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Abstract 
A proposed performance model for superscalar proc-

essors consists of 1) a component that models the rela-
tionship between instructions issued per cycle and the size 
of the instruction window under ideal conditions, and 2) 
methods for calculating transient performance penalties 
due to branch mispredictions, instruction cache misses, 
and data cache misses.  Using trace-derived data depend-
ence information, data and instruction cache miss rates, 
and branch miss-prediction rates as inputs, the model can 
arrive at performance estimates for a typical superscalar 
processor that are within 5.8% of detailed simulation on 
average and within 13% in the worst case.    The model 
also provides insights into the workings of superscalar 
processors and long-term microarchitecture trends such as 
pipeline depths and issue widths. 

1. Introduction 
Superscalar processor performance is very often 

evaluated via detailed simulation.  Although accurate, this 
method is also time-consuming, both when creating the 
simulation model and when running the simulations.  Fur-
thermore, although a simulation model can generate a lot 
of data, it often falls short in providing insight regarding 
what is going on inside the processor.   

An alternative to simulation is analytical modeling.  
Analytical models have clear speed advantages, but also, 
if well-constructed, they can provide valuable insight. To 
date, however, superscalar processor models have been 
used rather infrequently, presumably because the com-
plexity of superscalar processors has limited the accuracy 
of analytical models.  In this paper, we propose and 
evaluate an approach to superscalar processor modeling 
that is intuitive, provides insight, and is reasonably accu-
rate.  The proposed model consists of an analytical core 
that incorporates cache and branch predictor statistics 
gathered from functional-level trace driven simulation. 

1.1 Model Approach 
In the work presented here, we develop a first-order 

model that provides good accuracy and is capable of pro-
viding the insight we desire. Then, future continuation 
research can target additional features and refinements to 
fill out a complete and more accurate superscalar model.  

The first-order superscalar processor that we model has a 
single, homogenous instruction issue window. Instruc-
tions issue out-of-order in oldest-first priority. The reor-
der buffer is a separate structure (not combined with the 
issue window as in an RUU[1]). The pipeline width, issue 
width, and retire width are the same and are parameter-
ized. The front-end pipeline depth can also be adjusted.  
Caches and branch predictors are included in the model, 
but features like prefetching are not.  There is an un-
bounded number of functional units of each type.  
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Figure 1. Useful instructions issued per cycle (IPC) as a 
function of time.  

The basis for the model development to follow is il-
lustrated in Figure 1. The figure shows a graph of per-
formance, measured in useful instructions issued per cy-
cle (IPC), as a function of time.  A superscalar processor 
sustains a constant background performance level, punc-
tuated by transients where performance falls below the 
background level.  These transient events are caused by 
branch mispredictions, instruction cache misses, and data 
cache misses – referred to collectively as miss-events.  
Overall performance is calculated by first determining the 
sustained performance under ideal conditions (i.e. with no 
miss-events) and then subtracting out performance losses 
caused by the miss-events.   

To provide initial support for this basic approach, we 
simulated a baseline processor that has five front-end 
pipeline stages, an issue width of four, a window size of 
48 entries, and a reorder buffer with 128 entries. The in-
struction and data caches are 4K 4-way set associative 
with 128 bytes per cache line; a unified 512K L2 cache is 
4-way set-associative with 128 byte lines, and the branch 
predictor is 8K gShare.  We ran the following five sets of 
simulations: 1) everything ideal: i.e. ideal caches and 
ideal branch predictor, 2) “real” caches and branch pre-
dictor, 3) everything ideal except for the branch predictor, 
4) everything ideal except for instruction cache, 5) every-
thing ideal except for data cache.  We next evaluated net 
performance losses for each of the three types of miss-
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events in isolation.  That is, we computed total clock cy-
cles for simulation 3 minus total clock cycles for simula-
tion 1 to arrive at the time penalty due to branch mispre-
dictions. Similarly, we determined the time penalties for 
the cache misses using simulations 1, 4 and 5. 

 The three independently-derived performance penal-
ties were then added to the ideal time. The resulting per-
formance is compared with the fully “realistic” simulation 
2. As a second comparison, during simulation 2 we 
counted the fractions of branch mispredictions and in-
struction cache misses that overlap a data cache miss and 
compensated for them by ignoring the penalty for 
branches and i-cache misses that overlap a d-cache miss.  

The performance results, converted to IPC, are given 
in Figure 2.   For each of the SPECint benchmarks, the 
three bars are 1) combined:  the “realistic” performance, 
2) independent: the performance determined by adding 
each of the independently-determined miss-event penal-
ties to the ideal performance, and 3) overlaps compen-
sated: the same as 2), but with compensation for overlaps 
with data cache misses.  The accuracy of the estimation 
method is quite good, across the board.  The fully inde-
pendent approximation is quite good (middle bar).  The 
average error is 5%, and the highest errors are 16% 
(twolf) and 10% (gzip).  Overlap compensation improves 
accuracy only slightly; the average error is 4%, and the 
highest error is 10% (gzip).   
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Figure 2: Demonstration of relative independence of miss-
events with respect to performance. 

The independence of miss-event penalties provides a 
powerful lever for constructing a superscalar model be-
cause it allows us to reason about, and model, each cate-
gory of miss-event more-or-less in isolation.   Note, how-
ever, that the individual miss-events within the same cate-
gory are not necessarily independent, implying that we 
may have to account for “bursts” of miss-events of a 
given type, e.g. when a burst of branch mispredictions or 
cache misses cluster together closely in time. 

