
Appears in the 31st International Symposium on Computer Architecture

A First-Order Superscalar Processor Model

Tejas S. Karkhanis James E. Smith
Univ. of Wisconsin – Madison, Dept. of Electrical and Computer Engineering

{karkhani,jes}@ece.wisc.edu

Abstract
A proposed performance model for superscalar proc-

essors consists of 1) a component that models the rela-
tionship between instructions issued per cycle and the size
of the instruction window under ideal conditions, and 2)
methods for calculating transient performance penalties
due to branch mispredictions, instruction cache misses,
and data cache misses. Using trace-derived data depend-
ence information, data and instruction cache miss rates,
and branch miss-prediction rates as inputs, the model can
arrive at performance estimates for a typical superscalar
processor that are within 5.8% of detailed simulation on
average and within 13% in the worst case. The model
also provides insights into the workings of superscalar
processors and long-term microarchitecture trends such as
pipeline depths and issue widths.

1. Introduction
Superscalar processor performance is very often

evaluated via detailed simulation. Although accurate, this
method is also time-consuming, both when creating the
simulation model and when running the simulations. Fur-
thermore, although a simulation model can generate a lot
of data, it often falls short in providing insight regarding
what is going on inside the processor.

An alternative to simulation is analytical modeling.
Analytical models have clear speed advantages, but also,
if well-constructed, they can provide valuable insight. To
date, however, superscalar processor models have been
used rather infrequently, presumably because the com-
plexity of superscalar processors has limited the accuracy
of analytical models. In this paper, we propose and
evaluate an approach to superscalar processor modeling
that is intuitive, provides insight, and is reasonably accu-
rate. The proposed model consists of an analytical core
that incorporates cache and branch predictor statistics
gathered from functional-level trace driven simulation.

1.1 Model Approach
In the work presented here, we develop a first-order

model that provides good accuracy and is capable of pro-
viding the insight we desire. Then, future continuation
research can target additional features and refinements to
fill out a complete and more accurate superscalar model.

The first-order superscalar processor that we model has a
single, homogenous instruction issue window. Instruc-
tions issue out-of-order in oldest-first priority. The reor-
der buffer is a separate structure (not combined with the
issue window as in an RUU[1]). The pipeline width, issue
width, and retire width are the same and are parameter-
ized. The front-end pipeline depth can also be adjusted.
Caches and branch predictors are included in the model,
but features like prefetching are not. There is an un-
bounded number of functional units of each type.

time

IPC

branch
mispredicts

i-cache
miss long d-cache

miss

Figure 1. Useful instructions issued per cycle (IPC) as a
function of time.

The basis for the model development to follow is il-
lustrated in Figure 1. The figure shows a graph of per-
formance, measured in useful instructions issued per cy-
cle (IPC), as a function of time. A superscalar processor
sustains a constant background performance level, punc-
tuated by transients where performance falls below the
background level. These transient events are caused by
branch mispredictions, instruction cache misses, and data
cache misses – referred to collectively as miss-events.
Overall performance is calculated by first determining the
sustained performance under ideal conditions (i.e. with no
miss-events) and then subtracting out performance losses
caused by the miss-events.

To provide initial support for this basic approach, we
simulated a baseline processor that has five front-end
pipeline stages, an issue width of four, a window size of
48 entries, and a reorder buffer with 128 entries. The in-
struction and data caches are 4K 4-way set associative
with 128 bytes per cache line; a unified 512K L2 cache is
4-way set-associative with 128 byte lines, and the branch
predictor is 8K gShare. We ran the following five sets of
simulations: 1) everything ideal: i.e. ideal caches and
ideal branch predictor, 2) “real” caches and branch pre-
dictor, 3) everything ideal except for the branch predictor,
4) everything ideal except for instruction cache, 5) every-
thing ideal except for data cache. We next evaluated net
performance losses for each of the three types of miss-

 1

Appears in the 31st International Symposium on Computer Architecture

events in isolation. That is, we computed total clock cy-
cles for simulation 3 minus total clock cycles for simula-
tion 1 to arrive at the time penalty due to branch mispre-
dictions. Similarly, we determined the time penalties for
the cache misses using simulations 1, 4 and 5.

 The three independently-derived performance penal-
ties were then added to the ideal time. The resulting per-
formance is compared with the fully “realistic” simulation
2. As a second comparison, during simulation 2 we
counted the fractions of branch mispredictions and in-
struction cache misses that overlap a data cache miss and
compensated for them by ignoring the penalty for
branches and i-cache misses that overlap a d-cache miss.

The performance results, converted to IPC, are given
in Figure 2. For each of the SPECint benchmarks, the
three bars are 1) combined: the “realistic” performance,
2) independent: the performance determined by adding
each of the independently-determined miss-event penal-
ties to the ideal performance, and 3) overlaps compen-
sated: the same as 2), but with compensation for overlaps
with data cache misses. The accuracy of the estimation
method is quite good, across the board. The fully inde-
pendent approximation is quite good (middle bar). The
average error is 5%, and the highest errors are 16%
(twolf) and 10% (gzip). Overlap compensation improves
accuracy only slightly; the average error is 4%, and the
highest error is 10% (gzip).

0

1

2

3

4

bz
ip

cra
fty eo

n
ga

p
gc

c
gzip mcf

pa
rse

r
perl tw

olf
vo

rte
x

vp
r

IP
C

Simulation IPC
Model IPC
Model Overlaps Compensated IPC

Figure 2: Demonstration of relative independence of miss-
events with respect to performance.

The independence of miss-event penalties provides a
powerful lever for constructing a superscalar model be-
cause it allows us to reason about, and model, each cate-
gory of miss-event more-or-less in isolation. Note, how-
ever, that the individual miss-events within the same cate-
gory are not necessarily independent, implying that we
may have to account for “bursts” of miss-events of a
given type, e.g. when a burst of branch mispredictions or
cache misses cluster together closely in time.

In the remainder of the paper we develop a model
that contains the following components:

1) A method for determining the ideal, sustainable
performance (IPC) in terms of implementation-

independent dynamic instruction stream statistics and
microarchitecture parameters.

