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ABSTRACT 
 

Virtual Private Machines (VPM) provide a framework for Quality 
of Service (QoS) in CMP-based computer systems.  VPMs 
incorporate microarchitecture mechanisms that allow shares of 
hardware resources to be allocated to executing threads, thus 
providing applications with an upper bound on execution time 
regardless of other thread activity.  Virtual Private Caches (VPCs) 
are an important element of VPMs.  VPC hardware consists of 
two major components: the VPC Arbiter, which manages shared 
cache bandwidth, and the VPC Capacity Manager, which 
manages the cache storage.  Both the VPC Arbiter and VPC 
Capacity Manager provide minimum service guarantees that, 
when combined, achieve QoS for the cache subsystem. 

Simulation-based evaluation shows that conventional cache 
bandwidth management policies allow concurrently executing 
threads to affect each other significantly in an uncontrollable 
manner. The evaluation targets cache bandwidth because the 
effects of cache capacity sharing have been studied elsewhere.  In 
contrast with the conventional policies, the VPC Arbiter meets its 
QoS performance objectives on all workloads studied and over a 
range of allocated bandwidth levels.  The VPC Arbiter’s fairness 
policy, which distributes leftover bandwidth, mitigates the effects 
of cache preemption latencies, thus ensuring threads a high-
degree of performance isolation.  Furthermore, the VPC Arbiter 
eliminates negative bandwidth interference which can improve 
aggregate throughput and resource utilization. 

Categories and Subject Descriptors 
C.0 [Computer System Organization]: hardware/software 
interface, system architectures 

General Terms 
Management, Performance, Design, Experimentation. 

Keywords 
Chip Multiprocessor, Shared Caches, Quality of Service, 
Performance Isolation, Soft Real-Time. 
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1. INTRODUCTION 
To provide both efficiency and high throughput, CMP-based 

systems rely heavily on resource sharing, especially in the 
memory hierarchy.  Shared resources include both storage 
capacity and bandwidth, comprising ports, interconnection paths, 
and associated buffering. Although main memory capacity is 
managed by OS page replacement algorithms, most of the other 
memory resources – main memory bandwidth and cache 
capacities and bandwidths – are managed through hardware 
mechanisms.   For these shared resources, the hardware 
mechanisms affect the amount of inter-thread interference, both 
destructive and constructive, and, in turn, this affects the threads’ 
performance predictability. 

 In many general purpose applications, execution threads 
must attain a minimum level of performance, irrespective of the 
other threads that happen to be running concurrently.   Some 
desktop applications have soft real-time constraints, for example 
those that support multimedia such as HD videos and resource-
intensive video games.  In servers supporting multiple threads on 
behalf of independent service subscribers, it is important that 
resources be shared in an equitable manner and that tasks perform 
in a responsive, timely way.  To support these applications and 
others, future CMP-based systems should provide threads with 
quality of service (QoS) in order to preserve performance 
predictability and facilitate the design of dependable systems.  

Historically, QoS has been of interest in computer 
networking, and recently it has become the subject of computer 
architecture research.  The objective of QoS is to provide a bound 
on some performance metric.  For networks, the objective is to 
provide an upper bound on the end-to-end delay through the 
network.  For CMP systems, a QoS objective is to provide 
applications an upper bound on execution time, or, alternatively, a 
consistent execution time regardless of other thread activity.   

QoS objectives are usually achieved through resource 
provisioning; that is, by allocating a certain quantity of 
resource(s) to a given network flow (or computation thread in our 
case).   The goal of the research reported here is to provide 
microarchitecture-level mechanisms whereby allocations of 
shared cache resources can be guaranteed.  On the other hand, the 
policies that determine the actual allocations are beyond our 
scope.   That is, we assume the desired resource allocations are 
given to us, presumably through a combination of application and 
system software policies, and it is the proposed mechanisms that 
assure the requested allocations are provided by the shared cache 
hardware, thereby achieving QoS objectives.    

We study and evaluate resource sharing mechanisms within 
the general framework of Virtual Private Machines, and Virtual 
Private Caches more specifically.  These are described more fully 
in the following two subsections.  Briefly, a virtual private 
machine (virtual private cache) is defined through the allocation 



 

of a portion of shared resources.  The objective is that a virtual 
private machine (virtual private cache) should provide 
performance at least as good as a real private machine (real 
private cache) having the same resources. The effectiveness of the 
proposed mechanisms is demonstrated through simulations that 
compare thread performance on a shared-cache CMP with 
performance on an equivalently provisioned private machine. 

1.1 Virtual Private Machines 
The Virtual Private Machine (VPM) framework is illustrated 

in Figure 1. A generic CMP-based system is in Figure 1a. In the 
work here we assume single-threaded processors, although the 
concepts extend to multi-threaded processors. The system 
contains private L1 caches, a shared L2 cache, main memory, and 
supporting interconnection structures.  Of course, if there were an 
L3 cache, it would be shared in a similar manner. 
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Figure 1.  Virtual Private Machines: a) System Hardware b) 
Four Virtual Private Machines. 

 
By implementing mechanisms such as those studied in this 

paper, the CMP is effectively divided into Virtual Private 
Machines (VPMs).   In a VPM, shares of hardware resources are 
allocated to executing threads.   For example, a CMP with four 
hardware-supported threads can be divided into four VPMs where 
the resources, both bandwidths and capacities, are divided evenly 
among executing threads. This configuration is well suited for 
general purpose operating systems that distribute processor 
resources using time slices – a time slice is a unit of a processing 
resources.  Allocating each time slice to an equally provisioned 
VPM maintains the existing abstraction provided to the OS by 
ensuring that each time slice represents a consistent amount of 
processing resources. 

In general, however, the resources need not be allocated 
evenly, and there may be left-over, unallocated resources that are 
dynamically shared among the VPMs in accordance with a  
fairness policy.  For example, in Figure 1b, VPM0 is given a 
significant fraction (50%) of resources to support a demanding 
multimedia application, while the other three VPMs are assigned 
a much lower fraction of resources (10% each).  This leaves 20% 
of the cache memory resources unallocated.   

The goal is for a VPM to yield thread performance at least as 
good as on standalone, real private machine having the same 
resources, regardless of any other threads that might be running 
concurrently (i.e., performance isolation).  Furthermore, if one or 
more of the VPMs do not need all of their allocated resources 
and/or there are unallocated resources, then any excess is 
distributed among the other VPMs, potentially providing them 
with additional performance.     

1.2 Virtual Private Caches 
In this paper, we develop Virtual Private Caches (VPCs), a 

critical component of the VPM framework (See Figure 1b).  A 
VPC consists of two main parts: the VPC Arbiter, which manages 
shared bandwidth, and the VPC Capacity Manager, which 
manages storage resources.  The VPC Arbiter design is based on 
network fair queuing (FQ) algorithms that are adapted to 
microarchitecture resources.     

Cache capacity sharing has been studied and evaluated 
elsewhere [7][10][13][22][23][29], so we focus most of our 
discussion and evaluation on the VPC Arbiters.  A simulation-
based evaluation shows that existing cache arbiter policies allow 
threads sharing cache bandwidth to affect each other significantly, 
e.g., performance degradation of up to 87%.  In contrast, the 
proposed VPC Arbiters provide threads with performance 
isolation so that QoS performance objectives are met on all 
workloads studied, including workloads that intentionally 
inundate the shared cache with requests. Furthermore, we show 
that for heterogeneous workloads, VPCs improve throughput by 
eliminating negative bandwidth interference. 

