected and dynamic
microarchitecture reconfiguration can be invoked in re-
sponse to the phase changes.

In most proposed implementations, configurable units
are designed to have a number of fixed configurations,
e.g. four different cache sizes. Then, the runtime configu-
ration algorithm selects from one of the multiple available
configurations. Thus far, algorithms for determining the
optimal hardware configuration have primarily been ad
hoc, and consequently, there are about as many algo-
rithms as there are proposals for multi-configuration
units.

 The research reported here is directed primarily toward
development of configuration algorithms rather than de-
veloping new types of multi-configuration units. The goal
is to find fundamental techniques that can be applied
across a broad range of units. These algorithms will not
only improve performance of individual multi-
configuration units, but also permit unified control of sev-
eral such units simultaneously. We envision these algo-
rithms being implemented with co-designed virtual ma-
chine software [16], but that aspect is not essential to the
research presented here; hardware or conventional soft-
ware implementations could also be used.

As a basis for constructing reconfiguration algorithms,
we are studying dynamic analysis of program working
sets. There are three aspects of working sets that are of
interest. Detection of a working set change indicates a
program phase change, and can be used to trigger a search
for an optimal configuration. Working set size can be
used directly to choose the optimal configurations when
performance is directly related to working set size (e.g.
caches). Finally, the working set identity can be used to
reduce re-optimization overhead: when a previously en-
countered working set can be identified, the optimal con-

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

figuration for that working set can be stored and re-
instated.

Working sets can be quite large, and it is likely imprac-
tical to work with full representations of working sets.
Consequently, we propose a small hardware table (on the
order of 32-128 bytes) to capture a working set “signa-
ture” that contains enough information to permit an esti-
mation of the important working set characteristics. This
working set information can be incorporated into a num-
ber of reconfiguration algorithms, and we demonstrate the
use of working set signatures for multi-configuration in-
struction caches.

In the next three subsections, we summarize proposed
methods for dynamically configuring hardware, describe
reconfiguration algorithms, and discuss ways program
working set behavior can be used in configuration algo-
rithms.

1.1 Dynamically configurable hardware

A number of proposals have been made for adap-
tive/configurable hardware mechanisms targeted at per-
formance and/or power optimization. A few important
examples follow.

• Configurable caches and TLBs – line sizes and as-
sociativity are adjusted in response to program ref-
erencing behavior [2, 3, 5].

• Allocation of memory hierarchy resources – cache
memory resources are divided among levels in the
cache hierarchy [4] or configured for other uses,
e.g. instruction reuse [6].

• Allocation of memory buffer resources – the same
buffer resources are used for stream buffers or vic-
tim buffers, depending the current needs of the pro-
gram [3].

• Configurable branch predictors – the length of the
global history register [7] in a gshare (or related)
predictor is varied.

• Configurable instruction windows – sections of the
issue window are disabled when there is low in-
struction level parallelism [8, 9].

• Configurable pipelines – portions of clustered mi-
croarchitectures can be disabled [10], or a pipeline
can vary between in order, out-of-order, and pipe-
line gating [11].

Of course, these various methods are not mutually ex-
clusive, and in practice a combination of adaptive tech-
niques will likely be used in the same processor. This
leads to a fairly complex optimization problem, especially
if the methods interact with one another. Huang et al.
[12], describe a general framework and algorithms that
are intended to deal with processors containing several
configurable units.

1.2 Dynamic reconfiguration algorithms

Methods for controlling multi-configuration hardware
generally involve a form of feedback where some per-
formance characteristic (e.g. instructions per cycle (IPC)
or miss rate) is measured and reconfiguration decisions
are based on current and past measurements. The more
sophisticated optimization schemes run for a fixed inter-
val (also called a “window”, “step”, etc.) while monitor-
ing some performance or program characteristic. This
information is used to determine whether there has been a
program phase change. If so, the configuration algorithm
undertakes a tuning sequence, i.e. it systematically tries a
number of configurations and measures the performance
of each. It then selects the optimal one and continues,
waiting for the next phase change.

The algorithm shown in Fig. 1 is proposed in [4]. This
algorithm is both one of the better documented and the
best performing we have found; henceforth, we use this
algorithm for comparisons and refer to it as the Rochester
algorithm. In [4], it is used to control a multi-
configuration data cache hierarchy. That system repeat-
edly runs for a fixed number of instructions (100,000),
and then makes a pass through the algorithm given in the
figure. The system has two states: STABLE and
UNSTABLE. As long as the configurable unit’s per-
formance, unit_perf, does not change more than
perf_noise level and the number of branches does not
change more than a br_noise level, the phase is STABLE
and nothing is done. Otherwise, the phase is considered to
be UNSTABLE, and the algorithm goes through a tuning
sequence, looking for the best configuration. It begins
with the smallest configuration and goes to the largest,
unless the performance exceeds the threshold. Then, the
algorithm selects the best performing configuration,
makes the system state STABLE, and continues. If the
tuning process selects the same configuration as in the
previous phase, the noise levels are increased to prevent
unnecessary tunings in the future. When stable, the noise
thresholds are reduced until they reach a minimum level;
in essence, the algorithm dynamically changes the thresh-
old in order to detect major phase changes.

Reconfiguration algorithms have three basic properties
that determine their applicability and effectiveness.

Detection efficiency – the ability of an algorithm to de-
tect program phase changes. Low detection efficiency can
lead to lost reconfiguration opportunities and non-optimal
hardware configurations.

Reconfiguration overhead – the overhead associated
with the transition from one configuration to another. The
reconfiguration overhead depends on the amount of state
contained in the structure. Flushing and/or re-learning the
state can take 10’s of cycles to 1000’s of cycles (e.g. for
reconfiguring a data cache).