In the remainder of the paper we develop a model 
that contains the following components: 

1) A method for determining the ideal, sustainable 
performance (IPC) in terms of implementation-

independent dynamic instruction stream statistics and 
microarchitecture parameters. 

2) Methods for estimating the penalties for branch 
predictions, instruction cache misses, and data cache 
misses, in terms of the microarchitecture parameters. 

3) A method for taking miss-event rates and combin-
ing them with the information from 1) and 2) to arrive at 
overall performance estimates. 

Along the way, we use the model to derive insights 
into the operation of superscalar processors. Finally, 
given the complete model, we demonstrate its usefulness 
for evaluating important microarchitecture trends.  

1.2 Related Work 
Emma and Davidson [2], present an early theoretical 

method for analyzing in-order pipelines.  They character-
ize the effects of branch and data dependences on proces-
sor performance.  More recently, Hartstein and Puzak [3] 
and Sprangle and Carmean [4], present analytical models 
for determining the optimal front-end pipeline depth for 
both in-order and out-of-order superscalar processors.  In 
[3] two important parameters of the analytical model are 
measured via detailed simulation: degree of superscalar 
processing and the fraction of stall cycles per pipeline 
stage.  In [4] the analytical model accounts for relative 
performance loss due to microarchitecture “loops”, such 
as a branch misprediction loop.  A detailed simulation is 
performed for the baseline case, and then the effect of 
increasing the processor front-end is simulated.  From 
these two simulations the performance degradation for 
every cycle increase in the branch misprediction loop is 
computed and becomes a parameter in the model.  In both 
models [3] [4] detailed  superscalar simulations are re-
quired for model parameters.  Our model avoids detailed 
superscalar simulations and relies on instruction trace 
analysis for model parameters. 

Noonburg and Shen [5] develop a concise model 
based on probability matrices.  Their approach is to first 
limit the parallelism because of control flow, then because 
of inefficient fetch, and then because of data dependen-
cies.  Our approach is to first consider ideal IPC using 
pure data dependences and adjust for performance losses 
due to the miss-events.  A limitation of the model [5] is 
that it does not include the effect of the re-order buffer 
and data cache misses. 

Michaud et al.[6, 7], develop an analytical model for 
expressing Instruction Level Parallelism (ILP) as a func-
tion of the window size in superscalar processors.  Their 
goal is to gain insight in the relationship between issue 
width and fetch width.  Their expression for ILP versus 
issue window size is similar to one part of our analytical 
model.  Our model covers the whole processor, not just 
the front-end; and it includes models for branch mispre-
diction and data cache miss penalties. 

 2



Appears in the 31st International Symposium on Computer Architecture 

 

Ifetch B I

∆Ι

stop

∆P

start

empty

&stop

start

mispredict Sizepipe

Icache miss
win_size

rob_size

D

Long
Dcache miss

stop

∆D
start

IW
characteristic

i i i i i

i

<i_

 
Figure 3. Schematic drawing of proposed superscalar model. Solid lines indicate instruction flow; dashed lines indicate “throttles” 
of instruction flow due to miss-events. 

Statistical simulation methods [8-11] collect many of 
the same program statistics as used by our model, and use 
them to generate a synthetic trace that drives a simple 
superscalar simulator. In effect, our model performs sta-
tistical simulation, without the simulation, and overall 
accuracy is similar.  

Sorin et al. [12] present a model for shared memory 
multiprocessors based on mean-value analysis.  They 
“black-box” the processor, L1, and L2 caches and model 
the memory traffic beyond the L2 cache.  Our model in-
cludes the superscalar processor core. Fields et al. [13] 
also assume a blackbox viewpoint of the processor and 
evaluate correlations observed among simulation results.  
They assign a cost to interactions among performance 
degrading events, and then use the cost to find the pri-
mary bottleneck.  We skip the simulation step and instead 
analyze instruction traces to get statistics for the supersca-
lar processor core model.    

Ofelt [14] proposes a profile-based performance pre-
diction technique for out-of-order superscalar processors 
that goes through a lightweight instrumentation phase 
followed by analysis phase.  Their technique accounts for 
instruction cache and branch misprediction effects, but 
not data cache effects.  Our model accounts for instruc-
tion cache, branch misprediction, and data cache effects. 

2. Top-level Model 
For reasoning about superscalar processor operation, 

we use a schematic representation as shown in Figure 3.  
The Ifetch unit is capable of providing a never-ending 
supply of instructions.  Instructions pass through the 
front-end pipeline, experiencing a ∆P delay, before being 
dispatched into both the issue window and the re-order 
buffer.  The fetch width, pipeline width, dispatch width, 
retire width, and maximum issue width are all character-
ized with parameter i. Instructions issue from the window 
at a rate determined by the IW characteristic, i.e. a func-

tion that determines the number of instructions that Issue 
in a clock cycle, given the number of instructions in the 
Window. 