2. RELATED WORK 
 

Fair Queuing Memory Systems (FQMS) uses basic 
network FQ principles in order to provide QoS and fairness to 
threads competing for SDRAM memory system bandwidth [21].  
The work presented here extends FQMS in several significant 
ways.  First, the VPM is proposed as an overall framework that 
extends across CMP subsystems.  Second, we study shared 
caches, which have both shared bandwidth (VPC Arbiters) and 
capacity (VPC Capacity Manager) components.  Third, the FQ 
memory scheduler uses approximate FQ methods to account for 
the complex timing constraints of an SDRAM memory system.  
In contrast, the VPC arbiters are a strict implementation of FQ 
algorithms.  The result is an arbiter that guarantees minimum 
bandwidth and is amenable to managing microarchitecture 
resources.  Finally, we study many details of bandwidth sharing 
that are ignored in the FQMS work, e.g., preemption latencies, 
performance monotonicity, differentiated service, and strict 
isolation. 

 

Performance isolation has become an important topic in 
operating system and virtual machine research [1][28][31][8].  
Performance isolation and QoS are closely related.  The objective 
of both performance isolation and QoS is to ensure a task a 
minimum level of performance, regardless of other tasks in the 
system.  General-purpose operating systems and virtual machines 
attempt to provide tasks performance isolation by running a task 
at a fraction of its speed on a dedicated system [26], regardless of 
other tasks in a shared system.   In general, this abstraction is 
usually implemented by time multiplexing tasks onto shared 
resources.   



 

Most performance isolation research focuses on software 
policies. However, software policies are unable to provide a 
sufficient level of performance isolation in CMP-based computer 
systems, primarily because the hardware does not support 
appropriate low level resource sharing mechanisms.  Such 
mechanisms, applied to shared caches, are the topic of this paper.   

Carzola et al. proposed hardware-based QoS policies to 
dynamically adjust resource allocations in SMT processors based 
on previous time period(s) [4].  This approach is based on 
prediction, which may not work for all applications and does not 
offer any QoS guarantees.  

 

METERG is a methodology to test and deploy real-time 
applications on multiprocessor systems with shared 
microarchitecture resources [17].  The basic premise of the 
METERG methodology is consistent with the VPM framework; 
both provide QoS through hardware mechanisms that provide 
service guarantees.  In contrast, METERG is primarily an 
application development methodology; Lee and Asanović provide 
few details of hardware mechanisms.  The QoS policies and 
mechanisms presented in this paper can be applied to the 
METERG methodology. 

 

Cache capacity sharing has been the topic of a significant 
amount of research [7][10][13][22][23][29].  Most cache capacity 
sharing algorithms optimize a performance metric related to 
aggregate throughput[22][29], although there is some cache 
sharing research that has focused on metrics that are subjectively 
fair [7][10].  Aggregate throughput and fairness sharing 
algorithms tend to be very similar – they use the same basic 
algorithms, but optimize different metrics.  Often fairness metrics 
are based on proportionate slowdown [7][10] where all 
concurrently executing threads slow down by the same 
percentage, as compared with running alone on the same 
hardware.   

Techniques that target aggregate metrics do not provide 
performance isolation, thus making them incompatible with most 
operating system and virtual machine performance abstractions.  
For example, with proportionate slowdown, if one thread is 
resource constrained in a multithreaded execution, it will cause all 
threads in the system to run slower.  This is an undesirable 
behavior for a general-purpose system.  Furthermore, the 
operating system should be the primary resource manager in a 
computer system because it has a global view of the system’s 
resources and workload objectives.  Hardware implemented 
policies targeted at aggregate metrics may compete with the 
operating system’s policies and prevent the operating system from 
effectively accounting for and managing resource sharing. 

Iyer discusses cache QoS and a framework of possible 
solutions [13].  However, Iyer’s discussion is based on a 
definition of QoS that may not apply to certain types of shared 
resources, in particular, bandwidth resources.  In contrast, we 
propose bandwidth and capacity QoS policies that are both based 
on the same, well established QoS definitions and solutions from 
computer networking research.  

3. BACKGROUND 

3.1 Shared Caches 
Processors in a CMP place considerable pressure on both 

shared cache capacity and bandwidth.    A common way to 
increase cache bandwidth is to address-interleave requests across 

multiple cache banks [9].  However, recent work on shared cache 
crossbar interconnections illustrates that cache banking does not 
scale well [14]; cache banking can significantly increase latency, 
area, and power.  Therefore, CMP designers are targeting higher 
cache utilization [15], thus making threads sharing cache 
bandwidth more susceptible to interference. 

We consider a baseline cache hierarchy that closely 
resembles that used in IBM’s Power4, Power5, 970 (Apple’s G5), 
and Xbox 360 chips [30][11][3].  Write-through L1 caches are 
used because they require less L1 array bandwidth, eliminate 
many of the complexities of protecting on-chip data with ECC, 
and consequently, have lower latency [19].  A L2 cache is 
illustrated in Figure 2; this structure would also apply to shared 
L3 caches, if present.  In the baseline shared cache 
microarchitecture, processors are connected to the cache banks 
via a crossbar interconnect (Figure 2a).  Each processor has 
private read and write ports into each cache bank.  Each cache 
bank has a return data bus connected to all processors on the 
crossbar [14].  To reduce power the crossbar interconnection 
operates at half the core frequency. 
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Figure 2.  Shared L2 caches a) Processor-cache interconnect.  
b) Cache bank structure. 

The logical structure of a single cache bank is illustrated in 
Figure 2b.  Read and write requests first arrive at the store 
gathering buffers (one per processor).  Store gathering is an 
efficient method for supporting write-through L1 caches [27]. At 
the store gathering buffer, incoming store data for the same cache 
line are merged; if there are no other stores to the same cache line, 
a new buffer entry is allocated.  Loads bypass stores in the store 
gathering buffer after checking the store gathering buffer for 
memory dependencies.  When a load encounters a store to the 
same line address, the conflicting store and any older stores are 
retired from the store gathering buffer to the L2 cache before the 
load is allowed to proceed, i.e., a partial flush policy is 
implemented [27].  When the store gathering buffer occupancy 
reaches a high water mark (n), the buffer begins retiring stores to 
the L2 cache, i.e., a retire-at-n-policy is used [27].   



 

 After a request passes through the store gathering buffers, 
the controller checks that the request does not conflict with other 
pending L2 requests, i.e., to assure that the new request will not 
cause a race or violate the memory consistency if it is allowed to 
proceed [19].  If the request does not create a conflict, it is 
allocated a cache controller state machine.  The cache controller 
state machine initiates tag array, data array, and external 
coherence requests in order to fulfill the request.  Write requests 
require two back-to-back data array accesses because ECC covers 
32 byte segments.  The first access reads the cache line out of the 
data array – the dirty data is then merged into the cache line and 
the line’s new ECC is calculated – and the second data array 
access stores the cache line and its ECC.  Read requests require a 
single data array access.  After a read request accesses the data 
array, the request’s cache line is sent through the read claim 
queue and out of the cache bank on the bank’s data bus.   

There are three shared resources in the baseline cache 
microarchitecture: 1) the tag array bandwidth, 2) the data array 
bandwidth, and 3) the storage capacity.  Coherence state machines 
are statically partitioned [14].   