2) Methods for estimating the penalties for branch
predictions, instruction cache misses, and data cache
misses, in terms of the microarchitecture parameters.

3) A method for taking miss-event rates and combin-
ing them with the information from 1) and 2) to arrive at
overall performance estimates.

Along the way, we use the model to derive insights
into the operation of superscalar processors. Finally,
given the complete model, we demonstrate its usefulness
for evaluating important microarchitecture trends.

1.2 Related Work
Emma and Davidson [2], present an early theoretical

method for analyzing in-order pipelines. They character-
ize the effects of branch and data dependences on proces-
sor performance. More recently, Hartstein and Puzak [3]
and Sprangle and Carmean [4], present analytical models
for determining the optimal front-end pipeline depth for
both in-order and out-of-order superscalar processors. In
[3] two important parameters of the analytical model are
measured via detailed simulation: degree of superscalar
processing and the fraction of stall cycles per pipeline
stage. In [4] the analytical model accounts for relative
performance loss due to microarchitecture “loops”, such
as a branch misprediction loop. A detailed simulation is
performed for the baseline case, and then the effect of
increasing the processor front-end is simulated. From
these two simulations the performance degradation for
every cycle increase in the branch misprediction loop is
computed and becomes a parameter in the model. In both
models [3] [4] detailed superscalar simulations are re-
quired for model parameters. Our model avoids detailed
superscalar simulations and relies on instruction trace
analysis for model parameters.

Noonburg and Shen [5] develop a concise model
based on probability matrices. Their approach is to first
limit the parallelism because of control flow, then because
of inefficient fetch, and then because of data dependen-
cies. Our approach is to first consider ideal IPC using
pure data dependences and adjust for performance losses
due to the miss-events. A limitation of the model [5] is
that it does not include the effect of the re-order buffer
and data cache misses.

Michaud et al.[6, 7], develop an analytical model for
expressing Instruction Level Parallelism (ILP) as a func-
tion of the window size in superscalar processors. Their
goal is to gain insight in the relationship between issue
width and fetch width. Their expression for ILP versus
issue window size is similar to one part of our analytical
model. Our model covers the whole processor, not just
the front-end; and it includes models for branch mispre-
diction and data cache miss penalties.

 2

Appears in the 31st International Symposium on Computer Architecture

Ifetch B I

∆Ι

stop

∆P

start

empty

&stop

start

mispredict Sizepipe

Icache miss
win_size

rob_size

D

Long
Dcache miss

stop

∆D
start

IW
characteristic

i i i i i

i

<i_

Figure 3. Schematic drawing of proposed superscalar model. Solid lines indicate instruction flow; dashed lines indicate “throttles”
of instruction flow due to miss-events.

Statistical simulation methods [8-11] collect many of
the same program statistics as used by our model, and use
them to generate a synthetic trace that drives a simple
superscalar simulator. In effect, our model performs sta-
tistical simulation, without the simulation, and overall
accuracy is similar.

Sorin et al. [12] present a model for shared memory
multiprocessors based on mean-value analysis. They
“black-box” the processor, L1, and L2 caches and model
the memory traffic beyond the L2 cache. Our model in-
cludes the superscalar processor core. Fields et al. [13]
also assume a blackbox viewpoint of the processor and
evaluate correlations observed among simulation results.
They assign a cost to interactions among performance
degrading events, and then use the cost to find the pri-
mary bottleneck. We skip the simulation step and instead
analyze instruction traces to get statistics for the supersca-
lar processor core model.

Ofelt [14] proposes a profile-based performance pre-
diction technique for out-of-order superscalar processors
that goes through a lightweight instrumentation phase
followed by analysis phase. Their technique accounts for
instruction cache and branch misprediction effects, but
not data cache effects. Our model accounts for instruc-
tion cache, branch misprediction, and data cache effects.

2. Top-level Model
For reasoning about superscalar processor operation,

we use a schematic representation as shown in Figure 3.
The Ifetch unit is capable of providing a never-ending
supply of instructions. Instructions pass through the
front-end pipeline, experiencing a ∆P delay, before being
dispatched into both the issue window and the re-order
buffer. The fetch width, pipeline width, dispatch width,
retire width, and maximum issue width are all character-
ized with parameter i. Instructions issue from the window
at a rate determined by the IW characteristic, i.e. a func-

tion that determines the number of instructions that Issue
in a clock cycle, given the number of instructions in the
Window.

At the time instructions are fetched, there is a prob-
ability, B, that there is a branch misprediction. If this
happens, the fetching of useful instructions is stopped.
Fetching of useful instructions resumes only when the
issue window becomes empty of useful instructions. Also
at the time instructions are fetched, there is a probability,
I, that there is an instruction cache miss. If there is a miss,
instruction fetching is stopped and resumes only after the
instructions can be fetched from the L2 cache, or mem-
ory; this is modeled by delay ∆I. When there is a long
data cache miss (L2 miss) the retirement of instructions
from the reorder buffer is stopped. After a miss delay,
∆D, data returns from memory, and retirement is re-
started. Short data cache misses (L1 misses) are modeled
as if they are handled by long latency functional units.

The model implies that the penalties from branch
mispredictions and instruction cache misses will serialize.
However, long data cache misses may overlap with
branch mispredictions, with instruction cache misses, and
with each other.

The expression for overall performance is given in
equation(1), where CPIsteadystate is the background sus-
tainable performance when there are no miss-events.
CPIbrmisp, CPIicachemiss, and CPIdcachemiss are the
additional CPI due to branch misprediction events, in-
struction cache miss-events and data cache miss-events,
respectively.

steadystate brmisp icachemiss dcachemissCPI CPI CPI CPI CPI= + + + (1)
Note that here we give performance in CPI – in other

places we convert to IPC – throughout our discussion, we
use either of the two, depending on which is more appro-
priate at the time it is being used.

 3

Appears in the 31st International Symposium on Computer Architecture

3. IW Characteristic
The IW characteristic expresses the relationship be-

tween the number of instructions in the issue window and
the number of instructions that will issue (on average).
The IW characteristic is important both for determining
the ideal, sustained performance level and for estimating
the penalties of miss-events.