Tuning overhead – the time spent searching for an op-
timal configuration. A high tuning overhead leads to

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

higher number of reconfigurations and more time spent in
the non-optimal configurations. This is a more serious
problem in microarchitectures with several multi-
configuration units. For example, three units with three
configurations each, can lead to up to 27 combinations to
explore (depending on the degree to which they interact).
In a proposed method for resizing global branch history
[7], up to 16 different configurations are explored.

Figure 1. An algorithm that detects a phase
change and then searches for the best configu-
ration [4].

It is important to differentiate between number of tun-
ings and number of reconfigurations. Each tuning can
possibly be composed of multiple reconfigurations.
Hence, reducing the number of tunings leads to signifi-
cantly fewer reconfigurations, less time spent in non-
optimal configurations, and better performance/power
efficiency.

1.3 Configuration algorithms using working set
analysis

Because phase changes are manifestations of working
set changes [17], we consider algorithms based on analy-
sis of explicit working set information. In Section 2, we
define a working set signature, a lossy-compressed repre-
sentation of the true working set. By using working set
signatures to detect phase changes, very accurate configu-
ration algorithms can be developed. In Section 3, we ap-
ply the working set detection method to variations of the

Rochester algorithm and show that similar average cache
sizes and miss-rates can be achieved with fewer recon-
figurations in some cases.

For some multi-configuration units, the optimal con-
figuration is directly related to working set size. In Sec-
tion 4, we show that the working set signature can be used
for estimating size and develop a simple algorithm for
finding an optimal cache configuration. This algorithm
significantly reduces reconfigurations.

Finally, working sets can be used to identify recurring
phases. Re-tuning is done only when a program phase
change actually occurs. If the phase has occurred in the
past, the optimum configuration is looked up in a table
thereby eliminating the tuning overhead. As far as we
know, none of the reconfiguration algorithms reported in
literature exploit knowledge of recurring phases. In Sec-
tion 5, we propose such an algorithm and show that reuse
of configuration information can lead to a 95% reduction
in number of tunings on average for integer benchmarks.
Section 6 describes the implementation of hardware and
software required to enable our reconfiguration scheme.

2. Working with working sets

For decades, operating system researchers have studied
working set behavior to optimize memory hierarchy us-
age, and they have shown that working sets are the cause
of phase behavior.

2.1 Basic definitions

Classically, a working set W(ti,τ) for i=1,2…, is a set of
distinct segments {s1, s2,.., sω} touched over the ith window
of size τ [16]. The working set size is ω, the cardinality
of the set. The segments are typically memory regions of
some fixed size, such as a page.

Following some initial studies of working sets, re-
searchers focused on more general models of program
behavior and developed the phase transition model [17,
18]. Batson and Madison defined a phase as a maximal
interval during which a given set of segments stay on top
of the LRU stack [18]. In other words, a phase is defined
as the maximum interval over which the working set re-
mains more or less constant. The phase transition model
states that programs follow a series of steady state phases
with rather abrupt transitions in between. Phase transition
studies have shown that programs have a marked phase
behavior and bigger phases are composed of several
smaller phases.

Most of the early working set research was directed at
program paging behavior, but as one would expect, simi-
lar behavior occurs with smaller, cache line-size address-
ing units that are more in line with applications to config-
urable hardware. Also, early work tended to lump instruc-
tions and data together. We distinguish instruction and

After each sampling interval:
if (state == STABLE)

if (|unit_perf - last_unit_perf| < perf_noise AND
|num_br - last_num_br| < br_noise)
perf_noise = max (perf_noise – perf_dec, base_perf_noise);
br_noise = max(br_noise - br_dec, base_br_noise);
last_num_br = num_br;
last_unit_perf = unit_perf;

else
last_unit_size = unit_size;
unit_size = SMALLEST;
state = UNSTABLE;

else if (state == UNSTABLE)
record overall_perf;
if (unit_perf < threshold AND unit_size != LARGEST)

unit_size ++ ;
else

unit_size = select that with best overall_perf;
state = STABLE;
last_num_br = num_br;
last_unit_perf = unit_perf;
if (unit_size == last_unit_size)

br_noise += br_inc;
perf_noise += perf_inc;

Initially:
unit_perf_noise = base_perf_noise;
br_noise = base_br_noise;

After each sampling interval:
if (state == STABLE)

if (|unit_perf - last_unit_perf| < perf_noise AND
|num_br - last_num_br| < br_noise)
perf_noise = max (perf_noise – perf_dec, base_perf_noise);
br_noise = max(br_noise - br_dec, base_br_noise);
last_num_br = num_br;
last_unit_perf = unit_perf;

else
last_unit_size = unit_size;
unit_size = SMALLEST;
state = UNSTABLE;

else if (state == UNSTABLE)
record overall_perf;
if (unit_perf < threshold AND unit_size != LARGEST)

unit_size ++ ;
else

unit_size = select that with best overall_perf;
state = STABLE;
last_num_br = num_br;
last_unit_perf = unit_perf;
if (unit_size == last_unit_size)

br_noise += br_inc;
perf_noise += perf_inc;

Initially:
unit_perf_noise = base_perf_noise;
br_noise = base_br_noise;

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

data working sets, and in this paper we focus on the in-
struction working set.

As defined, capturing a working set requires a window.
The window size determines the finest granularity at
which phases can be resolved. In this paper, we consider
fine grain working sets containing cache line sized ele-
ments (32-256 bytes) because we primarily deal with
multi-configuration units (e.g. caches and predictors) that
work at this granularity. Also, for design simplicity, a
series of non-overlapping windows is used, rather than a
sliding window as is often used in paging studies.

The method of sampling information is another impor-
tant parameter. In this paper, we assume that sampling
occurs at every committed instruction. One could, how-
ever, resort to periodic sampling or random sampling to
reduce sampling overhead. This will be an area of future
research.