The tag array and data array bandwidth resources are 
managed by arbiters that multiplex threads’ requests onto the 
shared resources (Figure 2b).  In addition, the data bus back to the 
processors is shared, but it operates at the same rate as the data 
array; therefore, the data array arbiter controls access to both 
resources. For private caches, Read-over-Write, First-Come First-
Serve (RoW-FCFS) arbiter policies are effective at improving 
performance and optimizing resource utilization [9][27].  RoW-
FCFS first prioritizes read over write requests (RoW) and then 
prioritizes the oldest request (FCFS).  In a multi-thread 
environment, however, a RoW-FCFS arbiter for shared resources 
allows an aggressive thread with many loads to starve other 
threads from receiving shared cache bandwidth [19].  Therefore, 
for the multithreaded case, we use the FCFS arbiter without RoW 
as our baseline.  We also consider round-robin arbitration, which 
is sometimes considered “fair”, but, as we will show, it does not 
provide performance isolation.   

Cache capacity resources are managed through cache 
replacement [7][13][22][23][29].  In general, each line in a shared 
cache is associated with a specific thread.  When a thread causes a 
cache miss, the replacement policy takes cache capacity 
associated with one thread and assigns the capacity to the thread 
that caused the cache miss.  In effect, the replacement policy 
multiplexes threads onto the shared cache capacity resources. 

3.2 Fair Queuing 
A fair queuing scheduling algorithm offers guaranteed 

bandwidth to simultaneous network flows over a shared link 
[2][16][24][25][33].  That is, the scheduling algorithm provides 
each flow its allocated share of link bandwidth regardless of the 
load placed on the link by other flows.  A fairness policy 
distributes excess bandwidth in proportion to the flows’ allocated 
shares.   Excess bandwidth is either bandwidth that is not 
allocated to any flow or it is bandwidth that has been allocated but 
is not used by the flow to which it is allocated.  A scheduler that 
redistributes allocated, but unused bandwidth is work-conserving 
[5][16].  In general, the fairness policy can be any policy that 
distributes excess bandwidth, whether one would subjectively 
consider it to be “fair” or not.  Different fairness policies may be 
more appropriate in different environments.  An important 
characteristic of a scheduling algorithm’s fairness policy is the 

extent to which a flow receiving excess bandwidth in a given time 
period will be penalized in later time period(s).  

In an FQ scheduling algorithm a flow i is given a share 0 < φi  
≤ 1 of the total link bandwidth.  FQ scheduling algorithms often 
operate within a virtual time framework where the virtual service 
time equals the network packet’s length Li

k (expressed in units of 
link capacity) time scaled by the reciprocal of the flow’s share φi.  
In a basic implementation, when packet pi

k (kth packet of ith flow) 
arrives at time ai

k, the FQ algorithm calculates the packet’s virtual 
start-time Si

k and virtual finish-time Fi
k.  A packet’s virtual finish-

time is the time the request must finish (its deadline) in order to 
fulfill the minimum bandwidth guarantee under ideal conditions. 
The virtual start-time (Equation 1) of a packet is the maximum of 
its virtual arrival time and the virtual finish-time of the flow’s 
previous packet.    The virtual finish-time (Equation 2) is the sum 
of a packet’s virtual start-time and its virtual service time.  
Prioritizing packets earliest virtual finish-time first [2][16][24] 
yields earliest deadline first (EDF) scheduling [5]. 

 

[1]  Si
k = max { ai

k , Fi
k-1 } 

[2]  Fi
k = Si

k + Li
k / φi 

 

Even though a flow is guaranteed a bandwidth, in the 
presence of other flows it is not guaranteed that individual 
requests will finish at the same time as they would in the absence 
of all other flows.  The reason is that the resource may be active 
with another request (from a different flow) at the time a new 
request arrives.   If the new request could preempt the current 
request immediately, then its deadline could be satisfied.  
However, if there is a non-zero preemption latency, the deadline 
may not be satisfied. In general, with EDF scheduling, as long as 
the resource is not overloaded (e.g., ∑φi  ≤ 1), a request will finish 
its service no later than the <deadline> + <max preemption 
latency> [5][16].  If a resource is not preemptible, then the max 
preemption latency is the maximum service time. 

4. VIRTUAL PRIVATE CACHES 
Virtual private caches (VPC) provide QoS mechanisms for 

sharing cache resources in CMP-based systems.  The VPC 
controller described in this section has a set of control registers 
visible to system software that specify a VPC configuration for 
each hardware thread sharing the cache. For each active thread, 
the control registers specify a share of cache capacity (αi), and a 
share of tag and data array bandwidth (φi). In their full generality, 
these mechanisms allow software to allocate each of the 
bandwidth resources independently (via separate control 
registers), but, to simplify the discussion, we consider the case 
where the shares are the same.   

The VPC controller consists of the VPC Arbiters, which 
manage the tag and data array bandwidth resources, and the VPC 
Capacity Manager, which manages the cache capacity resources.  
The VPC Arbiter and VPC Capacity Manager are compatible– 
they are based on the same definition of QoS and fairness – and in 
combination they achieve the VPC QoS objective. 

4.1 VPC Arbiter 
Each tag and data array has a VPC arbiter that selects a 

pending request to access the shared resource next (see Figure 2b 
in the background section).  All VPC arbiters are implemented in 
essentially the same way.  The basic implementation is 
parameterized and each arbiter instance is configured to manage 
its resource’s specific timing characteristics.  For example, the 



 

data array’s arbiter is configured for the data array’s bandwidth 
constraints and the fact that write operations on the data array 
require two array accesses. 

4.1.1 Arbiter Implementation 
The proposed arbiter implementation is equivalent to the FQ 

algorithm outlined in the background section, but is optimized to 
reduce circuit complexity and support common performance 
optimizations that reorder requests after they have entered 
arbitration.  In particular, this implementation reduces circuit 
complexity by eliminating the priority queue in the 
implementation outlined in the background section.  Instead of the 
priority queue, a VPC arbiter has a FIFO buffer for each thread 
(see Figure 3).  When a request enters arbitration for a resource, 
the request’s ID is added to its thread’s arbiter buffer.  A request 
ID is a reference to a controller state machine, where the request’s 
state information is stored.  The arbiter buffers are small; a 
request ID only requires a few bits of storage. 
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Figure 3. VPC Arbiter Hardware Implementation   

A VPC arbiter maintains a clock register R.clk and two 
registers R.Li and R.Si for each thread1.  The clock register in the 
VPC implementation is a real time counter that simply counts 
clock ticks and is used for determining arrival times ai

k (Section 
3.2).  The R.Li register stores a thread’s virtual service time L / φi, 
where L is the service requirement of request mi

k (the kth request 
from the ith thread) and φi is the thread’s fraction of the resource.  
The service requirement L is the latency of the shared resource 
(see Table 1 in the evaluation section).  For write requests on the 
data array, the service requirement is twice the latency of the data 
array.  The R.Li register only has to be calculated when the 
thread’s service share φi is changed.   

A key element of the implementation is the R.Si register 
which tracks the time the virtual resource will become available 
for a thread’s next request, i.e., the next request’s virtual start-
time Si

k.   At the time a request is selected for service, then its R.Si  
register is updated to indicate the time the virtual resource will be 
available for the next request. Following paragraphs describe the 
implementation algorithm in more detail. 