At the time instructions are fetched, there is a prob-
ability, B, that there is a branch misprediction.  If this 
happens, the fetching of useful instructions is stopped.  
Fetching of useful instructions resumes only when the 
issue window becomes empty of useful instructions. Also 
at the time instructions are fetched, there is a probability, 
I, that there is an instruction cache miss. If there is a miss, 
instruction fetching is stopped and resumes only after the 
instructions can be fetched from the L2 cache, or mem-
ory; this is modeled by delay ∆I.  When there is a long 
data cache miss (L2 miss) the retirement of instructions 
from the reorder buffer is stopped. After a miss delay, 
∆D, data returns from memory, and retirement is re-
started.  Short data cache misses (L1 misses) are modeled 
as if they are handled by long latency functional units. 

The model implies that the penalties from branch 
mispredictions and instruction cache misses will serialize. 
However, long data cache misses may overlap with 
branch mispredictions, with instruction cache misses, and 
with each other.  

The expression for overall performance is given in 
equation(1), where CPIsteadystate is the background sus-
tainable performance when there are no miss-events. 
CPIbrmisp, CPIicachemiss, and CPIdcachemiss are the 
additional CPI due to branch misprediction events, in-
struction cache miss-events and data cache miss-events, 
respectively.  

steadystate brmisp icachemiss dcachemissCPI CPI CPI CPI CPI= + + +  (1) 
Note that here we give performance in CPI – in other 

places we convert to IPC – throughout our discussion, we 
use either of the two, depending on which is more appro-
priate at the time it is being used. 
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3. IW Characteristic 
The IW characteristic expresses the relationship be-

tween the number of instructions in the issue window and 
the number of instructions that will issue (on average). 
The IW characteristic is important both for determining 
the ideal, sustained performance level and for estimating 
the penalties of miss-events.  

In one of the very first studies on instruction level 
parallelism [15] Riseman and Foster observed (in today’s 
terms) that the number of instructions that can issue per 
cycle is roughly the square root of the number of instruc-
tions in the window. More recently, Michaud, Seznec and 
Jourdan [7] similarly observe that the IW characteristic 
follows a Power-Law relationship and provide an insight-
ful analysis of the phenomenon and its relationship to 
instruction delivery.  They show that the slope of the 
Power-Law line on a log-log scale is approximately 0.5 
for their benchmarks, indicating a square-root relation-
ship.  
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Figure 4:  Power-Law relationship between the issue win-
dow size and the issue width. 

Starting with dependence statistics taken from in-
struction traces (as in [8, 10]]), the points on the IW curve 
for the unlimited issue case can be characterized by a set 
of relatively complex simultaneous, non-linear equations.  
A detailed discussion of the analytical derivation of the 
IW characteristic is beyond our scope.   A practical alter-
native of similar complexity is to perform idealized (no 
miss-events) trace-driven simulations with an unlimited 
number of unit-latency functional units and unbounded 
issue width.  The only thing that is limited is the issue 
window size. IW curves generated in this way are given 
in Figure 4.   

These initial IW curves are essentially implementa-
tion independent; they depend only on the basic register-
based data dependence properties of the benchmark. For a 
specific implementation with limited issue width and non-
unit latencies, we generate the IW characteristics in the 

following way.  First, because they have a Power-Law 
relationship, we fit the IW curves to the line I = αWβ  The 
values of α and β for three illustrative benchmarks are 
given in Table 1.  These benchmarks are at the two ex-
tremes (vortex and vpr) and in the middle (gzip) of the 
curves shown in Figure 4.  Figure 5 compares the IW 
curves for these benchmarks as given in Figure 4 with the 
computed linear fit. 

Table 1:  Power-Law parameters for unit-latency case. 

Bmk. α β Avg. 
Lat. 

gzip 1.3 0.5 1.5 
vortex 1.2 0.7 1.6 

vpr 1.7 0.3 2.2 
 

log2(I) = 0.72log2(W) + 0.25

log2(I) = 0.50log2(W) + 0.37

log2(I) = 0.30log2(W) + 0.74
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Figure 5:  Linear IW curve fit for illustrative benchmarks. 

To account for non-unit latencies we apply Little’s 
Law.   If the average issue rate is I1 with a window size of 
W and unit functional unit latencies, then the average 
time spent in the window by a given instruction is 
T=W/I1.   Or, I1=W/T.   If the average instruction latency 
is L, then all dependence chains, weighted by latencies, 
are approximately L times longer than for the unit latency 
case. This means that the time spent in the window for the 
average instruction will be L times longer than for unit 
latency, so the issue rate with average latency L, can be 
easily derived as: IL = I1/L.  That is, for a given number of 
instructions in the window, the average issue rate is the 
unit latency issue rate divided by the average latency. The 
last column of Table 1 gives the average instruction la-
tencies for the three illustrative benchmarks.  

When the maximum issue width is limited, as it 
would be in a superscalar processor, then the IW curves 
change somewhat [16].  For example, by using simulation 
with limited issue width, we arrive at the IW characteris-
tic in Figure 6.  The limited issue curves follow the ideal 
curves until the window size equals the maximum issue 
width, and then they asymptotically approach the issue 
width limit; that is, instruction issue saturates at the 
maximum rate.  

We approximate this behavior by assuming unlimited 
issue width behavior (following the non-unit latency 
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power-law curve as just derived) until the issue rate 
reaches the maximum issue limit.  Then, as in Jouppi 
[16], we assume issue rate saturates at the maximum issue 
width.   As we will see, for our first-order superscalar 
model, this approximation is adequate. For most bench-
marks, we use a window size that is large enough so that 
the issue rate in absence of miss-events is in the saturation 
part of the curve. 
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Figure 6: IW characteristic after limiting the issue width. 