In one of the very first studies on instruction level
parallelism [15] Riseman and Foster observed (in today’s
terms) that the number of instructions that can issue per
cycle is roughly the square root of the number of instruc-
tions in the window. More recently, Michaud, Seznec and
Jourdan [7] similarly observe that the IW characteristic
follows a Power-Law relationship and provide an insight-
ful analysis of the phenomenon and its relationship to
instruction delivery. They show that the slope of the
Power-Law line on a log-log scale is approximately 0.5
for their benchmarks, indicating a square-root relation-
ship.

1

2

3

4

5

2 3 4 5 6

log2(W)

lo
g2

(I)

bzip

crafty

eon

gap

gcc

gzip

mcf

parser

perl

tw olf

vortex

vpr

Figure 4: Power-Law relationship between the issue win-
dow size and the issue width.

Starting with dependence statistics taken from in-
struction traces (as in [8, 10]]), the points on the IW curve
for the unlimited issue case can be characterized by a set
of relatively complex simultaneous, non-linear equations.
A detailed discussion of the analytical derivation of the
IW characteristic is beyond our scope. A practical alter-
native of similar complexity is to perform idealized (no
miss-events) trace-driven simulations with an unlimited
number of unit-latency functional units and unbounded
issue width. The only thing that is limited is the issue
window size. IW curves generated in this way are given
in Figure 4.

These initial IW curves are essentially implementa-
tion independent; they depend only on the basic register-
based data dependence properties of the benchmark. For a
specific implementation with limited issue width and non-
unit latencies, we generate the IW characteristics in the

following way. First, because they have a Power-Law
relationship, we fit the IW curves to the line I = αWβ The
values of α and β for three illustrative benchmarks are
given in Table 1. These benchmarks are at the two ex-
tremes (vortex and vpr) and in the middle (gzip) of the
curves shown in Figure 4. Figure 5 compares the IW
curves for these benchmarks as given in Figure 4 with the
computed linear fit.

Table 1: Power-Law parameters for unit-latency case.

Bmk. α β Avg.
Lat.

gzip 1.3 0.5 1.5
vortex 1.2 0.7 1.6

vpr 1.7 0.3 2.2

log2(I) = 0.72log2(W) + 0.25

log2(I) = 0.50log2(W) + 0.37

log2(I) = 0.30log2(W) + 0.74

0

1

2

3

4

5

2 3 4 5

log2(W)

lo
g2

(I)

6

gzip vortex vpr
Linear (vortex) Linear (gzip) Linear (vpr)

Figure 5: Linear IW curve fit for illustrative benchmarks.

To account for non-unit latencies we apply Little’s
Law. If the average issue rate is I1 with a window size of
W and unit functional unit latencies, then the average
time spent in the window by a given instruction is
T=W/I1. Or, I1=W/T. If the average instruction latency
is L, then all dependence chains, weighted by latencies,
are approximately L times longer than for the unit latency
case. This means that the time spent in the window for the
average instruction will be L times longer than for unit
latency, so the issue rate with average latency L, can be
easily derived as: IL = I1/L. That is, for a given number of
instructions in the window, the average issue rate is the
unit latency issue rate divided by the average latency. The
last column of Table 1 gives the average instruction la-
tencies for the three illustrative benchmarks.

When the maximum issue width is limited, as it
would be in a superscalar processor, then the IW curves
change somewhat [16]. For example, by using simulation
with limited issue width, we arrive at the IW characteris-
tic in Figure 6. The limited issue curves follow the ideal
curves until the window size equals the maximum issue
width, and then they asymptotically approach the issue
width limit; that is, instruction issue saturates at the
maximum rate.

We approximate this behavior by assuming unlimited
issue width behavior (following the non-unit latency

 4

Appears in the 31st International Symposium on Computer Architecture

power-law curve as just derived) until the issue rate
reaches the maximum issue limit. Then, as in Jouppi
[16], we assume issue rate saturates at the maximum issue
width. As we will see, for our first-order superscalar
model, this approximation is adequate. For most bench-
marks, we use a window size that is large enough so that
the issue rate in absence of miss-events is in the saturation
part of the curve.

gcc

0
1
2
3
4
5

0 1 2 3 4 5 6 7

log2(W)

lo
g2

(I)

unlimited

iss-w idth=4

iss-w idth=2

iss-w idth=8

Figure 6: IW characteristic after limiting the issue width.

4. Modeling of Miss-Events
The performance penalties for miss-events are mod-

eled by first determining the penalty for each type of
miss-event, counting the numbers miss-events of each
type, then multiplying. The miss-event counts are gener-
ated via simple trace-driven simulations. The methods for
calculating penalties are described in following subsec-
tions.

4.1 Branch Misprediction Penalty
To model the penalties for the miss-events, we rely

on the schematic in Figure 3 and the IW characteristic.
First consider a single branch misprediction in isolation.
The transient in the IPC plot (recall Figure 1) is shown in
Figure 7. Initially, the processor is issuing instructions at
the steady-state IPC. Then a mispredicted branch causes
fetching of useful instructions to stop. Eventually, the
mispredicted branch enters the instruction issue window.
At this point, no more useful instructions enter the win-
dow until the mispredicted branch is resolved. If the win-
dow issues instructions in oldest-first priority, none of the
miss-speculated instructions will inhibit any of the useful
instructions from issuing. Consequently, only useful in-
structions need to be considered.

The IW characteristic allows the determination of the
number of issued instructions each cycle as the window is
emptied of useful instructions. The first cycle the steady
state number of instructions, i, will issue. Then, the win-
dow will have W-i instructions (W is the number of in-
structions in the issue window), so fewer will issue on the
following cycle, etc. The IPC as the window drains is
approximately a straight line (as derived in [6, 7]), and
illustrated in Figure 7. Eventually, the mispredicted
branch is resolved – we assume that the mispredicted
branch is the oldest instruction in the window at the time

it is resolved. To validate this assumption, we used de-
tailed simulations which showed that there are only 1.3
useful instructions left in the window when a mispre-
dicted branch issues (averaged over all benchmarks); gap
is the only outlier with 8 useful instructions still left in the
window on average.