We are interested in identifying working sets, measur-
ing sizes and detecting changes in working sets. In order
to do this, we need a measure of similarity because the
same phase may not always touch exactly the same seg-
ments in each working set window. There is some level of
noise in the measurements partially due to mismatch in
the phase and window boundaries and partially due to
small differences in execution. We define the relative
working set distance

 δ=
),W(t),W(t

),W(t),W(t),W(t),W(t

ji

jiji

ττ
ττττ

�

�� − , (1)

to compare two phases with working sets W(ti,τ) and
W(tj,τ). A large δ value indicates a working set change
whereas a small δ indicates no change. At the extreme
ends, δ = 0 when the sets are identical, and δ = 1 when the
working sets are totally different. We define a threshold
δth and say there is a working set change if δ > δth.

2.2 Working set signatures

Representing and manipulating complete working sets
is probably impractical for our application. Consequently,
we propose a lossy-compressed working set representa-
tion that we call the working set signature.

The working set signature is an n-bit vector formed by
mapping working set elements into n-buckets using a ran-
domizing hash function (see Fig. 2). As mentioned before,
the working set elements are of cache line granularity and
hence the low-order b address bits are ignored when hash-
ing. The size of the bit-vector is in the range of 32 – 128
bytes. One could consider varying size dynamically to
suit the application; this however, is a topic of future re-
search. The bit-vector is cleared at the beginning of every
interval (window) to remove stale working set informa-
tion.

Working set signatures can be used to estimate the size,
change, and identity attributes of the full working set. The
size (number of ones) of the signature is probabilistically

related to the true working set size. When K random keys
are hashed into n buckets, the fraction of buckets filled, f,
is given by

 f = .)
1

1(1 K

n
−− (2a)

Given the fraction of the signature filled, the working
set size can be estimated using the relation

 K =)
1

1log(/)1log(
n

f −− . (2b)

Using this relation, we find that a 90% filled table cor-
responds to a working set size about 2.5 times larger than
the number of filled entries. In Section 3 this relationship
will be experimentally validated.

To detect working set changes and identities, we use a
measure of similarity analogous to the one defined above
for working sets. For two signatures S1 and S2, the relative
signature distance is defined as

 ∆=
21

21

SS

SS

+
⊕

, (3)

i.e., (ones count of exclusive OR)/(ones count of inclusive
OR). As with full signatures, we will use a threshold
value ∆th to detect phase changes.

3. Measuring working set changes

In this section we use instruction working set signatures
to detect phase changes (working set changes) and then
incorporate this mechanism in an example configuration
algorithm.

program
counter

m b

1
0
0
1
1
0
1
0
1
0
0
0
1

w orking set
signature

H

n = bit-vector size

hash function maps
m-bits log2n bits

b = granularityprogram
counter

m b

1
0
0
1
1
0
1
0
1
0
0
0
1

w orking set
signature

H

n = bit-vector size

hash function maps
m-bits log2n bits
hash function maps
m-bits log2n bits

b = granularity

Figure 2. Mechanism for collecting working set
signatures. m bits selected from the program
counter are used to address a table containing n
bits. The table is cleared at the beginning of each
window, and a bit is set if the corresponding in-
struction block is touched.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

3.1 Methodology

To evaluate the properties of working set signatures, we
used a modified version of the SimpleScalar toolset [19]
and a subset of benchmarks from the SPEC 2000 suite.
The benchmarks were compiled using the base level op-
timizations. The choice of benchmarks was based on the
presence of 1) long and short term phases with differing
performance, 2) recurring phases, to test our working set
identification scheme, and 3) different working sets in the
same benchmark that led to similar behavior for certain
cache/predictor configurations and completely different
behavior for others – to show variable effectiveness of
reconfiguration.

For collecting working set signatures, a window of
100K instructions is used (unless stated otherwise), and
all benchmarks are run for 20,000 such intervals or 2 bil-
lion instructions. The signature bit vector size for most of
the experiments is 1024 bits (128 bytes); in Section 6.3,
we show that signatures as small as 32 bytes perform
nearly as well. The hash function used during simulation
is based on the C library functions srand and rand.

3.2 Signature accuracy

In order to evaluate the accuracy of working set signa-
ture distances (as compared with full working sets), we
measured the relative distances between pairs of consecu-
tive windows. Fig. 3a is a plot of the relative working set
distance (y-axis) versus the relative distance for the corre-
sponding signatures (x-axis). This particular graph is for
gzip, but all the benchmarks display very similar behav-
ior. That these distances are highly correlated is evident.
There is some slight dispersion due to hash collisions
when forming signatures. It is clear that using signatures
for detecting phase changes will be nearly as accurate as
using full working sets.

For comparison, the Rochester algorithm uses the dy-
namic count of conditional branches to measure working
set changes. We define a relative distance metric for
conditional branch counts in the same way as signature
distances i.e.,

1

1

_

__

−

−−
=∆

i

ii

CNTBR

CNTBRCNTBR , (4)

where, BR_CNTi is the conditional branch count for the ith

window. A plot of full working set distances versus the
branch count distances shows some correlation, but with a
high level of dispersion (Fig. 3b). More importantly, there
are several significant working set changes that are asso-
ciated with very small relative branch distances.

In order to detect a phase change, we need to define the
value of threshold – ∆th. The threshold is defined empiri-
cally. Thresholds that are powers of two (0.125, 0.25,
0.5…) are used because the implied division for forming
the relative distance becomes a matter of shifting and

comparing. Experiments showed that the ability to detect
phase changes is relatively insensitive to the threshold,
because, as was noted in [17], a phase change tends to be
abrupt and very pronounced. Consequently, a threshold
of 0.5 is used, which filters out most of the noise and de-
tects only the significant phase changes.

3.3 Evaluation: managing configurable hardware

In this subsection, we use working set signatures for de-
tecting phase changes, and incorporate phase change de-
tection into a reconfiguration algorithm. To illustrate its
performance, it is applied to a multi-configuration instruc-
tion cache.