4. Modeling of Miss-Events 
The performance penalties for miss-events are mod-

eled by first determining the penalty for each type of 
miss-event, counting the numbers miss-events of each 
type, then multiplying.  The miss-event counts are gener-
ated via simple trace-driven simulations.  The methods for 
calculating penalties are described in following subsec-
tions.  

4.1 Branch Misprediction Penalty 
To model the penalties for the miss-events, we rely 

on the schematic in Figure 3 and the IW characteristic.  
First consider a single branch misprediction in isolation. 
The transient in the IPC plot (recall Figure 1) is shown in 
Figure 7.  Initially, the processor is issuing instructions at 
the steady-state IPC. Then a mispredicted branch causes 
fetching of useful instructions to stop.  Eventually, the 
mispredicted branch enters the instruction issue window.  
At this point, no more useful instructions enter the win-
dow until the mispredicted branch is resolved. If the win-
dow issues instructions in oldest-first priority, none of the 
miss-speculated instructions will inhibit any of the useful 
instructions from issuing.  Consequently, only useful in-
structions need to be considered.  

The IW characteristic allows the determination of the 
number of issued instructions each cycle as the window is 
emptied of useful instructions.  The first cycle the steady 
state number of instructions, i, will issue.  Then, the win-
dow will have W-i instructions (W is the number of in-
structions in the issue window), so fewer will issue on the 
following cycle, etc. The IPC as the window drains is 
approximately a straight line (as derived in [6, 7]), and 
illustrated in Figure 7.  Eventually, the mispredicted 
branch is resolved – we assume that the mispredicted 
branch is the oldest instruction in the window at the time 

it is resolved.  To validate this assumption, we used de-
tailed simulations which showed that there are only 1.3 
useful instructions left in the window when a mispre-
dicted branch issues (averaged over all benchmarks); gap 
is the only outlier with 8 useful instructions still left in the 
window on average.   

After branch resolution, the pipeline is flushed and 
fetching begins from the correct path.  The correct path 
instructions take front-end pipeline depth cycles, ∆P, to 
reach the window. Then the window begins filling and 
instruction issue ramps up, again following points on the 
IW curve, until it eventually reaches the steady state IPC 
level.  The ramp-up curve rises quickly at first, then more 
slowly as instructions are issued while the window is fill-
ing (like filling a “leaky bucket” [7]).  
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window
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Figure 7:  Branch misprediction transient.   
Equation(2) expresses the penalty for an isolated branch 
misprediction, isolated_brmisp_penalty; win_drain is the 
penalty for draining the window, ∆P is the depth of the 
front-end pipeline and ramp_up is the penalty for ramp-
ing up to the steady-state IPC. 

_ _ _

_

isolated brmisp penalty win drain
P

ramp up

=
+∆
+

       (2) 
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Figure 8: Transient curve for an isolated branch mispredic-
tion α=1, β =0.5. 

Using Excel, we generated a curve for the branch 
misprediction transient for a square-law IW characteristic 
[7](α=1, β =0.5), the average for SpecINT2000 bench-
marks once non-unit latencies are accounted for, and a 
front-end pipeline of five stages (see Figure 8).  From this 
curve, we can estimate the performance losses during 
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drain, pipeline fill, and ramp-up. If we assume that the 
branch issues at time 6, at which point there are about 1.4 
instructions in the window, then the aggregate drain pen-
alty is 2.1 cycles, found by subtracting the cycles to issue 
the instructions at the steady state rate from the cycles 
required for issuing the same instructions while draining. 
Similarly, the ramp up penalty is computed as 2.7 cycles, 
and the pipeline fill delay is 4.9 cycles, leading to a total 
penalty of 9.7 cycles.   

This method sets an upper bound penalty for each 
branch misprediction because it assumes a misprediction 
occurs in isolation.   For bursts of branch mispredictions, 
the drain and ramp-up penalties “bracket” a series of 
pipeline fills, each of which delivers a small number of 
useful instructions. In the extreme case of n consecutive 
branch mispredictions, the penalty per misprediction, 
brmisp_penalty, is given by equation(3). 

_ __ win drain ramp upbrmisp penalty P
n
+

= ∆ +       (3) 

Hence, depending on the amount of clustering of 
branch mispredictions, for the baseline processor we 
would expect the penalty to be between 5 and 10 cycles. 
We observe that the branch misprediction penalty can be 
significantly greater than the (often assumed) front-end 
pipeline depth.   For the example five-stage front end, the 
total penalty can be twice the front-end pipeline depth. 
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Figure 9:  Penalty per branch misprediction for front-end 
pipelines with 5 and 9 stages. 