After branch resolution, the pipeline is flushed and
fetching begins from the correct path. The correct path
instructions take front-end pipeline depth cycles, ∆P, to
reach the window. Then the window begins filling and
instruction issue ramps up, again following points on the
IW curve, until it eventually reaches the steady state IPC
level. The ramp-up curve rises quickly at first, then more
slowly as instructions are issued while the window is fill-
ing (like filling a “leaky bucket” [7]).

steady state

flushflush
pipeline re-fill pipeline

misprediction
detected

misspeculated
instructions

back up to
steady state

issue ramps

steady state

mispredicted
branch enters

window

instructions
re-enter
window

Figure 7: Branch misprediction transient.
Equation(2) expresses the penalty for an isolated branch
misprediction, isolated_brmisp_penalty; win_drain is the
penalty for draining the window, ∆P is the depth of the
front-end pipeline and ramp_up is the penalty for ramp-
ing up to the steady-state IPC.

_ _ _

_

isolated brmisp penalty win drain
P

ramp up

=
+∆
+

 (2)

0
1
2
3
4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

clock cycle

in
st

ru
ct

io
ns

is

su
ed

drain: 2.1 cycles
front end pipeline: 4.9 cycles

ramp up: 2.7 cycles

Figure 8: Transient curve for an isolated branch mispredic-
tion α=1, β =0.5.

Using Excel, we generated a curve for the branch
misprediction transient for a square-law IW characteristic
[7](α=1, β =0.5), the average for SpecINT2000 bench-
marks once non-unit latencies are accounted for, and a
front-end pipeline of five stages (see Figure 8). From this
curve, we can estimate the performance losses during

 5

Appears in the 31st International Symposium on Computer Architecture

drain, pipeline fill, and ramp-up. If we assume that the
branch issues at time 6, at which point there are about 1.4
instructions in the window, then the aggregate drain pen-
alty is 2.1 cycles, found by subtracting the cycles to issue
the instructions at the steady state rate from the cycles
required for issuing the same instructions while draining.
Similarly, the ramp up penalty is computed as 2.7 cycles,
and the pipeline fill delay is 4.9 cycles, leading to a total
penalty of 9.7 cycles.

This method sets an upper bound penalty for each
branch misprediction because it assumes a misprediction
occurs in isolation. For bursts of branch mispredictions,
the drain and ramp-up penalties “bracket” a series of
pipeline fills, each of which delivers a small number of
useful instructions. In the extreme case of n consecutive
branch mispredictions, the penalty per misprediction,
brmisp_penalty, is given by equation(3).

_ __ win drain ramp upbrmisp penalty P
n
+

= ∆ + (3)

Hence, depending on the amount of clustering of
branch mispredictions, for the baseline processor we
would expect the penalty to be between 5 and 10 cycles.
We observe that the branch misprediction penalty can be
significantly greater than the (often assumed) front-end
pipeline depth. For the example five-stage front end, the
total penalty can be twice the front-end pipeline depth.

0.0
5.0

10.0
15.0
20.0

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

cy
cl

es

5 front-end stages 9 front-end stages

Figure 9: Penalty per branch misprediction for front-end
pipelines with 5 and 9 stages.

To evaluate this part of the model, we simulated the
baseline processor with both five and nine front-end
stages, using ideal instruction and data caches with a real-
istic branch predictor (8KB gShare). In a second set of
simulations, ideal branch predictors are used. Then using
the results of these two sets of simulations, the average
penalty per branch misprediction is computed. The re-
sults are in Figure 9. The y-axis is the penalty in terms of
cycles per branch misprediction. For the five stage front-
end pipeline, the penalty is typically between 6.4 cycles
and 10 cycles, (14.7 cycles for vpr). These numbers are
greater than the front-end pipeline depth and within the
range predicted by the model. Benchmark vpr is an out-
lier because it is the only benchmark with inherently low
ideal ILP (indicated by a β of 0.3 in Table 1) and a rela-
tively high average functional unit latency (2.2 cycles).
This combination significantly shifts vpr away from the

assumed (α=1, β=0.5) square-law curve, making its
win_drain and ramp_up longer than those of rest of the
benchmarks. Similar to the five stage front-end, with a
nine stage front-end pipeline, the penalty for a branch
misprediction is greater than nine – as much as 13.8 cy-
cles for gcc and gzip, (18.3 cycles for vpr).

4.2 Instruction Cache Misses
The instruction cache miss transient is illustrated in

Figure 10. It has the same basic shape as the branch mis-
prediction transient given above, but some of the underly-
ing phenomena are different. Initially, the processor is-
sues instructions at the steady-state IPC. At the point a
miss occurs, there are instructions in the instruction issue
window as well as the front-end pipeline. The instruc-
tions buffered in the front-end pipeline keep the window
filled for a while, but eventually the window drains and
the issue-rate drops to zero (following the same curve as
for branch mispredictions). After a miss delay, ∆I, in-
structions are delivered from the L2 cache (or main mem-
ory) and begin entering the front-end pipeline. After
passing through the pipeline, they eventually reach the
instruction issue window. Then, the instruction issue rate
ramps up following the IW characteristic.

steady state

miss delay

window
drains

Instructions
re-enter
window

cache miss
occurs

Instructions fill
decode pipe

instructions
buffered in

decode pipe

Figure 10: Instruction Cache Miss transient.

Equation(4) gives the penalty, in terms of cycles, for an
isolated instruction cache miss.