The algorithm we propose is given in Fig. 4 and will be
referred to as the signature based algorithm. The signa-
ture size is 128 bytes. This algorithm has three states:
STABLE - when the program working set is stable and
the configuration is optimal, UNSTABLE – when the
working set is in transition and TUNING – when the
working set is stable and different configurations are be-
ing explored.

At the end of each window (100K instructions), the
relative signature distance with respect to the previous
signature is computed. Assuming the system is initially

0

20

40

60

80

100

0 20 40 60 80 100
relative signature distance (%)

re
la

tiv
e

w
or

ki
ng

 se
t

di
st

an
ce

 (
%

)

0

20

40

60

80

100

0 50 100 150 200
relative change in branch counts (%)

re
la

tiv
e

w
or

ki
n

g
se

t
di

st
an

ce
 (%

)

a)

b)

0

20

40

60

80

100

0 20 40 60 80 100
relative signature distance (%)

re
la

tiv
e

w
or

ki
ng

 se
t

di
st

an
ce

 (
%

)

0

20

40

60

80

100

0 50 100 150 200
relative change in branch counts (%)

re
la

tiv
e

w
or

ki
n

g
se

t
di

st
an

ce
 (%

)

a)

b)

Figure 3. a) Relative working set distance vs.
relative signature distance for benchmark gzip
using a 32-byte signature. b) Relative working
set distance vs. relative branch distance (Eq. 4).

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

STABLE, if the distance is greater than the threshold
(0.5), the state becomes UNSTABLE and subsequent in-
tervals wait for the distance to go below the threshold,
indicating stability has been restored. When this happens,

the state transitions to TUNING, and the algorithm begins
searching for the optimal configuration. Once the optimal
configuration is found, the state transitions to STABLE.
On the other hand, the state transitions back to
UNSTABLE if the signature distance exceeds the thresh-
old while TUNING is in progress.

The Rochester algorithm and the signature-based algo-
rithm are similar in overall structure, but one difference is
that the signature-based algorithm does not tune while the
working set is in transition; it waits for the phase to stabi-
lize.

To illustrate the algorithm’s performance, we consider
an instruction cache that can be reconfigured to 2KB,
8KB, 32KB or 128KB, depending on the requirements of
the program. The goal is to save power by using the
smallest cache that gives good performance. We use the
cache miss rate as a measure of performance, the number
of reconfigurations/tunings as a measure of overhead, and
the average cache size as a measure of power consump-
tion.

For comparison we use the Rochester algorithm given
in Fig. 1, adapted to instruction cache configuration. As
noted earlier, this algorithm detects phase changes using
dynamic branch counts. The parameters used for the algo-
rithm [4, 23] are base_br_noise = 4500, br_dec = 50,
br_inc = 1000, base_perf_noise = 450, perf_dec = 5,
perf_inc = 100 and threshold = 2%.

Average Miss Rate (%)

0

0.2

0.4

0.6

0.8

1

applu apsi mgrid wupwise galgel ammp swim lucas Avg.

Average Cache Size (KB)

0

10

20

30

40

applu apsi mgrid wupwise galgel ammp swim lucas Avg.

0

0.2

0.4

0.6

0.8

1

perl gzip gcc twol f Av g.

rochester

basic signature

extended signature
signature size

phas e table

0

20

40

60

80

100

perl gzip gcc twolf A vg.

rochester
basic signature
extended signature
signature size
phase table

Figure 5. Average miss rates and cache sizes for SPEC2K floating-point (left) and integer (right) bench-
marks. The last column in each graph shows the average over all the benchmarks in that graph. Results
are shown for the Rochester algorithm, basic signature based and extended signature based algorithms
(Sec. 3.3); signature size based algorithm (Sec. 4.2); phase table based algorithm (Sec. 5.1).

if (state == STABLE)
if (working_set # last_wo rking_set > DELTAMAX)

state = UNSTABLE;

else if (state == UNSTABLE)
if (working_set # last_wo rking_set <= DELTAMAX)

unit_size = SMALLEST;
state = TUNING;

else if (state == TUNING)
if (working_set # last_wo rking_set < DELTAMAX)

record overall_performance;
if (unit_perf > THRESHOLD AND unit_size != LARGEST)

unit_size ++ ;
else

unit_size = select best from amo ng those tried;
state = STABLE;

else
state = UNSTABLE;

if (state == STABLE)
if (working_set # last_wo rking_set > DELTAMAX)

state = UNSTABLE;

else if (state == UNSTABLE)
if (working_set # last_wo rking_set <= DELTAMAX)

unit_size = SMALLEST;
state = TUNING;

else if (state == TUNING)
if (working_set # last_wo rking_set < DELTAMAX)

record overall_performance;
if (unit_perf > THRESHOLD AND unit_size != LARGEST)

unit_size ++ ;
else

unit_size = select best from amo ng those tried;
state = STABLE;

else
state = UNSTABLE;

Figure 4. Basic algorithm based on working set
signatures. The algorithm uses relative signature
distances (represented with # operator) to detect
phase changes and then performs tuning when
the phase transition completes.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Fig. 5 shows the average cache miss rate and average
cache size for the Rochester and basic signature-based
algorithms (first two bars; other bars will be described
later). On average, all the algorithms perform very simi-
larly in terms of miss rates and average cache sizes. A
point to emphasize here is that any algorithm with a suffi-
cient number of tunings will achieve near-optimal instruc-
tion cache sizes and miss rates, and in the remainder of
the paper, we do not draw any real distinctions among
algorithms on that basis. These results do show the advan-
tage of the dynamic configuration approach, however. For
example, compared to a configuration having 128KB in-
struction cache (0% miss rate on average, not shown in
the figure), the signature-based algorithm reduces average
cache size by 82% for an increased miss-rate of just 0.4%.