To evaluate this part of the model, we simulated the 
baseline processor with both five and nine front-end 
stages, using ideal instruction and data caches with a real-
istic branch predictor (8KB gShare).  In a second set of 
simulations, ideal branch predictors are used.  Then using 
the results of these two sets of simulations, the average 
penalty per branch misprediction is computed.  The re-
sults are in Figure 9.  The y-axis is the penalty in terms of 
cycles per branch misprediction.  For the five stage front-
end pipeline, the penalty is typically between 6.4 cycles 
and 10 cycles, (14.7 cycles for vpr).  These numbers are 
greater than the front-end pipeline depth and within the 
range predicted by the model.  Benchmark vpr is an out-
lier because it is the only benchmark with inherently low 
ideal ILP (indicated by a β of 0.3 in Table 1) and a rela-
tively high average functional unit latency (2.2 cycles).  
This combination significantly shifts vpr away from the 

assumed (α=1, β=0.5) square-law curve, making its 
win_drain and ramp_up longer than those of rest of the 
benchmarks.  Similar to the five stage front-end, with a 
nine stage front-end pipeline, the penalty for a branch 
misprediction is greater than nine – as much as 13.8 cy-
cles for gcc and gzip, (18.3 cycles for vpr). 

4.2 Instruction Cache Misses 
The instruction cache miss transient is illustrated in 

Figure 10.  It has the same basic shape as the branch mis-
prediction transient given above, but some of the underly-
ing phenomena are different. Initially, the processor is-
sues instructions at the steady-state IPC. At the point a 
miss occurs, there are instructions in the instruction issue 
window as well as the front-end pipeline.  The instruc-
tions buffered in the front-end pipeline keep the window 
filled for a while, but eventually the window drains and 
the issue-rate drops to zero (following the same curve as 
for branch mispredictions).  After a miss delay, ∆I, in-
structions are delivered from the L2 cache (or main mem-
ory) and begin entering the front-end pipeline.  After 
passing through the pipeline, they eventually reach the 
instruction issue window.   Then, the instruction issue rate 
ramps up following the IW characteristic.  
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window
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Instructions
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window

cache miss
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instructions
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Figure 10: Instruction Cache Miss transient. 

Equation(4) gives the penalty, in terms of cycles, for an 
isolated instruction cache miss. 

_ _
_

_

isolated icache misspenalty I
ramp up
win drain

= ∆
+
−

        (4) 

Consequently, we can make the initial observation: the 
instruction cache miss penalty is independent of the front-
end pipeline length.  The front-end pipeline can be made 
arbitrarily deep without affecting the instruction cache 
miss penalty. The equation also indicates that the 
ramp_up and win_drain offset each other (in contrast to 
the case for branch mispredictions where they add). Re-
ferring back to Figure 8 we note that the drain penalty and 
ramp-up penalty are about the same so their effects can-
cel. Consequently, we can make a second observation: the 
total instruction cache miss penalty is approximately 
equal to the L2 cache (or main memory) latency.  If there 
are n consecutive instruction cache misses in a burst, then 
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the equation for the penalty per miss, icache_misspenalty, 
is slightly modified and is given in equation(5). 

_ __ ramp up win drainicache misspenalty I
n
−

= ∆ +  (5) 

Because win_drain and ramp_up offset each other (and 
this number is further diminished when divided by n) 
equation(5) leads to the observation that an instruction 
cache miss yields the same penalty regardless of whether 
it is isolated or is part of a burst of misses.   

To confirm the above observations, we simulated the 
baseline processor as before, with five and nine front-end 
pipeline stages. The branch predictors and data caches are 
ideal, but a non-ideal 4K 4-way set associative instruction 
cache with 128 byte cache lines is modeled.  The instruc-
tion cache miss delay (L2 access delay) is set at 8 cycles 
for both the five and nine stage front-end processors. The 
same processors with ideal instruction caches are also 
simulated, and the average penalty per instruction cache 
miss is computed.  The observations derived from the 
analytical model are supported by the simulation results 
of Figure 11. In the figure, the y-axis is the penalty (in 
cycles) for every instruction cache miss.  We see that the 
penalty is approximately 8 cycles (equal to the L2 miss 
delay) and is independent of the front-end pipeline depth. 
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Figure 11:  Simulated results show that the icache miss pen-
alty is independent of the front-end pipeline depth.  Bench-
marks not shown had a negligible number of misses. 

4.3 Data Cache Misses 
Data cache misses are more complex than instruction 

cache misses and branch mispredictions, primarily be-
cause they can overlap both with themselves and with the 
other miss-events. Before proceeding further we establish 
some terminology: rob_size is defined as the number of 
ROB slots, win_size is the number of issue window slots, 
and dispatch_width is the maximum number of instruc-
tions that can be dispatched into the issue window (and 
ROB).  We begin by dividing data cache misses into two 
categories:  short misses – the ones that have latency sig-
nificantly less than the maximum ROB fill time, i.e. 
rob_size/dispatch_width, and long misses -- those whose 
penalty is significantly greater than the maximum ROB 
fill time.  For the first-order superscalar processor model, 
L1 cache misses that hit in the L2 cache are short misses, 

and those that miss in the L2 cache are long misses.  
Short misses are modeled as if they are serviced by long 
latency functional units.  Therefore, short misses are 
modeled by their effect on the IW characteristic (and is 
reflected in the third column of Table 1).  This leaves 
long misses for additional modeling.  

If we analyze isolated long data cache misses, there 
are two events that can potentially trigger performance 
losses: 1) the window fills with instructions that are de-
pendent (directly or indirectly) on the load that misses, 
causing instruction issue to stop or 2) the ROB fills be-
cause the miss load instruction cannot retire,  dispatch 
stalls, and eventually issue stops.    