When a request from thread i arrives at the FIFO buffer and 
the buffer is empty, then the virtual resource is either available 
immediately (if R.Si  < R.clk) or it will not be available until R.Si. 
(the time the preceding request finishes with the virtual resource). 
This is shown in register transfer statement 3.  

 
Arrival 
[3] If thread i’s queue is empty and R.Si < R.clk then 
     R.Si ←R.clk; else R. Si is unchanged 
 

                                                                 
1 In our notation, we use the R. prefix to distinguish hardware 

register values. 

If thread i’s FIFO buffer is not empty when mi
k arrives, then 

the virtual resource is backlogged, and mi
k ’s arrival time will 

have no effect on its virtual start-time.  Rather, its virtual start 
time will be the virtual finish time of thread i’s immediately 
preceding request, and, as will be described shortly, the preceding 
request will update R.Si  accordingly at the time it is selected. 

The VPC Arbiter inspects the thread requests at the heads of 
the FIFO buffers and calculates their virtual finish times.  The 
virtual finish time of request mi

k is Fi
k , and it is calculated 

(statement 4) as the sum of mi
k ’s virtual start-time, which is 

stored in the R.Si, and its virtual service time, which is stored in 
R.Li.  

 

Abriter Calculation 
[4] Fi

  = R.Si + R.Li           
      (R.Si + 2*R.Li  for write requests on the data array)  

 

The arbiter selects the request with the earliest virtual finish-
time.  It then updates the R.Si register with the just-computed 
finish time of the selected request (statement 5) to reflect the time 
the virtual resource will become available for thread i’s next 
request.  It removes the request’s ID from the queue and uses the 
ID to identify the request’s controller state machine which 
initiates the access to the shared resource. 

 

Arbiter Selection 
[5] R.Si  ← Fi 

 

The implementation outlined in statements 3, 4, and 5, 
enables performance optimizations that use intra-thread request 
reordering, while maintaining the bandwidth guarantees and 
fairness properties of the basic FQ algorithm.  Any request in a 
thread’s buffer can be selected to access the resource, and doing 
so does not change the amount of service (bandwidth) the thread 
receives relative to other threads [16].   

Intra-thread reordering occurs within the thread’s buffer (i.e., 
the buffer is no longer strictly FIFO) and does not affect the rest 
of the arbiter design.  The primary reordering optimization we are 
interested in here is prioritizing intra-thread Reads-over-Writes 
(RoW), although there are other common reordering 
optimizations that occur in a cache hierarchy, e.g., prioritizing 
demand-fetches over prefetches, but we do not consider them in 
this paper. 

4.1.2 Scheduling and Preemption 
Servicing the thread with the earliest virtual finish-time first 

is the same as scheduling earliest deadline first (EDF) [5]. As 
described in the background section, with EDF scheduling and a 
non-preemptible resource, which is the case for shared cache 
resources, a request will finish its service by the <deadline> + 
<resource’s max service time> , where a request’s deadline is its 
virtual finish-time.   That is, a cache request may be delayed by 
another thread’s maximum service time (in the worst case).   

Despite the worst case behavior, the resource latency of 
shared cache resources often does not affect a thread’s 
performance (as will be shown in the evaluation section). General 
purpose processor traffic tends to contain bursty L2 accesses, and 
preemption latency is paid only once per burst [16]; the 
performance effect is analogous to filling a pipeline. Hence, the 
preemption latency is amortized over the burst of cache misses.  
However, applications with low memory level parallelism (where 
misses are less bursty) are more susceptible to preemption latency 
effects. 



 

4.1.3 Arbiter Fairness Policy 
VPC arbiters mitigate the effects of preemption latency 

through a fairness policy that is tailored to general-purpose 
processor traffic.  As described above, a fairness policy distributes 
excess bandwidth.  Excess bandwidth is bandwidth that is not 
allocated to any thread or it is bandwidth that has been allocated 
but is not used by the thread to which it is allocated.  The VPC 
arbiters’ fairness policy distributes excess bandwidth to the thread 
that has received the least excess bandwidth in the past (relative to 
its service share φi) [21][24].  This fairness policy differs from the 
fairness policy commonly used in networks.  In contrast with 
network fairness, the VPC arbiter’s fairness policy takes into 
account past bandwidth usage. 

The VPC arbiter uses a different fairness policy because a 
general-purpose processor and its memory system behave like a 
closed system, i.e., the rate that a processor injects requests into 
the memory system depends on the average latency of the 
requests.  Threads that consume more cache bandwidth tend to 
increase the average latency experienced by other threads – 
primarily by increasing the average preemption latency 
experienced by other threads.  These highly consumptive threads 
also tend to have more memory level parallelism and are less 
sensitive to latency.  Therefore, the highly consumptive threads 
should not receive excess bandwidth before threads that have 
received less excess bandwidth in past time periods.  In general, 
the VPC arbiters’ fairness policy is very effective at averaging out 
preemption latency.  However, in cases where a thread is very 
sensitive to L2 latency and is allocated a high percentage of the 
cache bandwidth, artifacts of the preemption latency can still be 
observed in a thread’s average performance. 

The VPC arbiter implementation described in subsections 
4.1.1 and 4.1.2 implements the desired fairness policy.  VPC 
arbiters schedule requests earliest virtual finish-time first.  In 
addition to acting as a deadline, the virtual finish-time of a 
thread’s next request is an indicator of the amount of service the 
thread has received, normalized to its share of the resource.  For 
example, if one thread is able to use a large amount of excess 
resource in a burst, its virtual finish-times will run well ahead of 
the clock register (R.clk) and the virtual finish times of other 
threads. Therefore, servicing threads according to earliest virtual 
finish-time (as described above) ensures threads meet their QoS 
guarantees, and naturally distributes excess bandwidth to the 
backlogged thread that has received the least excess bandwidth in 
past time periods.   

In contrast with the VPC arbiter, network fair queuing 
algorithms often use a virtual clock to implement their fairness 
policy.  A virtual clock determines request arrival times (ai

k) and 
computes virtual finish-times [2][33].  A virtual clock advances 
faster when fewer threads are backlogged, which increases the 
rate at which the non-backlogged threads’ virtual finish-times 
advance, thus reducing the penalty for the backlogged threads that 
are consuming excess service.  A detailed comparison of fairness 
policies and the extent to which a thread should be penalized for 
consuming excess service is a topic for future work. 

4.2 VPC Capacity Manager 
4.2.1 Capacity Manager Implementation 

The VPC Capacity Manager implements a way-partitioned 
replacement policy that requires few changes to the baseline 
cache microarchitecture.  Hardware mechanisms that support 

similar way-partitioned replacements policies have been proposed 
in the past [7][13][22][23][29].  The VPC Capacity Manager 
provides each thread with a VPC that has the same number of sets 
as the shared cache and at least  ⎣ αi * <ways in the shared 
cache> ⎦  cache ways, where αI is thread i’s allocated share of the 
cache.  We discuss the rationale behind this property later in 
Section 4.3, after we introduce the concept of performance 
monotonicity.   Note that in general the sum of the αI’s may be 
less than one, i.e., there may be unallocated cache capacity. The 
VPC Capacity  Manager’s replacement policy chooses a victim 
cache line from the destination cache set that satisfies one of the 
following two conditions: 
1) It is the least recently used (LRU) line owned by thread i, 

such that thread i occupies more than αi of the ways in the 
destination cache set.  

2) If there are no cache lines that satisfy the first condition, 
then it is the LRU line owned by the thread requesting the 
replacement. 

