

Virtual Private Caches
Kyle J. Nesbit

University of Wisconsin- Madison
Department of Electrical and

Computer Engineering
kjnesbit@ece.wisc.edu

James Laudon

Sun Microsystems Inc.
james.laudon@sun.com

James E. Smith
University of Wisconsin – Madison

Department of Electrical and
Computer Engineering
jes@ece.wisc.edu

ABSTRACT

Virtual Private Machines (VPM) provide a framework for Quality
of Service (QoS) in CMP-based computer systems. VPMs
incorporate microarchitecture mechanisms that allow shares of
hardware resources to be allocated to executing threads, thus
providing applications with an upper bound on execution time
regardless of other thread activity. Virtual Private Caches (VPCs)
are an important element of VPMs. VPC hardware consists of
two major components: the VPC Arbiter, which manages shared
cache bandwidth, and the VPC Capacity Manager, which
manages the cache storage. Both the VPC Arbiter and VPC
Capacity Manager provide minimum service guarantees that,
when combined, achieve QoS for the cache subsystem.

Simulation-based evaluation shows that conventional cache
bandwidth management policies allow concurrently executing
threads to affect each other significantly in an uncontrollable
manner. The evaluation targets cache bandwidth because the
effects of cache capacity sharing have been studied elsewhere. In
contrast with the conventional policies, the VPC Arbiter meets its
QoS performance objectives on all workloads studied and over a
range of allocated bandwidth levels. The VPC Arbiter’s fairness
policy, which distributes leftover bandwidth, mitigates the effects
of cache preemption latencies, thus ensuring threads a high-
degree of performance isolation. Furthermore, the VPC Arbiter
eliminates negative bandwidth interference which can improve
aggregate throughput and resource utilization.

Categories and Subject Descriptors
C.0 [Computer System Organization]: hardware/software
interface, system architectures

General Terms
Management, Performance, Design, Experimentation.

Keywords
Chip Multiprocessor, Shared Caches, Quality of Service,
Performance Isolation, Soft Real-Time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00.

1. INTRODUCTION
To provide both efficiency and high throughput, CMP-based

systems rely heavily on resource sharing, especially in the
memory hierarchy. Shared resources include both storage
capacity and bandwidth, comprising ports, interconnection paths,
and associated buffering. Although main memory capacity is
managed by OS page replacement algorithms, most of the other
memory resources – main memory bandwidth and cache
capacities and bandwidths – are managed through hardware
mechanisms. For these shared resources, the hardware
mechanisms affect the amount of inter-thread interference, both
destructive and constructive, and, in turn, this affects the threads’
performance predictability.

 In many general purpose applications, execution threads
must attain a minimum level of performance, irrespective of the
other threads that happen to be running concurrently. Some
desktop applications have soft real-time constraints, for example
those that support multimedia such as HD videos and resource-
intensive video games. In servers supporting multiple threads on
behalf of independent service subscribers, it is important that
resources be shared in an equitable manner and that tasks perform
in a responsive, timely way. To support these applications and
others, future CMP-based systems should provide threads with
quality of service (QoS) in order to preserve performance
predictability and facilitate the design of dependable systems.

Historically, QoS has been of interest in computer
networking, and recently it has become the subject of computer
architecture research. The objective of QoS is to provide a bound
on some performance metric. For networks, the objective is to
provide an upper bound on the end-to-end delay through the
network. For CMP systems, a QoS objective is to provide
applications an upper bound on execution time, or, alternatively, a
consistent execution time regardless of other thread activity.

QoS objectives are usually achieved through resource
provisioning; that is, by allocating a certain quantity of
resource(s) to a given network flow (or computation thread in our
case). The goal of the research reported here is to provide
microarchitecture-level mechanisms whereby allocations of
shared cache resources can be guaranteed. On the other hand, the
policies that determine the actual allocations are beyond our
scope. That is, we assume the desired resource allocations are
given to us, presumably through a combination of application and
system software policies, and it is the proposed mechanisms that
assure the requested allocations are provided by the shared cache
hardware, thereby achieving QoS objectives.

We study and evaluate resource sharing mechanisms within
the general framework of Virtual Private Machines, and Virtual
Private Caches more specifically. These are described more fully
in the following two subsections. Briefly, a virtual private
machine (virtual private cache) is defined through the allocation

of a portion of shared resources. The objective is that a virtual
private machine (virtual private cache) should provide
performance at least as good as a real private machine (real
private cache) having the same resources. The effectiveness of the
proposed mechanisms is demonstrated through simulations that
compare thread performance on a shared-cache CMP with
performance on an equivalently provisioned private machine.