_ _
_

_

isolated icache misspenalty I
ramp up
win drain

= ∆
+
−

 (4)

Consequently, we can make the initial observation: the
instruction cache miss penalty is independent of the front-
end pipeline length. The front-end pipeline can be made
arbitrarily deep without affecting the instruction cache
miss penalty. The equation also indicates that the
ramp_up and win_drain offset each other (in contrast to
the case for branch mispredictions where they add). Re-
ferring back to Figure 8 we note that the drain penalty and
ramp-up penalty are about the same so their effects can-
cel. Consequently, we can make a second observation: the
total instruction cache miss penalty is approximately
equal to the L2 cache (or main memory) latency. If there
are n consecutive instruction cache misses in a burst, then

 6

Appears in the 31st International Symposium on Computer Architecture

the equation for the penalty per miss, icache_misspenalty,
is slightly modified and is given in equation(5).

_ __ ramp up win drainicache misspenalty I
n
−

= ∆ + (5)

Because win_drain and ramp_up offset each other (and
this number is further diminished when divided by n)
equation(5) leads to the observation that an instruction
cache miss yields the same penalty regardless of whether
it is isolated or is part of a burst of misses.

To confirm the above observations, we simulated the
baseline processor as before, with five and nine front-end
pipeline stages. The branch predictors and data caches are
ideal, but a non-ideal 4K 4-way set associative instruction
cache with 128 byte cache lines is modeled. The instruc-
tion cache miss delay (L2 access delay) is set at 8 cycles
for both the five and nine stage front-end processors. The
same processors with ideal instruction caches are also
simulated, and the average penalty per instruction cache
miss is computed. The observations derived from the
analytical model are supported by the simulation results
of Figure 11. In the figure, the y-axis is the penalty (in
cycles) for every instruction cache miss. We see that the
penalty is approximately 8 cycles (equal to the L2 miss
delay) and is independent of the front-end pipeline depth.

0.0
4.0

8.0

cra
fty eo

n
ga

p

pa
rse

r
pe

rl
tw

olf
vo

rte
x

cy
cl

es

5 front-end stages 9 front-end stages

Figure 11: Simulated results show that the icache miss pen-
alty is independent of the front-end pipeline depth. Bench-
marks not shown had a negligible number of misses.

4.3 Data Cache Misses
Data cache misses are more complex than instruction

cache misses and branch mispredictions, primarily be-
cause they can overlap both with themselves and with the
other miss-events. Before proceeding further we establish
some terminology: rob_size is defined as the number of
ROB slots, win_size is the number of issue window slots,
and dispatch_width is the maximum number of instruc-
tions that can be dispatched into the issue window (and
ROB). We begin by dividing data cache misses into two
categories: short misses – the ones that have latency sig-
nificantly less than the maximum ROB fill time, i.e.
rob_size/dispatch_width, and long misses -- those whose
penalty is significantly greater than the maximum ROB
fill time. For the first-order superscalar processor model,
L1 cache misses that hit in the L2 cache are short misses,

and those that miss in the L2 cache are long misses.
Short misses are modeled as if they are serviced by long
latency functional units. Therefore, short misses are
modeled by their effect on the IW characteristic (and is
reflected in the third column of Table 1). This leaves
long misses for additional modeling.

If we analyze isolated long data cache misses, there
are two events that can potentially trigger performance
losses: 1) the window fills with instructions that are de-
pendent (directly or indirectly) on the load that misses,
causing instruction issue to stop or 2) the ROB fills be-
cause the miss load instruction cannot retire, dispatch
stalls, and eventually issue stops.

To determine the relative importance of these two
events, we performed the following experiment. We
simulated the baseline 4-wide processor with everything
ideal except for a 128 KB data cache. The penalty for a
data cache miss is set to 200 cycles. In order to study
data cache misses in isolation, whenever one miss is al-
ready in progress, other data cache misses (if any) are
changed to hits. After 200 cycles, instruction issue will
certainly be stalled, for whatever the cause, and the in-
structions remaining in the window at that time are those
that are dependent (directly or indirectly) on the load that
missed. The simulations showed that the ROB fills and
blocks dispatch in virtually every case. After 200 cycles,
the window is less than half full (except for vpr where 34
window slots are occupied on average). This indicates
that blockage due to a full window does not occur to any
significant degree when there is a long data cache miss.

Because the ROB filling and causing stall of dispatch
is the dominant cause of performance loss when there is a
long data cache miss, we develop our model accordingly.

Figure 12: Transient of an isolated data cache miss.
Consider the transient for an isolated long data cache

miss given in Figure 12. Initially, the processor is issuing
at the steady-state IPC, and a long data cache miss occurs.
The issuing of independent instructions continues, and the
re-order buffer eventually fills. At that point, dispatch
will stall, and when all instructions independent of the
load have issued, issue will stall. After miss delay cycles,
∆D, from the time the load miss is detected, the data re-
turns from memory, the missed load commits, and the
independent instructions that have finished execution also

 7

Appears in the 31st International Symposium on Computer Architecture

commit in program-order. As they commit, room in the
ROB opens up, dispatch resumes, and instruction issue
ramps up following the IW characteristic.

The expression in equation(6) is the data cache miss
penalty, in terms of cycles, for an isolated data cache miss
as just described. The parameter rob_fill is the number of
cycles it takes to fill the re-order buffer after the missed
load is issued.

_ _ _
_

_

isolated dcache misspenalty D rob fill
win drain
ramp up

= ∆ −
−
+

 (6)

Because the ramp_up and win_drain offset each
other, the penalty is approximately ∆D – rob_fill. If the
load instruction is the oldest (or nearly so) at the time it
issues, then the ROB will already be full (or nearly so), so
rob_fill is approximately zero, and the penalty will be
approximately ∆D. At the other extreme, if the load that
misses happens to be the newest instruction in the win-
dow, then it will take approximately
rob_size/dispatch_width cycles to fill the ROB in behind
the load, so the penalty will be approximately ∆D -
(rob_size / dispatch_width).

The data cache simulation experiment showed that,
on average, when a load misses there are 9 instructions
ahead of it in the ROB. The outliers are gap with 27 in-
structions ahead of the missed load, and twolf and vpr
with 19 instructions each. Hence, the load that misses is
relatively old at the time it issues (at least as a first-order
approximation), so we model the data cache miss penalty
as ∆D.