To determine the relative importance of these two 
events, we performed the following experiment.  We 
simulated the baseline 4-wide processor with everything 
ideal except for a 128 KB data cache.  The penalty for a 
data cache miss is set to 200 cycles.  In order to study 
data cache misses in isolation, whenever one miss is al-
ready in progress, other data cache misses (if any) are 
changed to hits.  After 200 cycles, instruction issue will 
certainly be stalled, for whatever the cause, and the in-
structions remaining in the window at that time are those 
that are dependent (directly or indirectly) on the load that 
missed. The simulations showed that the ROB fills and 
blocks dispatch in virtually every case. After 200 cycles, 
the window is less than half full (except for vpr where 34 
window slots are occupied on average). This indicates 
that blockage due to a full window does not occur to any 
significant degree when there is a long data cache miss. 

Because the ROB filling and causing stall of dispatch 
is the dominant cause of performance loss when there is a 
long data cache miss, we develop our model accordingly. 

 

 
Figure 12:  Transient of an isolated data cache miss. 
Consider the transient for an isolated long data cache 

miss given in Figure 12.  Initially, the processor is issuing 
at the steady-state IPC, and a long data cache miss occurs.  
The issuing of independent instructions continues, and the 
re-order buffer eventually fills.  At that point, dispatch 
will stall, and when all instructions independent of the 
load have issued, issue will stall. After miss delay cycles, 
∆D, from the time the load miss is detected, the data re-
turns from memory, the missed load commits, and the 
independent instructions that have finished execution also 
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commit in program-order.  As they commit, room in the 
ROB opens up, dispatch resumes, and instruction issue 
ramps up following the IW characteristic.   

The expression in equation(6) is the data cache miss 
penalty, in terms of cycles, for an isolated data cache miss 
as just described. The parameter rob_fill is the number of 
cycles it takes to fill the re-order buffer after the missed 
load is issued. 

_ _ _
_

_

isolated dcache misspenalty D rob fill
win drain
ramp up

= ∆ −
−
+

 (6) 

Because the ramp_up and win_drain offset each 
other, the penalty is approximately ∆D – rob_fill.  If the 
load instruction is the oldest (or nearly so) at the time it 
issues, then the ROB will already be full (or nearly so), so 
rob_fill is approximately zero, and the penalty will be 
approximately ∆D.  At the other extreme, if the load that 
misses happens to be the newest instruction in the win-
dow, then it will take approximately 
rob_size/dispatch_width cycles to fill the ROB in behind 
the load, so the penalty will be approximately ∆D - 
(rob_size / dispatch_width).   

The data cache simulation experiment showed that, 
on average, when a load misses there are 9 instructions 
ahead of it in the ROB.  The outliers are gap with 27 in-
structions ahead of the missed load, and twolf and vpr 
with 19 instructions each.  Hence, the load that misses is 
relatively old at the time it issues (at least as a first-order 
approximation), so we model the data cache miss penalty 
as ∆D.  

The above analysis is for an isolated long data cache 
miss.  To handle overlapped long data cache misses, fur-
ther analysis is necessary.   The overlap case occurs when 
another data cache miss happens within rob_size number 
of instructions of the first load miss.  If this is the case, 
and the loads are independent (as is most often the case), 
then their miss penalties will overlap.  Figure 13 illus-
trates the phenomena for two such load misses.  Initially 
the processor is issuing at the sustained IPC.  The first 
load, ld1, misses in the data cache.   After the load miss, 
instruction issuing continues until the ROB fills and then 
issue stops. In the case we are considering, the second 
load that misses, ld2, is one of the instructions that issues 
before issue stops.  Then miss delay, ∆D cycles, after the 
first load misses, its data returns.  Instruction ld1 and in-
structions between the ld1 and ld2 retire.  As they do so, 
room opens up in the ROB, and a number of instructions 
equivalent to the number of instructions between the ld1 
and ld2 are dispatched in the window and the re-order 
buffer.  These instructions issue and then wait in the re-
order buffer until the data for the second load miss, ld2, 
returns.  Then, ld2 retires, as do other instructions in the 
ROB, and issue ramps back up. Assuming the second 

load miss issues y cycles after the first one, equation(7) is 
the expression for penalty per load miss.   

ld1 miss
ld2 miss

y
miss delay y

ld1 data back

ld2 data
back

steady state
IPC

miss delay  
Figure 13:  Two loads that experience a long miss are inde-
pendent of each other and in ROB distance of each other.   

_
_ _

_
2

_ _
2

y D rob fill
win drain y ramp up

dcache misspenalty

isolated dcache misspenalty

+∆ −⎛ ⎞
⎜ ⎟− − +⎝ ⎠=

=

        (7) 

Observe that in the expression in equation(7) the y 
values all cancel, so the combined penalty is half the pen-
alty for an isolated miss and is independent of the dis-
tance between the two loads that miss; the only thing that 
matters is whether they occur within a rob_size number of 
instructions.   

In general, if NLDM is the number of long data cache 
misses and fLDM(i) is the probability that misses will occur 
in groups of i then equation(8) gives the penalty for a 
long data cache miss, on average. 