1.1 Virtual Private Machines
The Virtual Private Machine (VPM) framework is illustrated

in Figure 1. A generic CMP-based system is in Figure 1a. In the
work here we assume single-threaded processors, although the
concepts extend to multi-threaded processors. The system
contains private L1 caches, a shared L2 cache, main memory, and
supporting interconnection structures. Of course, if there were an
L3 cache, it would be shared in a similar manner.

Main Memory (Capacity M)

Memory Controller

Proc. 1

L1 Cache

Interconnect

Proc. 2

L1 Cache

Proc. 3

L1 Cache

Proc. 4

L1 Cache

L2 Cache (Capacity C)

Bandwidth K

Bandwidth L

(a)

Main Memory

Memory Cntl.

L2 Cache
(Capacity .5C)

Proc. 1

L1 Cache

VPM 1

Main Memory

Memory Cntl.

L2 Cache
(Capacity .1C)

Proc. 2

L1 Cache

VPM 2

BW .5L BW .1L
Main Memory

Memory Cntl.

L2 Cache
(Capacity .1C)

Proc. 3

L1 Cache

VPM 3

Main Memory

Memory Cntl.

L2 Cache
(Capacity .1C)

Proc. 4

L1 Cache

VPM 4

BW .1L BW .1L

BW .5K BW .1K BW .1K BW .1K

(b)

Figure 1. Virtual Private Machines: a) System Hardware b)
Four Virtual Private Machines.

By implementing mechanisms such as those studied in this

paper, the CMP is effectively divided into Virtual Private
Machines (VPMs). In a VPM, shares of hardware resources are
allocated to executing threads. For example, a CMP with four
hardware-supported threads can be divided into four VPMs where
the resources, both bandwidths and capacities, are divided evenly
among executing threads. This configuration is well suited for
general purpose operating systems that distribute processor
resources using time slices – a time slice is a unit of a processing
resources. Allocating each time slice to an equally provisioned
VPM maintains the existing abstraction provided to the OS by
ensuring that each time slice represents a consistent amount of
processing resources.

In general, however, the resources need not be allocated
evenly, and there may be left-over, unallocated resources that are
dynamically shared among the VPMs in accordance with a
fairness policy. For example, in Figure 1b, VPM0 is given a
significant fraction (50%) of resources to support a demanding
multimedia application, while the other three VPMs are assigned
a much lower fraction of resources (10% each). This leaves 20%
of the cache memory resources unallocated.

The goal is for a VPM to yield thread performance at least as
good as on standalone, real private machine having the same
resources, regardless of any other threads that might be running
concurrently (i.e., performance isolation). Furthermore, if one or
more of the VPMs do not need all of their allocated resources
and/or there are unallocated resources, then any excess is
distributed among the other VPMs, potentially providing them
with additional performance.

1.2 Virtual Private Caches
In this paper, we develop Virtual Private Caches (VPCs), a

critical component of the VPM framework (See Figure 1b). A
VPC consists of two main parts: the VPC Arbiter, which manages
shared bandwidth, and the VPC Capacity Manager, which
manages storage resources. The VPC Arbiter design is based on
network fair queuing (FQ) algorithms that are adapted to
microarchitecture resources.

Cache capacity sharing has been studied and evaluated
elsewhere [7][10][13][22][23][29], so we focus most of our
discussion and evaluation on the VPC Arbiters. A simulation-
based evaluation shows that existing cache arbiter policies allow
threads sharing cache bandwidth to affect each other significantly,
e.g., performance degradation of up to 87%. In contrast, the
proposed VPC Arbiters provide threads with performance
isolation so that QoS performance objectives are met on all
workloads studied, including workloads that intentionally
inundate the shared cache with requests. Furthermore, we show
that for heterogeneous workloads, VPCs improve throughput by
eliminating negative bandwidth interference.