The number of tunings and reconfigurations (Fig. 6) are
the key distinguishing features directly related to the algo-
rithm’s performance overhead, and we focus on these
measures in comparing algorithms. Recall that a tuning
occurs when the algorithm initiates a search for the opti-
mal configuration; a reconfiguration occurs whenever the
configuration changes.

The signature-based algorithm is comparable to the
Rochester algorithm in number of reconfigurations; how-
ever, the Rochester algorithm has the advantage of per-
forming far fewer tunings. This is mainly because the
Rochester algorithm detects when unnecessary tunings
occur and “backs off” by increasing the noise levels. This

feature is especially useful when there are frequent phase
changes that do not require reconfiguration. On the other
hand, the basic signature-based algorithm performs tun-
ings every time a phase change is detected; there is no
“back off”.

To reduce unnecessary tunings, we extend the signa-
ture-based algorithm to wait for 4 stable intervals before
tuning. Also, if the state is UNSTABLE for more than 10
intervals and performance is below threshold, the cache
size is increased to the maximum. This acts as a backup
strategy in cases where the working set does not stabilize,
so tuning is never performed. With the extended algo-
rithm, the number of tunings is reduced by 74% on aver-
age, compared to the basic algorithm (Fig. 6).

4. Measuring working set sizes

As mentioned earlier, the signature size (one’s count of
the signature) is closely related to the actual working set
size. Thus, in those cases where performance is directly
related to the working set size, for example instruction
and data caches, the signature size can be used to deter-
mine the optimal configuration; there is no need for tun-
ing.

Tunings

0

100

200

300

400

applu apsi mgrid wupw ise galgel ammp swim lucas Avg.

Reconfigurations

0

10

20

30

40

50

applu apsi mgrid wupwise galgel ammp swim lucas Avg.

0

1000

2000

3000

perl gzip gcc twolf Avg.

rochester
basic signature
extended signature
signature size
phase table

0

400

800

1200

perl gzip gcc twolf Avg.

rochester
basic signature
extended signature
signature s ize
phase table

3437

Figure 6. Number of tunings and reconfigurations for SPEC2K floating-point (left) and integer (right)
benchmarks. The last column in each graph shows the average over all the benchmarks in that graph.
Results are shown for the Rochester algorithm, basic signature based and extended signature based
algorithms (Sec. 3.3); signature size based algorithm (Sec. 4.2); phase table based algorithm (Sec. 5.1).

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

4.1 Working set size experiments

We collected the true working set and the working set
signature for each window of 100K instructions. Then,
the true size of the working set versus the signature size
was plotted. Since a randomizing hash is used, the graphs
for all the benchmarks are essentially identical (and fit Eq.
2b). A representative plot for the instruction working set
is shown in Fig. 7.

As expected, for small working sets, the graph is close
to linear with a slope of 1 and as the working set gets big-
ger, the graph becomes non-linear. Even in the non-linear
section, the signature can give reasonably accurate work-
ing set size estimates 3-4x the maximum signature size.
This means that a typical signature size we have been
considering (32-128 bytes) with line-size granularities
(32-128 bytes) can be used to estimate working set sizes
of many tens to hundreds of Kbytes – adequate for recon-
figuring L1 caches. By increasing the granularity (future
research), we expect the reach to be extended to L2 cache
sizes.

4.2 Evaluation: reconfiguration using signature
size

The extended signature-based algorithm can be modi-
fied to use the signature size for selecting an optimal
cache configuration – the smallest that holds the current
working set (plus 10% to allow for some noise). To de-
termine the appropriate size, equation 2 (Section 2) is
used. This eliminates the need to tune, and it typically
reduces the number of reconfigurations as well. The main
advantage lies in the significantly smaller number of re-

configurations (Fig. 6: signature size) – on average, 75-
80% fewer than the Rochester and extended signature
algorithms. The effect is much more prominent in a
benchmark like gzip. Gzip has lots of dynamic phases
with a cache requirement of 8KB, separated by phases
with a requirement of 2KB. When tuning, the Rochester
and signature-based algorithms try the 2KB configuration
before trying the 8KB. On the other hand, the signature-
size based algorithm sets the size to 8KB directly, avoid-
ing half of the reconfigurations.

5. Identifying recurring phases

As a program executes, it goes through many phase
changes. However, the same phases often recur multiple
times during program execution. As far as we know, no
previous work has proposed the saving of recurring phase
information to avoid re-tuning. In this section, we study
such an algorithm. Briefly, this will be done by maintain-
ing a phase table in memory. After tuning has determined
the optimal configuration for a particular phase, it will be
stored in the table. Later, if the phase recurs, the optimal
configuration can be reinstated without going through the
tuning process.

5.1 Phase statistics

Table 1 shows some general characteristics of phases as
identified in the simulations. The program execution con-
sists of a sequence of stable 100K instruction intervals
separated by unstable intervals. Each “run” of stable in-
tervals is defined as one dynamic phase. If the relative
signature distance between two different dynamic phases
is within the 0.5 threshold, we say that they are the same
static phase. The average phase lengths are computed by
averaging the lengths of all the dynamic phases.

In general, the floating-point benchmarks have longer
phases, typically 10’s of millions of instructions – primar-
ily due to the long loops of numerical code. The integer
benchmarks on the other hand have much shorter phases;
less than one million instructions for gzip and gcc. For
many of the floating point benchmarks 99+% of the time
is spent in stable phases. As the average phase length de-
creases there are more transitions, and hence the fraction
of time in a stable region decreases (60-80% for gzip and
gcc).