 

If Condition 1 is satisfied, then taking a cache line away 
from thread i will not cause the thread to fall below its allocated 
share of the cache ways.  Furthermore, the LRU line owned by a 
thread occupying more than its share of the cache ways, would 
not have been in the thread’s cache if it were executing out of a 
private cache with only αi of the cache ways.  If there are no 
threads that occupy more then their share of the cache ways 
(Condition 2), then all threads must occupy exactly their share of 
the cache ways.  Therefore, the LRU cache line owned by the 
thread would be the same cache line replaced if the thread were 
executing out of a private cache with αi of the cache ways. 

4.2.2 Capacity Manager Fairness Policy 
As defined above, there may be multiple threads that occupy 

more than αi of the ways in the destination cache set, and 
therefore, there may be multiple cache lines that satisfy the first 
condition of the replacement policy.  The VPC Capacity 
Manger’s fairness policy refines the replacement policy above by 
specifying how to select a victim when more than one thread 
occupies more than its share of the cache ways, and therefore, 
specifies how excess cache capacity should be distributed.   

In contrast with the VPC arbiter, the VPC Capacity Manager 
cannot guarantee QoS and be work conserving without oracle 
knowledge.  Once cache capacity is allocated to a thread, the 
capacity cannot be relinquished (and redistributed) as long as the 
thread remains active, even if a cache line will go unused in the 
future.  Theoretically, the frame holding such a cache line could 
be redistributed to another thread without affecting the owner’s 
QoS, but without an oracle, this cannot be done.  We plan to 
explore the topic of work conserving capacity managers in future 
work. 

As discussed in the background section, the fairness policy 
can be any policy that distributes excess resources, whether one 
would subjectively consider it to be “fair” or not.  There are many 
existing capacity sharing algorithms that target “fairness”, e.g. 
[7], or throughput which can be used to refine the VPC Capacity 
Manager’s replacement policy and manage the excess cache 
capacity.  Because these methods have been studied elsewhere, 
we focus our evaluation on scenarios where all of the shared 
cache’s resources are allocated so the VPC Capacity Manger’s 
fairness policy has no effect. 



 

4.3 Discussion 
We use resource allocation as a means for achieving a 

desired QoS.  In doing so we assume that a given level of 
performance is guaranteed when an associated minimum resource 
allocation is guaranteed.  Resources above the allocated minimum 
may be provided to a thread if they are available.  An implicit 
assumption is that a thread’s performance is a monotonically 
increasing function of the amount of resources the thread is 
offered. That is, if a thread is offered more resources, the thread’s 
performance will remain the same or increase – it will not 
decrease.  Performance monotonicity, when combined with 
guaranteed minimum resources will provide QoS.   

Many computer systems do not strictly satisfy the 
performance monotonicity assumption.  Because of the 
complexity of modern processors and their use of speculation, 
there are situations where more resources can cause the ordering 
of events to shift or new events to be generated, and these can 
occasionally degrade performance.   One example is prefetching – 
giving a thread more memory bandwidth may increase the 
number of prefetches.  In some programs increasing prefetches 
may lead to net performance loss due to cache pollution.  

We conjecture that if one were to constrain a system 
implementation so that performance monotonicity is strictly 
satisfied in all cases, then it would rule out many performance 
optimizations that significantly raise average performance.  In 
other words, by guaranteeing performance monotonicity, one 
would reduce average performance only to avoid relatively rare 
cases where performance might degrade slightly.   We feel that in 
many situations, this is not a good engineering choice, and 
therefore one might opt for systems which do not guarantee 
performance monotonicity.  The wisdom of this choice can be 
demonstrated through simulations (as we have done), which show 
that in practical cases, QoS is in fact achieved, despite the 
absence of guaranteed performance monotonicity.  

Similar comments apply to algorithms for sharing cache 
capacity.  We conjecture that the VPC Capacity Manager (way-
partitioning) satisfies performance monotonicity.    However, the 
proposed VPC method comes at a cost; it increases the minimum 
granularity at which the cache can be partitioned.  Therefore, 
when compared with more flexible capacity managers, e.g., 
capacity managers that partition cache capacity based on the 
usage of the entire cache, the VPC method may have lower 
average performance.  However, these more flexible capacity 
managers do not satisfy performance monotonicity.  For example, 
a capacity manager that does not distinguish between cache set 
and cache way resources may offer a thread more cache sets and 
fewer cache ways, which can increase the thread’s conflict misses 
and decrease its performance. 

5. EVALUATION 

5.1 Performance Model 
We use a detailed structural simulator developed at IBM 

Research to evaluate the VPC arbiters.  The simulator adopts the 
ASIM modeling methodology [6], and is defined at an abstraction 
level slightly higher than latch-level. The model’s default 
configuration is of a single processor IBM 970 system [11].  In its 
default configuration, the model has been validated to be ± 5% of 
the 970 design group’s latch-level processor model.  In this paper, 
we use an alternative simulator configuration (see Table 1) to 
avoid 970-specific design constraints.  The primary difference is a 

cache configuration that is more representative of future systems 
than the 970’s cache configuration.  We increased L2 cache size, 
decreased the line size in order to reduce the demand on memory 
bandwidth, and added another cache bank in order to support 
additional processors.  The L2 tag array and data array latencies 
have been scaled to account for the increase in array size and to 
be consistent with 45 nm technology [32] – array bandwidth is the 
reciprocal of the array latency.  The L2-to-L1 data bus is 16-bytes 
wide, which balances the additional data array latency with the 
data bus bandwidth.  The total L2 latency to read the critical word 
of a cache line from the L2 is 16 processor cycles – to receive the 
entire line takes 22 processor cycles (see the timing diagram in 
Figure 4).  The L2 controller state machines are partitioned [14] – 
each processor is allocated eight state machines per cache bank.  
Threads are allocated equal portions of the cache ways, and there 
are no unallocated cache ways, e.g., αi = .25  for all i.  The 970 
instruction and data prefetchers are disabled.  VPC supported 
prefetching is a topic for future work.  For the uniprocessor 
baseline, we use the RoW-FCFS arbiter policy.  The same arbiter 
policy is applied to the tag and data array.  For the multiprocessor 
baseline, we use FCFS because RoW-FCFS can cause starvation. 

 

Table 1.  System Configuration  
(latencies measured in processor cycles)  

Processors 4 processors operating at 2 Ghz 
Issue Buffers 20 entry BRU/CRU, two 20 entry FXU/LSU, 

20 entry FPU 
Issue Width 8 units (2 FXU, 2 LSU, 2 FPU, 1 BRU, 1 

CRU) 
Reorder 
Buffer 

20 dispatch groups, 5 instructions per dispatch 
group 

Load / Store 
Queues 

32 entry load reorder queue, 32 entry store 
reorder queue 

I-Cache 16KB private, 4-ways, 64 byte lines, 2 cycle 
latency, 8 MSHRs 

D-Cache 16KB private, 4-ways, 64 byte lines, 2 cycle 
latency, 16 MSHRs 

L1-to-L2 
Interconnect 

operates at ½ core frequency, 2 cycle latency, 
16 byte data bus per bank 

L2 Cache operates at ½ core frequency, 2 banks, 16MB, 
32-ways, 64 byte lines, 8 cache controller 
state machines per thread, 4 cycle tag array 
latency, 8 cycle data array, 8 store gathering 
buffer entries per thread, read bypassing, 
retire-at-6 policy, partial-flush on read conflict 
latency 

Memory 
System 

DDR2-800, controller operates at ½ core 
frequency, 16 transaction buffer entries per 
thread, 8 write buffer entries per thread, 
closed page policy, 1 channel per thread, 2 
ranks per channel, 8 banks per rank 

 

Processor 1 Read Port
Bank 1 Tag Array

Bank 1 Data Array
Bank 1 Data Bus
Bank 2 Tag Array

Bank 2 Data Array
Bank 2 Data Bus

Read to Bank 1 Read to Bank 2

Processor Cycles

Critical Word

 
Figure 4. Cache Timing Diagram of back-to-back reads to 

different cache banks 



 

The simulator has a cycle accurate model of an on-chip 
memory controller attached to a DDR2-800 memory system [21].  
To isolate the effects of cache sharing, threads are allocated 
private SDRAM channels by interleaving memory requests across 
memory channels using the most significant bits of the physical 
address and controlling the virtual-to-physical address mapping 
such that the threads’ physical address spaces differ in the most 
significant bits of the physical address. 