( )
1

_ _ _
LDMN

LDM

i

dcache misspenalty isolated dcache misspenalty

f i
i=

=

⎛ ⎞
× ⎜ ⎟

⎝ ⎠
∑

     (8) 

The distribution fLDM(i) is collected as a by-product of the 
instruction trace analysis.  We measure the distances be-
tween long data cache misses.  Then, given a specific 
rob_size and NLDM , the distribution fLDM(i) can be deter-
mined. Figure 14 has the penalty for every long data 
cache miss measured from detailed simulation and the 
one we computed using the method just described.   The 
model is reasonably close, although not as close as other 
parts of the model.  The handling of data cache misses is 
one of the more difficult parts of the model and relies on a 
number of simplifying assumptions.  

0

50

100

150

200

bz
ip

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

cy
cl

es

Simulation
Model

 
Figure 14: Comparison of penalty per long data cache miss 
from simulation and model. 
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5. Evaluation of the First-Order Model 
We have now completed all the components of the 

first-order superscalar model. To demonstrate its accu-
racy, we evaluate the components of the model and over-
all performance as follows: 

1) Using IW characteristic, average functional unit 
latency and Little’s Law we compute the steady-state IPC 
(as explained in Section 3). 

2) Model the branch misprediction penalty as the av-
erage of 5 and 10 cycles (i.e. 7.5 cycles) as in Section 4.1. 

3) Model the L1 instruction cache miss penalty as 8 
cycles as described in Section 4.2; and L2 miss penalty as 
200 cycles. 

4) Model the long data cache miss penalty as calcu-
lated in equation(8) taking isolated_dcache_misspenalty 
as 200 cycles. 

5) Use trace-driven simulations to arrive at the num-
bers of branch mispredictions, instruction cache misses, 
data cache misses, and distributions of the bursts of long 
data cache misses that occur within rob_size instructions 
of a previous long data cache miss.  

6) Compute ideal CPI and CPI loss due each type of 
miss event.  Then the CPIs are added as in equation(1) to 
get the overall CPI.  We do not compensate for branch 
mispredictions and i-cache misses that are overlapped by 
a d-cache miss.  As shown by our initial simulation ex-
periment, these overlaps seem to be only a second-order 
effect, and will be accounted for in future research. 
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Figure 15:  Comparison of performance predicted by our 
first-order model and from simulation. 

Figure 15 gives performance as estimated by the su-
perscalar model compared with detailed, clock cycle level 
simulations.  There is very close agreement between the 
simulation and the model; the average CPI error is 5.8%.  
Mcf, gzip, and twolf are the benchmarks with high errors 
of 13%, 12% and 12%, respectively. 

Because delays independently add, we can build a 
“stack model” of performance in Figure 16.  We observe 
that all three of the miss-events are important, although 
their relative importance varies across the benchmarks.  
We observe that for mcf and twolf, performance loss be-
cause of long data cache misses accounts for 70% and 
60%, respectively, of their overall CPI, and these are the 
two benchmarks with high branch mispredictions.  As 
mentioned earlier we have not taken into account the 

overlaps of other miss-events with the long data cache 
misses.  Looking at gzip, most of the performance loss is 
due to branch mispredictions.  The penalty we use for the 
first-order model is 7.5 cycles for every branch mispre-
diction, but the penalty measured through simulation is 10 
cycles.  This indicates the need for greater accuracy in 
modeling these particular miss-events; i.e. the method of 
taking a simple average can be improved upon.  
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Figure 16: "Stack model" of performance showing the CPI 
contributions of different miss-events. 

6. Application: Trends in Microarchitecture 
In this section we demonstrate usefulness of the su-

perscalar model by briefly considering trends in supersca-
lar microarchitecture. In particular, we look at increasing 
pipeline depth and increasing issue width. 

6.1 Increasing Pipeline Depth 
The performance effects of increasing pipeline depth 

have been modeled extensively.  Kunkel and Smith [17] 
determined an optimal pipeline depth through simulation.  
More recently, Hartstein and Puzak [3], Sprangle and 
Carmean [4] and Hrishikesh, et al. [18] studied the effects 
of pipeline depth on superscalar performance.  

We focus on the situation where branch mispredic-
tions are the major limiter to increasing pipeline depth.  
We assume that one of five instructions is a branch and 
5% are mispredicted. Then, we use the superscalar model 
to compute IPC.  Figure 17a is the IPC as a function of 
front-end pipeline depth for issue widths of 2, 3, 4 and 8.  
As the front-end pipeline deepens the advantage for wider 
issue is lost (as would be expected).  Next, we convert to 
absolute performance. We use a total delay for the front-
end pipeline as 8200 ps and the flip-flop overhead as 90 
ps (numbers taken from [4].).  If the front-end pipeline is 
n stages then the clock cycle time is (8200ps/n)+90ps. 
The performance as a function of pipeline depth is given 
in Figure 17b.  For the issue width 3 curve we get the 
same result as reported in [4], the optimal pipeline depth 
is around 55 front-end stages.  Observe that the optimal 
pipeline depth for wider issue-width moves towards 
shorter front-end pipeline depth; this effect is also ob-
served in [3].   
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Figure 17:  The implication of increasing front-end pipeline 
length on future pipelines.  (a) As the front-end length in-
creases the benefit of wider issue diminishes.  (b) Optimal 
pipeline depths for various issue widths based on the front-
end pipeline delay and flip-flop overhead from [4]. 