The above analysis is for an isolated long data cache
miss. To handle overlapped long data cache misses, fur-
ther analysis is necessary. The overlap case occurs when
another data cache miss happens within rob_size number
of instructions of the first load miss. If this is the case,
and the loads are independent (as is most often the case),
then their miss penalties will overlap. Figure 13 illus-
trates the phenomena for two such load misses. Initially
the processor is issuing at the sustained IPC. The first
load, ld1, misses in the data cache. After the load miss,
instruction issuing continues until the ROB fills and then
issue stops. In the case we are considering, the second
load that misses, ld2, is one of the instructions that issues
before issue stops. Then miss delay, ∆D cycles, after the
first load misses, its data returns. Instruction ld1 and in-
structions between the ld1 and ld2 retire. As they do so,
room opens up in the ROB, and a number of instructions
equivalent to the number of instructions between the ld1
and ld2 are dispatched in the window and the re-order
buffer. These instructions issue and then wait in the re-
order buffer until the data for the second load miss, ld2,
returns. Then, ld2 retires, as do other instructions in the
ROB, and issue ramps back up. Assuming the second

load miss issues y cycles after the first one, equation(7) is
the expression for penalty per load miss.

ld1 miss
ld2 miss

y
miss delay y

ld1 data back

ld2 data
back

steady state
IPC

miss delay
Figure 13: Two loads that experience a long miss are inde-
pendent of each other and in ROB distance of each other.

_
_ _

_
2

_ _
2

y D rob fill
win drain y ramp up

dcache misspenalty

isolated dcache misspenalty

+∆ −⎛ ⎞
⎜ ⎟− − +⎝ ⎠=

=

 (7)

Observe that in the expression in equation(7) the y
values all cancel, so the combined penalty is half the pen-
alty for an isolated miss and is independent of the dis-
tance between the two loads that miss; the only thing that
matters is whether they occur within a rob_size number of
instructions.

In general, if NLDM is the number of long data cache
misses and fLDM(i) is the probability that misses will occur
in groups of i then equation(8) gives the penalty for a
long data cache miss, on average.

()
1

_ _ _
LDMN

LDM

i

dcache misspenalty isolated dcache misspenalty

f i
i=

=

⎛ ⎞
× ⎜ ⎟

⎝ ⎠
∑

 (8)

The distribution fLDM(i) is collected as a by-product of the
instruction trace analysis. We measure the distances be-
tween long data cache misses. Then, given a specific
rob_size and NLDM , the distribution fLDM(i) can be deter-
mined. Figure 14 has the penalty for every long data
cache miss measured from detailed simulation and the
one we computed using the method just described. The
model is reasonably close, although not as close as other
parts of the model. The handling of data cache misses is
one of the more difficult parts of the model and relies on a
number of simplifying assumptions.

0

50

100

150

200

bz
ip

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cy
cl

es

Simulation
Model

Figure 14: Comparison of penalty per long data cache miss
from simulation and model.

 8

Appears in the 31st International Symposium on Computer Architecture

5. Evaluation of the First-Order Model
We have now completed all the components of the

first-order superscalar model. To demonstrate its accu-
racy, we evaluate the components of the model and over-
all performance as follows:

1) Using IW characteristic, average functional unit
latency and Little’s Law we compute the steady-state IPC
(as explained in Section 3).

2) Model the branch misprediction penalty as the av-
erage of 5 and 10 cycles (i.e. 7.5 cycles) as in Section 4.1.

3) Model the L1 instruction cache miss penalty as 8
cycles as described in Section 4.2; and L2 miss penalty as
200 cycles.

4) Model the long data cache miss penalty as calcu-
lated in equation(8) taking isolated_dcache_misspenalty
as 200 cycles.

5) Use trace-driven simulations to arrive at the num-
bers of branch mispredictions, instruction cache misses,
data cache misses, and distributions of the bursts of long
data cache misses that occur within rob_size instructions
of a previous long data cache miss.

6) Compute ideal CPI and CPI loss due each type of
miss event. Then the CPIs are added as in equation(1) to
get the overall CPI. We do not compensate for branch
mispredictions and i-cache misses that are overlapped by
a d-cache miss. As shown by our initial simulation ex-
periment, these overlaps seem to be only a second-order
effect, and will be accounted for in future research.

0

1
2

3
4

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

IP
C

Simulation Model

Figure 15: Comparison of performance predicted by our
first-order model and from simulation.

Figure 15 gives performance as estimated by the su-
perscalar model compared with detailed, clock cycle level
simulations. There is very close agreement between the
simulation and the model; the average CPI error is 5.8%.
Mcf, gzip, and twolf are the benchmarks with high errors
of 13%, 12% and 12%, respectively.

Because delays independently add, we can build a
“stack model” of performance in Figure 16. We observe
that all three of the miss-events are important, although
their relative importance varies across the benchmarks.
We observe that for mcf and twolf, performance loss be-
cause of long data cache misses accounts for 70% and
60%, respectively, of their overall CPI, and these are the
two benchmarks with high branch mispredictions. As
mentioned earlier we have not taken into account the

overlaps of other miss-events with the long data cache
misses. Looking at gzip, most of the performance loss is
due to branch mispredictions. The penalty we use for the
first-order model is 7.5 cycles for every branch mispre-
diction, but the penalty measured through simulation is 10
cycles. This indicates the need for greater accuracy in
modeling these particular miss-events; i.e. the method of
taking a simple average can be improved upon.

0

0.5

1

1.5

2

2.5

bz
ip

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

C
P

I

Branch mispredictions
L2 Dcache misses
L2 Icache misses
L1 Icache misses
Ideal

Figure 16: "Stack model" of performance showing the CPI
contributions of different miss-events.

6. Application: Trends in Microarchitecture
In this section we demonstrate usefulness of the su-

perscalar model by briefly considering trends in supersca-
lar microarchitecture. In particular, we look at increasing
pipeline depth and increasing issue width.

6.1 Increasing Pipeline Depth
The performance effects of increasing pipeline depth

have been modeled extensively. Kunkel and Smith [17]
determined an optimal pipeline depth through simulation.
More recently, Hartstein and Puzak [3], Sprangle and
Carmean [4] and Hrishikesh, et al. [18] studied the effects
of pipeline depth on superscalar performance.