The presence of recurring phases is evident in all the
benchmarks by comparing the number of dynamic phases
with the number of static phases. However, the degree to
which phases recur is reduced by the relatively short
benchmark runtimes (2 billion instructions). Several ben-
chmarks were run for 10 billion instructions and the
number of dynamic phases was almost three orders of
magnitude greater than the number of static phases. This

0

1000

2000

3000

4000

0 20 40 60 80 100

normalized instruction signature pop-count (%)

in
st

ru
ct

io
n

w
or

ki
ng

 s
et

 s
iz

e

Figure 7. Working set size vs. normalized one’s
count of the signature for instruction working
set of SPEC2K benchmark gcc. Signature size
used is 128 bytes.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Table 1. Benchmark characteristics. Columns
are benchmark name, number of dynamic and
static phases, number of static phases that lead
to 95% of stable time, average phase length in
units of 100K instructions and the percentage of
time spent in stable phases.

Bench-
mark

#Dynamic
Phases

Static
Phases

95%
Stable
Time

Avg.
Phase
Length

Stable
Time
(%)

applu 66 26 12 301 99.61
apsi 72 15 6 276 99.36
mgrid 86 9 4 230 99.01
wupwise 6 5 3 3331 99.95
galgel 371 39 12 51 95.14
ammp 7 1 1 2854 99.92
swim 45 14 10 442 99.66
lucas 33 18 13 604 99.69
perl 119 21 5 166 99.13
gzip 2301 10 4 7 81.79
gcc 3437 57 19 3 61.77
twolf 17 13 2 1174 99.84

indicates that the gains of reusing configuration informa-
tion for recurring phases increase with time.

The “95% stable time” column of the table is the num-
ber of static phases that account for 95% of the dynamic
phases. These numbers are quite low, fewer than 20 in
every case. This indicates that a relatively small signature
table will be sufficient for covering most recurring
phases.

5.2 Evaluation: recurring working sets

The algorithm for exploiting recurring working sets is
similar to the one given in Fig. 4. However, on detecting a
phase change, the algorithm first performs a table lookup
to see if configuration information for the phase exists in
the table. If so, the optimal configuration is reinstated. If
not, the algorithm goes into the TUNING state. At the end
of tuning, the optimal configuration is committed to the
signature table.

In addition to the configuration information, the table
also keeps track of phase lengths. If, during its last execu-
tion, the length was fewer than four intervals (400,000
instructions), then tuning is not performed. This avoids
tuning for insignificant phases. Four intervals are chosen
because the tuning process takes a maximum of four in-
tervals.

The results for the algorithm are shown in Figs. 5 and
6, labeled phase table. The important difference lies in the
number of tunings performed by the phase table algo-
rithm. The algorithm performs 67% fewer tunings for
floating point benchmarks and 92% fewer tunings for the
integer benchmarks compared with the extended signature

based algorithm. In situations where the tuning process is
complex, this can lead to significant improvements in
performance.

6. Implementation

To implement configuration algorithms, we propose a
combination of hardware and software. Software per-
forms higher-level configuration decisions, and hardware
collects working set signatures, and, possibly, performs
some of the lower level analysis.

6.1 VMM based configuration management

To perform working set analysis and manage configur-
able hardware of wide variety and complexity, we are
developing a co-designed virtual machine monitor
(VMM) [16] – a layer of software designed concurrently
with the hardware implementation. This software is hid-
den from all conventional software and would typically
be developed as part of the hardware design effort. The
base technology is used in the Transmeta Crusoe [20] and
the IBM Daisy/BOA projects [21] primarily to support
whole-system binary translation. In this work, we are not
interested in the binary translation aspect. In fact, for
managing configurable hardware, there needs to be no
changes made to existing binaries.

Of course, VMM software is not the only option for
managing the optimization process. Low-level operating
system software could also be used. This, however, re-
quires the addition of implementation dependent code to
the OS. One could also consider microcode in place of
VMM software. The microcode can reside in ROM, but
there must still be some hidden memory for maintaining
data structures such as the phase table. A special purpose
co-processor [22] is another good candidate for managing
the hardware configuration. It has the advantage of saving
optimization time overhead at the expense of additional
hardware.

 In the most straightforward implementation, working
set signatures are collected by hardware, and then the raw
signature data is read and analyzed by VMM software.
The working set size/difference algorithms we propose
can easily be performed in software. With the assumed
window size, VMM software is invoked very 100K in-
structions. Because in most cases the relative signature
distance will be very small, the VMM overhead will also
be small – probably a few tens of instructions. If this
overhead is still too high, a longer sampling interval can
be used, or hardware can be used to perform some of the
low level analysis. This is described in the next subsec-
tion.

A phase table lookup ostensibly requires a linear search
of signatures, but it can be made more efficient by using
techniques such as hashing based on the signature size,

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

early exits when the phase is same as the previous one,
etc. This will be a topic for future study as the VMM is
implemented.

6.2 Hardware working set analysis

Besides collecting working set signatures, hardware can
also be used for estimating working set size and/or to de-
tect working set changes, thereby reducing software over-
head. In particular, detecting working set changes in
hardware avoids invoking the VMM between each inter-
val; the VMM has to be invoked only when the working
set actually changes. Furthermore, for very simple recon-
figurations that are directly related to working set size
(e.g. cache configurations), it may not be necessary to
enter the VMM at all; hardware can determine the proper
configuration based only on the size of the working set
signature. It is important to emphasize that this hardware
is not on the critical path and hence can be implemented
with slow, low power transistors.

To measure size, there must be a hardware counter
which increments whenever a bit in the signature changes
from 0 to 1. This requires reading the signature entry be-
fore writing to it.

To measure the relative signature distance, a second
signature register is required to hold the signature for the
previous window. As defined in section 2.2, the relative
signature distance is the ratio of the exclusive-OR to the
inclusive-OR of the signatures – say X/N. X and N can be
evaluated dynamically as follows.

Initially, X=N=count of ones in the previous signature.
For each signature access, both the previous and current
signature values are read. If previous=0 and current=0,
both X and N are incremented. If previous=0 and cur-
rent=1, nothing is done; if previous=1 and current=0, then
the bit in the previous signature is cleared and X is dec-
remented; the case previous=1 and current=1 should
never happen. Then at the end of the interval, hardware
can find the relative signature distance X/N (or approxi-
mate it by shifting and comparing, when the threshold is a
power of two). The VMM can set up the hardware to trap
to VMM software on values above the threshold.