5.2 Workloads 
We use two microbenchmarks (see Table 2) and the SPEC 

2000 benchmark suite to evaluate the performance of the VPC 
arbiters.  The microbenchmarks are designed to stress 
performance isolation features. Each microbenchmark operates on 
a two-dimensional array of 32-bit words (int array[R][C]).  The 
array’s rows are 64 bytes long (the L1 cache line size) and the 
array’s total size is 32KB, twice the size of the L1 data cache.  
The Loads microbenchmark stresses L2 load bandwidth by 
continuously loading (lwz in PowerPC) the first column of each 
row in the array, thus creating a constant stream of L2 read hits.  
The main loop is unrolled; otherwise, the 970 branch information 
queue (BIQ) [11] becomes a bottleneck.  The Stores 
microbenchmark stresses L2 store bandwidth and is the same as 
the Loads microbenchmark but with store instructions (stw in 
PowerPC). 

 

Table 2.  Microbenchmarks in C / PowerPC 

Loads 
 

while(true) { 
   r2 <- &array[0][0] 
 
   for(i=0; i<R; i+=4){ 
      lwz r3,0(r2) 
      lwz r3,64(r2) 
      lwz r3,128(r2) 
      lwz r3,192(r2) 
      r2 <- r2 + 256 
   } 
} 

Stores 
 

while(true) { 
 r2 <- &array[0][0] 
 
 for(i=0; i<R; i+=4){ 
  stw r3,0(r2) 
  stw r3,64(r2) 
  stw r3,128(r2) 
  stw r3,192(r2) 
  r2 <- r2 + 256 
 } 
} 

 

Figure 5 shows the cache utilization of the microbenchmarks 
with a varying number of L2 cache banks, e.g., Loads 2B uses the 
baseline cache configuration with 2 cache banks.  The Loads 
benchmark fully utilizes two L2 banks and has about 80% 
utilization on four L2 banks.  Under ideal conditions the Loads 
benchmark should be able to fully utilize four L2 banks.  
However, the 970’s LSU reject mechanism causes loads to 
acquire LMQ [11] entries and enter the L2 cache out-of-order.  
Out-of-order cache accesses cause non-ideal bank interleaving, 
and the processor’s in-order structures (the LRQ [11] and reorder 
buffer) fill up and stall dispatch.  The data bus and data array 
utilization for the Loads benchmark are equal, illustrating that the 
cache design is properly balanced as in the timing diagram in 
Figure 4.  The Stores benchmark is very aggressive; it fully 
utilizes the data array in eight cache banks.  Write requests enter 
the L2 cache in-order, and therefore, have ideal bank interleaving.  
A single-thread of the Stores benchmark achieves utilization of 
100% for as many as eight cache banks.  Obviously, designing for 
this case is unattractive, e.g., a four processor CMP with 32 cache 
banks.  Our results show that with the VPC arbiters, CMP 
designers can focus on designing for the common case, rather 
than the worst case. 
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Figure 5.  L2 Cache Utilization of the Microbenchmarks 

We use the SPEC CPU 2000 benchmark suite as the second 
set of benchmarks because they are the best available source of 
heterogeneous applications.  The SPEC benchmark simulations 
use twenty 100 million instruction sampled traces.  Each trace has 
been verified to be statistically representative of an entire SPEC 
application [12].  Figure 6 shows the cache utilizations of the 
individual SPEC benchmarks.  As one would expect, the data 
array has the highest utilization, but for a few benchmarks (e.g., 
equake and swim) the tag array has greater utilization than the 
data array.  equake and swim have few L2 write requests (see 
Figure 7) and many L2 cache misses which require multiple tag 
array accesses.  Throughout our evaluation, we use data array 
utilization as an indicator of a thread’s aggressiveness.  

 

Benchmark L2 Cache Utilization
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Figure 6.  L2 Cache Utilization of the SPEC Benchmarks 

Figure 7 shows the percentage of L2 requests that are write 
requests (after store gathering) and the store gathering rate (the 
percentage of stores that are gathered with other stores in the store 
gathering buffer).  On average, write requests account for 55% of 
all L2 requests (after store gathering), and 80% of stores are 
gathered and do not require a separate L2 access.  The 970’s 
write-through L1 cache combined with store gathering is nearly as 
bandwidth effective as write-back caches, but without the 
complexities of write-back caches. 

 

Store Gathering Rate and L2 Writes
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Figure 7.  Percentage of L2 Requests that are Writes and the 

Store Gathering Rate 

5.3 QoS Performance 
To illustrate performance isolation and QoS we provide 

results from a number of experiments.  Most experiments involve 
multi-threaded execution, and to gauge QoS we define two 
standards for comparison: target IPC (instructions per cycle) and 
QoS IPC.   

A benchmark’s target IPC is the benchmark’s IPC 
performance when running on a uniprocessor cache with the same 



 

resources as the thread’s allocated VPC.  As described above, a 
benchmark ideally should go no slower than this target, and if the 
thread is offered excess bandwidth, it may go faster.  However, 
target IPC does not take into account the effects of resource 
preemption latencies.  Therefore, benchmarks may not meet their 
target IPC; although we will show that they do in most cases.  To 
determine a benchmark’s target IPC, we simulate a uniprocessor 
system with a private cache that has the same resources as the 
VPC.  The private cache has the same number of sets as the 
shared cache and ⎣ αi ∗ < baseline cache ways> ⎦  cache ways.  
In the private cache all resource latencies are scaled by: 1/φi∗ 
<baseline resource latency>.  For example, for a VPC allocated. 
.5 of the cache bandwidth and .25 of the cache ways (φi = .5 , αi = 
.25 ), we simulate a uniprocessor with a L2 cache that has 8 cache 
ways, an 8 cycle tag array latency, and 16 cycle data array 
latency.  For the cases where φi = 0 we set the target IPC to 0.   

A benchmark’s QoS IPC takes into account the resources’ 
worst case preemption latencies.   QoS IPC is a lower bound on a 
thread’s IPC.  To generate the QoS IPCs, we simulate a 
uniprocessor system as we do for the target IPCs, except we add 
the maximum preemption latency to the resource latencies and 
keep the resource bandwidth the same.  For example, we simulate 
a uniprocessor system with the latencies equal to 1/φi * <baseline 
resource latency> + <max preemption latency> cycles and 
bandwidth equal to φi  / <baseline resource latency> accesses per 
cycle. 