We focus on the situation where branch mispredic-
tions are the major limiter to increasing pipeline depth.
We assume that one of five instructions is a branch and
5% are mispredicted. Then, we use the superscalar model
to compute IPC. Figure 17a is the IPC as a function of
front-end pipeline depth for issue widths of 2, 3, 4 and 8.
As the front-end pipeline deepens the advantage for wider
issue is lost (as would be expected). Next, we convert to
absolute performance. We use a total delay for the front-
end pipeline as 8200 ps and the flip-flop overhead as 90
ps (numbers taken from [4].). If the front-end pipeline is
n stages then the clock cycle time is (8200ps/n)+90ps.
The performance as a function of pipeline depth is given
in Figure 17b. For the issue width 3 curve we get the
same result as reported in [4], the optimal pipeline depth
is around 55 front-end stages. Observe that the optimal
pipeline depth for wider issue-width moves towards
shorter front-end pipeline depth; this effect is also ob-
served in [3].

 9

Appears in the 31st International Symposium on Computer Architecture

0

1

2

3

4

5

6

0 20 40 60 80 100
Front-End Pipe Length

B
IP

S

(b)

0

1

2

3

4

5

0 20 40 60 80 100

Front-End Pipe Length

IP
C

(a)

Issue 8
Issue 4

Issue 2
Issue 3

Issue 8
Issue 4

Issue 3
Issue 2

Figure 17: The implication of increasing front-end pipeline
length on future pipelines. (a) As the front-end length in-
creases the benefit of wider issue diminishes. (b) Optimal
pipeline depths for various issue widths based on the front-
end pipeline delay and flip-flop overhead from [4].

6.2 Increasing Issue Width
To study the effects of increased issue width, we again
focus primarily on the impact of branch mispredictions.
To do this, we consider the fraction of time that the num-
ber of useful instructions actually issued is close to the
implemented maximum issue width. “Close” is defined
as anything within 12.5% of the implemented maximum
issue width; e.g. if the designed issue width is 8, and the
processor model issues 7 during a given cycle, then we
count it as achieving the designed issue width during that
cycle. Figure 18 shows number of instructions between
mispredictions that are required for a given fraction of
time that IPC is close to the implemented issue width.
What this graph shows is that if the same fraction of time
is to be spent close to the implemented issue width when
the issue width is doubled, then the number of instruc-
tions between branch mispredictions must quadruple.
That is, the performance of the branch predictor (as
measured by the number of instructions between mispre-
dictions) must improve as the square of the issue width
increase. Given the small incremental gains in branch
prediction that are currently being made, this does not
bode well for increased issue widths. Of course, deeper
pipelines only exacerbate the problem. Figure 19 further

illustrates the problem. The graph plots the instructions
issued per cycle between an average distance pair of
branch mispredictions. The front-end pipeline depth is
five. With maximum issue width four, the IPC barely
reaches four before a misprediction occurs. With issue
width of eight, IPC barely gets above six. Michaud et al.
[7] observed a similar effect when studying instruction
fetch requirements.

0
200
400
600
800

1000
1200
1400
1600
1800

10 20 30 40 50

Percent time at 3.5, 7, 14 issues per cycle
In

st
ru

ct
io

ns
 b

et
w

ee
n

m
is

pr
ed

ic
tio

ns

Issue width 4 Issue width 8
issue width 16

Figure 18: Instructions between two mispredictions as a
function of the fraction of time spent within 12.5% of the
implemented issue width.

0
1
2
3
4
5
6
7

0 10 20 30 40 50
cycle

Is
su

e
ra

te

issue 2 issue 3
issue 4 issue 8

Figure 19: Per cycle instruction issue rate between two mis-
predicted branches.

7. Summary, Conclusions, Future Work
We developed a superscalar model where a back-

ground IPC level is determined, transient penalties due to
miss-events are calculated, and these model components
are combined to arrive at accurate performance estimates.
Using trace-driven data cache misses, instruction cache
misses, and branch misprediction rates, the model can
arrive at performance estimates that, on average, are
within 5.8% of detailed simulation. Further, it provides

 10

Appears in the 31st International Symposium on Computer Architecture

some interesting intuition regarding superscalar proces-
sors, for example:

1) The branch misprediction penalty is often signifi-
cantly larger then the front-end pipeline depth.

2) Instruction cache penalty is independent of the
front-end pipeline; it depends largely on the miss delay.

3) The data cache penalty for an isolated long miss is
essentially the miss delay. For multiple misses that occur
within a number of instructions equal to the ROB size, the
combined miss penalty is the same as an isolated miss.

Furthermore, the model can be used to arrive at gen-
eral conclusions regarding superscalar microarchitecture
trends. In a pair of brief analyses:

 1) We were able to reproduce optimal pipeline depth
results derived previously using clock-cycle simulation-
based models [3, 4, 17, 18].

2) We were able to show that branch prediction accu-
racy must improve as the square of issue width if the
same IPC profile is to be maintained.
 The first order model works very well, and gives us
confidence that even more accurate superscalar processor
models can be built. There are two avenues for future
research: one is to refine the modeling of the features
currently in the first-order model, the other is to model
new features.

With respect to better modeling of the features cur-
rently in the model, we consider the following to be
among the more important.

1) Improve modeling of the IW characteristic. The
IW characteristic is important for determining the sus-
tained “background” performance level and for determin-
ing performance penalties for miss-events.

2) Improve modeling of data cache miss overlap ef-
fects. For overlapping long data cache misses, the ap-
proximation we used in Section 4.3 is fairly rough and is
a weak link in the model, as shown by the errors in mcf
and twolf. We expect that these overlaps can be modeled
more accurately (possibly at the cost of more detailed
overlap statistics). Also modeling overlaps of instruction
cache misses and branch mispredictions with long data
cache misses will likely improve accuracy somewhat.