6.3 Implementation cost

The primary cost is the working set signature. This
consists of 128 bytes and can be placed off the critical
path. Using smaller signatures can further reduce the
hardware cost. Fig. 8 shows that a signature as small as 32
bytes can resolve most of the dynamic phases resolved by
a 512-byte signature. Small signatures are unable to re-
solve certain phase changes for benchmarks with large
working sets (perl and gcc) due to collisions in the signa-
ture table, which lead to smaller relative distances. Pre-
liminary experiments have shown that using smaller

thresholds is a solution. Dynamically varying thresholds
and/or signature sizes, to accommodate larger working
sets is a topic of future research.

In the simple implementation (where the VMM per-
forms the relative distance computation) the memory only
has to be written in normal operation. Furthermore, it is
not critical that every instance of an element of the work-
ing set be recorded. Only one occurrence of the element
has to be recorded and most elements appear multiple
times. Thus, if occasionally dropping an element simpli-
fies hardware (for example, retiring instructions from
different cache blocks in one cycle) little accuracy is lost.
For the determining the relative signature distance in
hardware, two copies of the signature memory are needed,
and they are both read and written during the collection
phase.

7. Related work

Previous work related to hardware reconfiguration was
discussed in Sec. 1.1. In this section, we briefly discuss
work related to working set analysis.

Sherwood et al. [24] proposed the use of program phase
information to speed up simulation. They use basic block
execution frequency information as a fingerprint for an
interval of execution. The goal then, is to find a small set
of intervals whose fingerprint matches that of the whole
program. Detailed simulation over these intervals can
give a fairly accurate estimate of the performance of the
whole program.

Adaptive mode control (AMC) caches, proposed by
Zhou et al. [25], keep track of the working set in order to
enable/disable cache lines. The AMC cache keeps a
counter for each of the tags to measure activity. If the
cache line is not accessed for a particular interval, then it

dynamic phases

0

1000

2000

3000

ap
plu

apsi

m
grid

wupwise
perl

gzip gcc

galg
el

am
m

p
sw

im
lu

ca
s

tw
olf

4096

2048

1024

512

256

Figure 8. Number of dynamic phases resolved by
signatures of sizes 256–4096 bits (32-512 bytes).
The elements sampled are 32-byte blocks except
for the 256-bit signature, where they are 128
bytes. This is done to increase the “reach” of the
signature.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

is put to sleep. However, the corresponding tag entry is
not put to sleep, thereby allowing continuous monitoring
of the working set and avoiding “just-in-case” periodic
upsizing.

HP Dynamo [26], a run time dynamic optimization sys-
tem, uses a measure of working set change to flush stale
data translations from a cache. Dynamo optimizes traces
of the program to generate fragments, which are stored in
a fragment cache. At steady state, most of the instructions
are fetched from the fragment cache. When the working
set changes, the rate of fragment formation increases. This
is used as a trigger to flush stale fragments from the
cache, making room for the new ones.

Merten et al. [27] describe a framework for dynamic
optimization, which profiles branches to detect working
set hot-spots. This is mainly done using a branch behavior
buffer, which collects frequently executed branches. The
hot-spot information can be fed into a run-time optimizer
such as Dynamo to achieve performance improvements.

8. Conclusions and future research

We introduced the concept of a working set signature, a
lossy-compressed representation of the program working
set. The signatures provide a robust mechanism for de-
tecting working set changes. Also, unlike previously re-
ported methods, the signatures can be used to identify
specific working sets. This provides an opportunity for
storing configuration information associated with recur-
ring working sets. Algorithms using complex tuning
mechanisms can benefit significantly from reuse of con-
figuration information.

When applied to an instruction cache reconfiguration
algorithm, the signatures detect most of the major work-
ing set changes. This algorithm achieves 27% fewer tun-
ings and 18% fewer reconfigurations than the Rochester
algorithm – probably the best published to date.

Working set size information can be derived from the
signature and can be used to configure the instruction
caches directly. An algorithm based on this achieves per-
formance similar to the signature-based algorithm using
74% fewer reconfigurations.

Finally, an algorithm based on reuse of configuration
information leads to 80% fewer reconfigurations com-
pared to the Rochester algorithm. These results suggest
that an algorithm based on reuse of configuration infor-
mation can potentially perform much better than other
algorithms when the tuning overhead is high.

We plan to continue the development of a VMM that
implements these algorithms. This development will in-
clude

• Algorithms for tuning multiple interacting units in
a way that optimizes performance and/or power
efficiency. The work in [12] is an important first
step in this direction.

• Study of the relationship between the signature
size, the PC bits, sample interval and thresholds. It
is likely that the VMM can adjust the PC bits and
sample interval dynamically to adapt to working
set size.

• Study of sampling schemes such as periodic sam-
pling, to reduce sampling overhead.

• Study of algorithms for building and managing the
signature table. In particular, it will be necessary to
develop fast algorithms for searching the table to
find recurring phases.

The ultimate goal is to define the overall VMM struc-
ture and to apply it to a highly configurable microarchi-
tecture.

9. Acknowledgements

We would like to gratefully acknowledge Todd
Bezenek and Timothy Heil for several valuable discus-
sions. This work is being supported by SRC grants 2000-
HJ-782 and 2001-HJ-902, NSF grants EIA-0071924 and
CCR-9900610, Intel and IBM.

10. References

[1] D. Albonesi, "Dynamic IPC/Clock Rate Optimization,"
Proc. of the 25th Intl. Sym. on Computer Architecture,
July 1998, pp. 282-292.

[2] S.-H. Yang, M. Powell, B. Falsafi, K. Roy and T. N.
Vijaykumar, "An Integrated Circuit/Architecture Ap-
proach to Reducing Leakage in Deep Submicron High-
Performance I-Caches," Proc. of the 7th Intl. Sym. on
High Performance Computer Architecture, Jan. 2001.