5.4 Results 
For the first experiment we model the baseline CMP 

executing two threads: the Loads microbenchmark on processor 1 
and the Stores microbenchmark on processor 2.  We analyze the 
effects of the following cache arbiters: First Come First Serve 
(FCFS), Read-over-Write First Come First Serve (RoW), Round-
Robin (RR), and VPC with five different VPC bandwidth 
configurations.  The IPC and data array utilization results are 
shown in Figure 8.  We omit the utilizations for the other shared 
resources because the data array is the main bottleneck (see 
Figure 5).  The x-axis of Figure 8 specifies the cache arbiter 
policy, and for the VPC arbiters, the share of cache bandwidth 
allocated to the Stores benchmark – leftover bandwidth is 
allocated to the Loads benchmark.  For example, the label VPC 
25% represents the configuration where the Stores benchmark is 
allocated .25 of the cache bandwidths (φ1 = .25) and the Loads 
benchmark is allocated .75 (φ2 = .75).  The IPC graph includes the 
target IPCs for each VPC configuration. 
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Figure 8.  Loads and Stores Microbenchmarks IPC and Data 

Array Utilization 
With the RoW-FCFS arbiter, the Loads benchmark prevents 

the Stores benchmark from receiving any cache bandwidth 
(likewise, any application with a long stream of loads would 

starve any other application’s stores).  In a real system, this would 
be a critical design flaw.   

With FCFS, requests from the Loads and Stores benchmarks 
are interleaved uniformly, i.e., there is one store from the Stores 
benchmark for every load from the Loads benchmark.  With a 
uniform interleaving of requests, however, the data array 
bandwidth is unevenly shared, and the demands of the two threads 
appear to interfere with each other.  The Stores benchmark 
receives 67% of the data array bandwidth and the Loads 
benchmark receives 33% of the data array bandwidth because 
stores require twice as much data array bandwidth as loads.  The 
round-robin arbiters also interleave requests uniformly, and, 
consequently, they provide the same performance and data array 
utilization as the FCFS arbiters.   

The VPC arbiters precisely provide each thread its allocated 
share of the cache bandwidth over a broad range of allocations.  
The VPC arbiters are able to divide bandwidth so well because 
both the Loads and Stores benchmarks keep constant pressure on 
the L2 cache – there are always pending requests from both 
threads.  Because the performance of these benchmarks depends 
almost completely on L2 bandwidth, both benchmarks meet their 
target IPCs; there are no preemption latency effects.  In addition, 
the VPC arbiters’ fairness policy has no effect on their 
performance because there is no excess bandwidth to distribute.   

For our second experiment we model the baseline CMP 
executing a SPEC benchmark on processor 1 (the subject thread) 
and the Stores microbenchmark on processors 2, 3, and 4 
(background threads).   We model the subject thread with FCFS, 
round-robin, and three VPC bandwidth allocations:  φ1 = .25, φ1 = 
.5, and  φ1 = 1.  Remaining bandwidth is allocated equally 
amongst the background threads.  For example, the label VPC .25 
represents the configuration where the subject thread is allocated 
.25 of the cache bandwidth (φ1 = .25) and each background thread 
is allocated .25 (φi = .25). 

  Figure 9 shows the IPC and data array utilization of the 
subject thread.  The IPCs are normalized to the subject thread’s 
target IPCs for φ1 = 1 , i.e., the subject thread running on a private 
cache with full cache bandwidth.  In addition to the normalized 
IPC of the subject thread, the graph shows the target IPC for φ1 = 
.25 and φ1 = .5 , and the QoS IPC for φ1 = 1 . 

This experiment illustrates 1) the VPC arbiters’ ability to 
isolate a foreground task from aggressive (possibly even 
malicious) background tasks, 2) the effects of the VPC arbiters’ 
fairness policy, and 3) the VPC arbiters’ ability to provide 
differentiated service.   

The FCFS and round-robin arbiters do not provide 
performance isolation.  The FCFS arbiters fail to meet the subject 
threads’ Target IPCs (Target .25) on all of the benchmarks.  The 
subject threads’ average normalized IPC is .3 (the harmonic mean 
of the normalized IPCs). Benchmark mcf has the worst 
normalized IPC, it receives only 4% of the cache bandwidth (far 
below its implicit share of the cache bandwidth) and has a 
normalized IPC of .13 (an 8x increase in runtime compared to the 
thread running alone).  FCFS is unable to provide performance 
isolation because it is a greedy policy.  Threads that have higher 
resource demands are given unimpeded access to the shared 
bandwidth resources. 

The round-robin arbiters fail to meet the subject threads’ 
Target IPCs on 12 out of 20 benchmarks – the subject threads 
average normalized IPC is .54.  The round-robin arbiters provide 



 

better isolation than the FCFS arbiters because they distribute 
bandwidth more fairly than FCFS.  However, the round-robin 
arbiters still do not provide a sufficient level of QoS and 
performance isolation.  There are two reasons why round-robin 
fall short.  First, round-robin does not account for requests’ 
different service requirements; threads that have a higher 
percentage of stores receive more service.  Second, round-robin 
does not take into account past resource usage.  Therefore, 
aggressive threads are able to increase the average latency of less 
aggressive threads, and force the less aggressive threads to 
backoff.   

In contrast with the FCFS and round-robin arbiters, the VPC 
arbiters meet the QoS objectives for all workloads on all VPC 
configurations.  For the φ1 = .25 and φ1 = .5 VPC configurations, 
each subject thread’s IPC is greater than its target IPC.  
Preemption latency does not have a significant effect with these 
VPC configurations because 1) the preemption latencies are 
relatively small compared to the allocated VPC resource latencies, 
and 2) the fairness policy penalizes aggressive threads for 
consuming excess resource, thereby causing the less aggressive 
(more latency-sensitive) subject thread’s requests to receive 
service soon after they arrive at the cache controller.   

For the φ1 = 1 VPC configuration, the subject threads meet 
their QoS IPCs – the QoS IPCs take into account the resources’ 
preemption latencies.  In this case, the subject thread’s VPC 
resources are equivalent to the real cache, and therefore, the 
effects of the resources’ preemption latencies can be observed in 
the benchmarks’ IPCs.  From these results we observe the varying 
degrees of memory level parallelism in the benchmarks.   In 
general, benchmarks that have less memory level parallelism tend 
to be more sensitive to preemption latency. 

As the subject thread’s allocated share of cache bandwidth 
decreases, the variation between the thread’s actual IPC and its 
target IPC increases.  This occurs for a two reasons.  As the 
allocated share decreases, the range of guaranteed cache latencies 
increases – the range is roughly [ <baseline latency> , 1 / φi ∗ 
<baseline latency> + <maximum preemption latency>  ].  
Furthermore, with the VPC arbiters’ fairness policy, requests from 
less aggressive threads (usually more latency-sensitive) are given 
higher priority, and therefore, their average latency tends to be 
much closer to the <baseline latency> end of the range rather 

than the  1 / φi ∗ <baseline latency> + <maximum preemption 
latency> end of the range.  We intend to study the fairness policy 
in more detail in future work, specifically whether an alternative 
fairness policy can provide tighter bounds on performance than 
those derived using network FQ theory. 

The top eight benchmarks in Figure 9 demand more than .25 
of the cache bandwidth (see Figure 6).  With the φ1 = .25 
configuration, these threads are bandwidth constrained.  On 
average, they receive 23% of the cache bandwidth.   The average 
normalized IPC of the lower twelve subject threads is .95.  The 
average normalized IPC of all the subject threads (with φ1 = .25) 
is .75, much better than FCFS and round-robin.   