3) Modeling bursts of branch mispredictions. The er-
ror in gzip suggests that the effect of bursts of branch
mispredictions needs to be modeled more accurately.
Branch mispredictions are the one case where the window
drain penalty and ramp-up penalty do not offset each
other. Bursts of branch mispredictions can have signifi-
cantly less overall penalty than isolated ones. Here, we
can collect secondary branch misprediction statistics to
better model bursty behavior.

With respect to new features, there are many possi-
bilities; currently, we planning the following:

1) Limited numbers of functional units. Here, we will
have to collect instruction mix statistics. To sustain the

estimated sustained performance, the mix can be used to
determine the number of units required to meet this per-
formance. Or, if the number of units is too small, we can
generate a lower saturation level than the maximum issue
width. Here, it may be necessary to consider program
phases, and model each of them separately – something
we have not had to do thus far.

2) Instruction fetch buffers. These buffers immedi-
ately follow the instruction cache and can hide some (or
all) of the I-cache miss penalty. A related issue is the ac-
counting for fetch inefficiencies due to branching into the
middle of cache lines.

3) Partitioned issue windows and clustered functional
units. Many superscalar processors have multiple issue
buffers, divided according to function or according to sets
of clustered units.

4) Additional types of miss-events, TLB misses in
particular. When added, these will act much like long data
cache misses.

Finally, although they have apparently fallen into dis-
repute in recent years, we have shown that simple trace
driven simulations of caches and branch predictors have a
definite, useful role to play in performance evaluation.
Cache and predictor miss-events can be directly related to
overall performance losses in a fairly straightforward
way.

8. Acknowledgements
We thank Timothy Heil for his helpful suggestions.

Comments from anonymous reviewers are also appreci-
ated. This work is being supported by NSF grant CCR-
0311361, IBM and Intel.

9. References
[1] G. Sohi and S. Vajapeyam, "Instruction Issue Logic

for High-Performance, Interruptable Pipelined Proc-
essors," International Symposium on Computer Ar-
chitecture, pp. 27-34, 1987.

[2] P. G. Emma and E. S. Davidson, "Characterization
of Branch and Data Dependencies on Programs for
Evaluating Pipeline performance," IEEE Transac-
tions on Computers, vol. 36, pp. 859-875, 1987.

[3] A. Hartstein and T. R. Puzak, "The Optimum Pipe-
line Depth for a Microprocessor," International
Symposium on Computer Architecture, pp. 7-13,
2002.

[4] E. Sprangle and D. Carmean, "Increasing Processor
Performance by Implementing Deeper Pipelines,"
International Symposium on Computer Architec-
ture, pp. 25-34, 2002.

[5] D. B. Noonburg and J. P. Shen, "Theoretical Model-
ing of Superscalar Processor Performance," Interna-

 11

Appears in the 31st International Symposium on Computer Architecture

tional Symposium on Microarchitecture, pp. 52-62,
1994.

[6] P. Michaud, A. Seznec, and S. Jourdan, "Exploring
Instruction-Fetch Bandwidth Requirement in Wide-
Issue Superscalar Processors," International Sympo-
sium on Parallel Architectures and Compilation
Techniques, 1999.

[7] P. Michaud, A. Seznec, and S. Jourdan, "An Explo-
ration of Instruction Fetch Requirement in Out-Of-
Order Superscalar Processors," International Jour-
nal of Parallel Programming, vol. 29, 2001.

[8] S. Nussbaum and J. E. Smith, "Modeling Supersca-
lar Processors via Statistical Simulation," Interna-
tional Symposium on Parallel Architectures and
Compilation Techniques, 2001.

[9] R. Carl and J. E. Smith, "Modeling Superscalar
Processors via Statistical Simulation," Workshop on
Performance Analysis and Its Impact on Design,
1998.

[10] L. Eeckhout, K. De Bosschere, and H. Neefs, "Per-
formance Analysis Through Synthetic Trace Gen-
eration," International Symposium on Performance
Analysis of Systems and Software, 2000.

[11] D. B. Noonburg and J. P. Shen, "A Framework for
Statistical Modeling of Superscalar Processor Per-
formance," International Symposium on High Per-
formance Computer Architecture, pp. 298-309,
1997.

[12] D. Sorin, V. Pai, S. V. Adve, M. K. Vernon, and D.
A. Wood, "Analytic Evaluation of Shared Memory
Systems with ILP Processors," International Sym-
posium on Computer Architecture, pp. 380-391,
1998.

[13] B. A. Fields, R. Bodik, M. D. Hill, and C. J. New-
burn, "Using Interaction Costs for Microarchitec-
tural Bottleneck Analysis," International Sympo-
sium on Microarchitecture, pp. 228-239, 2003.

[14] D. J. Ofelt, "Efficient Performance Prediction for
Modern Microprocessors," Stanford University PhD
Thesis, 1999.

[15] E. Riseman and C. Foster, "The Inhibition of Poten-
tial Parallelism by Conditional Jumps," IEEE Trans-
actions on Computers, vol. C-21, pp. 1405-1411,
1972.

[16] N. P. Jouppi, "The Nonuniform Distribution of In-
struction-Level and Machine Parallelism and Its Ef-
fect on Performance," IEEE Transactions on Com-
puters, vol. 38, pp. 1645-1658, 1989.

[17] S. R. Kunkel and J. E. Smith, "Optimal pipelining in
supercomputers," International Symposium on
Computer Architecture, pp. 404-411, 1986.

[18] M. S. Hrishikesh, D. Burger, N. P. Jouppi, S. W.
Keckler, K. I. Farkas, and P. Shivakumar, "The Op-
timal Logic Depth Per Pipeline Stage is 6 to 8 FO4
Inverter Delays," International Symposium on Com-
puter Architecture, pp. 14-24, 2002.

 12

	Introduction
	Model Approach
	Related Work

	Top-level Model
	IW Characteristic
	Modeling of Miss-Events
	Branch Misprediction Penalty
	Instruction Cache Misses
	Data Cache Misses

	Evaluation of the First-Order Model
	Application: Trends in Microarchitecture
	Increasing Pipeline Depth
	Increasing Issue Width

	Summary, Conclusions, Future Work
	Acknowledgements
	References