[3] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau and X.
Ji, “Adapting Cache Line Size to Application Behavior,”
Intl. Conf. on Supercomputing, July 1999, pp. 145-154.

[4] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu
and S. Dwarkadas, "Memory Hierarchy Reconfiguration
for Energy and Performance in General Purpose Archi-
tectures," Proc. of 33rd Intl. Sym. on Microarchitecture,
Dec. 2000, pp. 245-257.

[5] D. H. Albonesi, “Selective Cache Ways: On-demand
Cache Resource Allocation,” Proc. of 32nd Intl. Sym. on
Microarchitecture, Dec. 1999, pp. 248-259.

[6] P. Ranganathan, S. Adve and N. Jouppi, "Reconfigurable
Caches and Their Application to Media Processing,"
Proc. of the 27th Intl. Sym. on Computer Architecture,
June 2000, pp. 214-224.

[7] T. Juan, S. Sanjeevan and J. Navarro, “Dynamic History-
Length Fitting: A Third Level of Adaptivity for Branch
Prediction,” Proc. of the 25th Intl. Sym. on Computer Ar-
chitecture, July 1998, pp. 155-166.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

[8] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P.
Cook and D. Albonesi, "An Adaptive Issue Queue for
Reduced Power at High Performance," Workshop on
Power-Aware Computer Systems (PACS2000, held in
conjunction with ASPLOS-IX), Nov. 2000.

[9] D. Folegnani and A. González, "Reducing Power Con-
sumption of the Issue Logic," Workshop on Complexity-
Effective Design (WCED2000, held in conjunction with
ISCA27), June 2000.

[10] R. Bahar and S. Manne, “Power and Energy Reduction
via Pipeline Balancing,” Proc. of the 28th Intl. Sym. on
Computer Architecture, July 2001.

[11] S. Ghiasi, J. Casmira and D. Grunwald, “Using IPC
Variations in Workloads with Externally Specified Rates
to Reduce Power Consumption”, Workshop on Complex-
ity Effective Design 2000 (WCED2000, held in conjunc-
tion with ISCA27), June 2000.

[12] M. Huang, J. Reneau, S.-M. Yoo and J. Torrellas, “A
Framework for Dynamic Energy Efficiency and Tem-
perature Management,” Proc. of the 33rd Intl. Sym. on
Microarchitecture, Dec. 2000, pp. 202-213.

[13] D. Brooks and M. Martonosi, "Adaptive Thermal Man-
agement for High-Performance Microprocessors," Work-
shop on Complexity Effective Design 2000 (WCED2000,
held in conjunction with ISCA27), June 2000.

[14] Timothy Sherwood and Brad Calder, “Time Varying Be-
havior of Programs,” UC San Diego Technical Report
UCSD-CS99-630, August 1999.

[15] Bingxiong Xu and D. H. Albonesi, “Runtime Reconfigu-
ration Techniques for Efficient General-Purpose Compu-
tation,” IEEE Design and Test of Computers, Vol. 17, Is-
sue 1, Jan. – Mar. 2000, pp. 42-52.

[16] A. S. Dhodapkar and J. E. Smith, “Saving and Restoring
Contexts via Co-Designed Virtual Machines,” Workshop
on Complexity-Effective Design (held in conjunction with
ISCA28), June 2001.

[17] P. Denning, “Working Sets Past and Present,” IEEE
Transactions on Software Engineering, Vol. SE-6, No. 1,
Jan. 1980.

[18] A. Batson and W. Madison, “Measurements of major lo-
cality phases in symbolic reference strings,” Proc. of the
Intl. Sym. Computer Performance and Modeling, Meas-
urement and Evaluation, ACM SIDMETRICS and IFIP
WG7.3, Mar. 1976, pp. 75-84.

[19] D. Burger and T. Austin, “The SimpleScalar Tool Set,
Version 2.0,” University of Wisconsin-Madison Com-
puter Sciences Department Technical Report #1342, June
1997.

[20] A. Klaiber, "The Technology Behind Crusoe Processors,"
Transmeta Technical Brief, http://www.transmeta.com/
dev, Jan. 2000.

[21] K. Ebcioglu and E. Altman, "DAISY: Dynamic Compila-
tion for 100% Architecture Compatibility, Proc. of the
24th Intl. Sym. on Computer Architecture, June 1997, pp.
26-37.

[22] Y. Chou and J. Shen, “Instruction Path Coprocessors,”
Proc. of the 27th Intl. Sym. on Computer architecture,
2000, pp. 270-281.

[23] Rajeev Balasubramonian, Sandhya Dwarkadas and David
Albonesi, personal correspondence.

[24] T. Sherwood, E. Perelman, and B. Calder, “Basic Block
Distribution Analysis to Find Periodic Behaviour and
Simulation,” Proc. of the Intl. Conf. on Parallel Architec-
tures and Compilation Techniques, Sep. 2001, pp. 3-14.

[25] H. Zhou, M. Toburen, E. Rotenberg, and T. Conte,
“Adaptive Mode Control: A Static-Power-Efficient
Cache Design,” Proc. of the Intl. Conf. on Parallel Archi-
tectures and Compilation Techniques, Sep. 2001, pp. 61-
72.

[26] V. Bala, E. Duesterwald, S. Banerjia, "Dynamo: A
Transparent Dynamic Optimization System," Proc. of the
Conf. on Prog. Language Design and Implementation,
ACM SIGPLAN, 2000, pp. 1-12.

[27] M. Merten, A. Trick, R. Barnes, E. Nystrom, C. George,
J. Gyllenhaal, and W.-M. Hwu, "An Architectural
Framework for Runtime Optimization," IEEE Transac-
tions on Computers, June 2001, pp. 567-589.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