The only subject thread that demands more than .5 the cache 
bandwidth is art.  With the φ1 = .5 VPC configuration, art’s 
normalized IPC is .51.  Its performance depends mostly on L2 
cache bandwidth and it receives .5 of the cache bandwidth.  The 
average normalized IPC excluding art is .98, and including art the 
average is .94.   

For the φ1 = 1 VPC configuration, the average normalized 
IPC is .99.  The worse case performance degradation is mcf with a 
normalized IPC of .92; mcf is very susceptible to preemption 
latency.  These results show that the φ1 = 1 VPC configuration is 
good for prioritizing a foreground thread while running less 
important background tasks. 

For our last experiment, we compare the performance of 
FCFS (a greedy technique), RR (which has some fairness 
attributes), and VPC (a QoS and fair technique) on multiprogram 
SPEC 2000 workloads.  The purpose of this experiment is to show 
that providing QoS and fairness improves aggregate throughput 
and resource utilization when compared to a greedy technique.  In 
real-time system, this is often not the case – providing QoS often 
reduces utilization.  For a general-purpose system low resource 
utilization is unacceptable, and as this experiment illustrates, it is 
not the case with the VPC arbiters.  To generate workloads, we 
used a perl script that uses random selection without replacement 
to generate three four-processor workloads from the top twelve 
SPEC benchmarks.  We ran this script three times to generate nine 
workloads.  Therefore, each benchmark appears once in the first 
set of three workloads, once in the second, and once in the third.  
Figure 10 shows individual benchmarks’ normalized IPCs as well 
as the harmonic mean of each workload’s four IPCs, and shows 
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Figure 9.  Subject Thread Normalized IPC and Data Array Utilization 



 

the individual and mean data array utilizations.  Cache bandwidth 
is allocated in equal proportions (φi = .25 for i from 1 to 4).  Each 
thread’s IPC is normalized to its target IPC for φi = .25. 

For the multiprogram workloads with the baseline FCFS 
arbiters there are 7 out of 36 benchmarks that do not meet their 
target IPC; in the worst case, the normalized IPC is .71.  With the 
VPC arbiters, each benchmark meets its target IPC, i.e., the 
normalized IPC of each benchmark is greater than one.   

Overall, there are significant differences between the 
individual threads’ normalized IPCs with the FCFS arbiters and 
with the VPC arbiters.  The average relative performance 
difference between the FCFS and VPC arbiters is 28% , i.e. thread 
i’s relative performance difference is: | FCFSi – VPCi | / average 
(FCFSi , VPCi)  , where  FCFSi is the thread’s normalized IPC 
with FCFS and VPCi is the thread’s normalized with the VPC 
arbiters.  This result emphasizes the significance of shared cache 
bandwidth and the importance of QoS.  Furthermore, there is -.21 
correlation between the threads’ normalized IPCs with FCFS and 
the threads’ normalized IPCs with the VPC arbiters, when mcf ’s  
IPCs are excluded (mcf is an outlier), the correlation is -.72, 
which is a strong negative correlation.  With FCFS, more 
aggressive threads tend to have better performance and less 
aggressive threads tend to have worse performance.  In contrast, 
with the VPC arbiters, all threads get their allocated share of the 
bandwidth and excess bandwidth is offered to the less aggressive 
threads first.  Therefore, relative to FCFS, more aggressive 
threads tend to have lower performance and less aggressive 
threads tend to have better performance. 
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Figure 10. Multiprogram Workload Normalized IPC and 
Data Array Utilization 

With the FCFS arbiters, the average (arithmetic mean) data 
array utilization per thread is 22% and has a standard deviation of 
10.3%.  With the VPC arbiters, the threads’ data array utilizations 
closely track their allocated shares of cache bandwidth.  The 
average data array utilization per thread is 23%  and has a 
standard deviation of 2.8%.  Most of the deviation results from 
workloads that do not demand their full share of the cache 
bandwidth, e.g., the benchmarks gcc, gzip, and facerec.  On 
average, the VPC arbiters improve data array utilization by 4% on 
the combined workloads.  

We use two performance metrics to compare the 
performance of the VPC, RR, and FCFS arbiters when running 
the multiprogram workloads: the harmonic mean of each 

workload’s normalized IPCs and the weighted speedup.  The 
harmonic mean of the normalized IPCs emphasizes both 
throughput and fairness [18].  The weighted speedup is the sum of 
the normalized IPCs; it measures aggregate throughput.  Results 
are in terms of performance improvements with respect to the 
FCFS baseline.  On average, the VPC arbiters improve the 
harmonic mean of normalized IPCs by 14% and the weighted 
speedup by 10%.   The RR arbiters improve the harmonic mean of 
normalized IPC by 10% and the weighted speedup by 4%.  This 
result illustrates that providing QoS and fairness actually 
improves throughput not only with respect to the greedy FCFS 
policy, but also when compared with the more fair RR policy.  
This result is very positive considering that improving an 
aggregate performance metric was not our primary objective – our 
primary objective was to develop consistent (performance 
isolated) QoS mechanisms for managing shared cache resources.  
Note that we could have exploited performance isolation by 
adjusting the φi values in order to optimize one of the popular 
aggregate performance metrics. However, as described in the 
related work section, aggregate performance metrics alone are 
incompatible with existing operating system and virtual machine 
performance abstractions. Furthermore, performance depends on a 
collection of resources (e.g, the processor, caches, and SDRAM 
memory system), and consequently, should be accounted for by a 
policy that has a global view of the system – not just a policy 
managing a single resource.  Meaningful objectives and effective 
global policies are a topic for future work. 

6. SUMMARY AND CONCLUSIONS 
The Virtual Private Machine framework is a means for 

supporting microarchitecture resource sharing.  In this framework, 
hardware mechanisms allow hardware resources to be allocated to 
executing threads, thus realizing a Virtual Private Machine.  
VPMs provide threads QoS so that a thread’s performance is at 
least as good as a standalone, real private machine having the 
same resources as allocated to the VPM. 

Virtual Private Cache hardware consists of two major 
components: the VPC Arbiters, which manage shared resource 
bandwidth, and the VPC Capacity Manager.  The VPC Arbiter 
implementation presented in this paper is a significant component 
of the overall VPM framework. Although, the arbiter design is 
proposed in the context shared caches it can be applied to other 
shared microarchitecture resources.  Both the VPC Arbiter and 
VPC Capacity Manager provide minimum service guarantees that 
when combined achieve the global VPM QoS objective.  
However, due to the nature of modern out-of-order processors we 
can not prove that VPMs will meet their QoS performance 
objective unless we assume performance monotonicity.  That is, a 
thread’s performance is a monotonically increasing function of 
the amount of resources a thread is offered.  

Our evaluation shows that existing cache arbiter policies 
allow threads that share cache bandwidth to affect each other 
significantly and in an uncontrollable manner.  With the FCFS or 
round-robin arbiters in a desktop environment, for example, an 
aggressive background task may prevent the user from watching a 
movie, even when there is ample processing power available.  In 
contrast, we show VPCs meet their QoS performance objective on 
all workloads studied and have a fairness policy amenable to 
general-purpose multithread systems.  Furthermore, we show 
VPCs can improve CMP throughput by eliminating negative 
interference. 
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