6.2 Increasing Issue Width 
To study the effects of increased issue width, we again 
focus primarily on the impact of branch mispredictions.  
To do this, we consider the fraction of time that the num-
ber of useful instructions actually issued is close to the 
implemented maximum issue width.  “Close” is defined 
as anything within 12.5% of the implemented maximum 
issue width; e.g. if the designed issue width is 8, and the 
processor model issues 7 during a given cycle, then we 
count it as achieving the designed issue width during that 
cycle.  Figure 18 shows number of instructions between 
mispredictions that are required for a given fraction of 
time that IPC is close to the implemented issue width. 
What this graph shows is that if the same fraction of time 
is to be spent close to the implemented issue width when 
the issue width is doubled, then the number of instruc-
tions between branch mispredictions must quadruple.  
That is, the performance of the branch predictor (as 
measured by the number of instructions between mispre-
dictions) must improve as the square of the issue width 
increase. Given the small incremental gains in branch 
prediction that are currently being made, this does not 
bode well for increased issue widths. Of course, deeper 
pipelines only exacerbate the problem. Figure 19 further 

illustrates the problem. The graph plots the instructions 
issued per cycle between an average distance pair of 
branch mispredictions. The front-end pipeline depth is 
five.  With maximum issue width four, the IPC barely 
reaches four before a misprediction occurs.  With issue 
width of eight, IPC barely gets above six. Michaud et al. 
[7] observed a similar effect when studying instruction 
fetch requirements.     
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Figure 18:  Instructions between two mispredictions as a 
function of the fraction of time spent within 12.5% of the 
implemented issue width.  
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Figure 19: Per cycle instruction issue rate between two mis-
predicted branches. 

7. Summary, Conclusions, Future Work 
We developed a superscalar model where a back-

ground IPC level is determined, transient penalties due to 
miss-events are calculated, and these model components 
are combined to arrive at accurate performance estimates.  
Using trace-driven data cache misses, instruction cache 
misses, and branch misprediction rates, the model can 
arrive at performance estimates that, on average, are 
within 5.8% of detailed simulation. Further, it provides 
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some interesting intuition regarding superscalar proces-
sors, for example: 

1) The branch misprediction penalty is often signifi-
cantly larger then the front-end pipeline depth. 

2) Instruction cache penalty is independent of the 
front-end pipeline; it depends largely on the miss delay. 

3) The data cache penalty for an isolated long miss is 
essentially the miss delay.  For multiple misses that occur 
within a number of instructions equal to the ROB size, the 
combined miss penalty is the same as an isolated miss. 

Furthermore, the model can be used to arrive at gen-
eral conclusions regarding superscalar microarchitecture 
trends.  In a pair of brief analyses: 

 1) We were able to reproduce optimal pipeline depth 
results derived previously using clock-cycle simulation-
based models  [3, 4, 17, 18]. 

2) We were able to show that branch prediction accu-
racy must improve as the square of issue width if the 
same IPC profile is to be maintained.  
       The first order model works very well, and gives us 
confidence that even more accurate superscalar processor 
models can be built. There are two avenues for future 
research: one is to refine the modeling of the features 
currently in the first-order model, the other is to model 
new features.   

With respect to better modeling of the features cur-
rently in the model, we consider the following to be 
among the more important. 

1) Improve modeling of the IW characteristic. The 
IW characteristic is important for determining the sus-
tained “background” performance level and for determin-
ing performance penalties for miss-events.      

2) Improve modeling of data cache miss overlap ef-
fects. For overlapping long data cache misses, the ap-
proximation we used in Section 4.3 is fairly rough and is 
a weak link in the model, as shown by the errors in mcf 
and twolf.  We expect that these overlaps can be modeled 
more accurately (possibly at the cost of more detailed 
overlap statistics). Also modeling overlaps of instruction 
cache misses and branch mispredictions with long data 
cache misses will likely improve accuracy somewhat. 

3) Modeling bursts of branch mispredictions.  The er-
ror in gzip suggests that the effect of bursts of branch 
mispredictions needs to be modeled more accurately.  
Branch mispredictions are the one case where the window 
drain penalty and ramp-up penalty do not offset each 
other. Bursts of branch mispredictions can have signifi-
cantly less overall penalty than isolated ones. Here, we 
can collect secondary branch misprediction statistics to 
better model bursty behavior.   

With respect to new features, there are many possi-
bilities; currently, we planning the following:  

1) Limited numbers of functional units. Here, we will 
have to collect instruction mix statistics.  To sustain the 

estimated sustained performance, the mix can be used to 
determine the number of units required to meet this per-
formance.  Or, if the number of units is too small, we can 
generate a lower saturation level than the maximum issue 
width.  Here, it may be necessary to consider program 
phases, and model each of them separately – something 
we have not had to do thus far. 

2) Instruction fetch buffers.  These buffers immedi-
ately follow the instruction cache and can hide some (or 
all) of the I-cache miss penalty. A related issue is the ac-
counting for fetch inefficiencies due to branching into the 
middle of cache lines.   

3) Partitioned issue windows and clustered functional 
units.  Many superscalar processors have multiple issue 
buffers, divided according to function or according to sets 
of clustered units. 

4) Additional types of miss-events, TLB misses in 
particular. When added, these will act much like long data 
cache misses. 

Finally, although they have apparently fallen into dis-
repute in recent years, we have shown that simple trace 
driven simulations of caches and branch predictors have a 
definite, useful role to play in performance evaluation.  
Cache and predictor miss-events can be directly related to 
overall performance losses in a fairly straightforward 
way. 
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