2. RELATED WORK

Fair Queuing Memory Systems (FQMS) uses basic
network FQ principles in order to provide QoS and fairness to
threads competing for SDRAM memory system bandwidth [21].
The work presented here extends FQMS in several significant
ways. First, the VPM is proposed as an overall framework that
extends across CMP subsystems. Second, we study shared
caches, which have both shared bandwidth (VPC Arbiters) and
capacity (VPC Capacity Manager) components. Third, the FQ
memory scheduler uses approximate FQ methods to account for
the complex timing constraints of an SDRAM memory system.
In contrast, the VPC arbiters are a strict implementation of FQ
algorithms. The result is an arbiter that guarantees minimum
bandwidth and is amenable to managing microarchitecture
resources. Finally, we study many details of bandwidth sharing
that are ignored in the FQMS work, e.g., preemption latencies,
performance monotonicity, differentiated service, and strict
isolation.

Performance isolation has become an important topic in
operating system and virtual machine research [1][28][31][8].
Performance isolation and QoS are closely related. The objective
of both performance isolation and QoS is to ensure a task a
minimum level of performance, regardless of other tasks in the
system. General-purpose operating systems and virtual machines
attempt to provide tasks performance isolation by running a task
at a fraction of its speed on a dedicated system [26], regardless of
other tasks in a shared system. In general, this abstraction is
usually implemented by time multiplexing tasks onto shared
resources.

Most performance isolation research focuses on software
policies. However, software policies are unable to provide a
sufficient level of performance isolation in CMP-based computer
systems, primarily because the hardware does not support
appropriate low level resource sharing mechanisms. Such
mechanisms, applied to shared caches, are the topic of this paper.

Carzola et al. proposed hardware-based QoS policies to
dynamically adjust resource allocations in SMT processors based
on previous time period(s) [4]. This approach is based on
prediction, which may not work for all applications and does not
offer any QoS guarantees.

METERG is a methodology to test and deploy real-time
applications on multiprocessor systems with shared
microarchitecture resources [17]. The basic premise of the
METERG methodology is consistent with the VPM framework;
both provide QoS through hardware mechanisms that provide
service guarantees. In contrast, METERG is primarily an
application development methodology; Lee and Asanović provide
few details of hardware mechanisms. The QoS policies and
mechanisms presented in this paper can be applied to the
METERG methodology.

Cache capacity sharing has been the topic of a significant
amount of research [7][10][13][22][23][29]. Most cache capacity
sharing algorithms optimize a performance metric related to
aggregate throughput[22][29], although there is some cache
sharing research that has focused on metrics that are subjectively
fair [7][10]. Aggregate throughput and fairness sharing
algorithms tend to be very similar – they use the same basic
algorithms, but optimize different metrics. Often fairness metrics
are based on proportionate slowdown [7][10] where all
concurrently executing threads slow down by the same
percentage, as compared with running alone on the same
hardware.

Techniques that target aggregate metrics do not provide
performance isolation, thus making them incompatible with most
operating system and virtual machine performance abstractions.
For example, with proportionate slowdown, if one thread is
resource constrained in a multithreaded execution, it will cause all
threads in the system to run slower. This is an undesirable
behavior for a general-purpose system. Furthermore, the
operating system should be the primary resource manager in a
computer system because it has a global view of the system’s
resources and workload objectives. Hardware implemented
policies targeted at aggregate metrics may compete with the
operating system’s policies and prevent the operating system from
effectively accounting for and managing resource sharing.

Iyer discusses cache QoS and a framework of possible
solutions [13]. However, Iyer’s discussion is based on a
definition of QoS that may not apply to certain types of shared
resources, in particular, bandwidth resources. In contrast, we
propose bandwidth and capacity QoS policies that are both based
on the same, well established QoS definitions and solutions from
computer networking research.

3. BACKGROUND

3.1 Shared Caches
Processors in a CMP place considerable pressure on both

shared cache capacity and bandwidth. A common way to
increase cache bandwidth is to address-interleave requests across

multiple cache banks [9]. However, recent work on shared cache
crossbar interconnections illustrates that cache banking does not
scale well [14]; cache banking can significantly increase latency,
area, and power. Therefore, CMP designers are targeting higher
cache utilization [15], thus making threads sharing cache
bandwidth more susceptible to interference.

We consider a baseline cache hierarchy that closely
resembles that used in IBM’s Power4, Power5, 970 (Apple’s G5),
and Xbox 360 chips [30][11][3]. Write-through L1 caches are
used because they require less L1 array bandwidth, eliminate
many of the complexities of protecting on-chip data with ECC,
and consequently, have lower latency [19]. A L2 cache is
illustrated in Figure 2; this structure would also apply to shared
L3 caches, if present. In the baseline shared cache
microarchitecture, processors are connected to the cache banks
via a crossbar interconnect (Figure 2a). Each processor has
private read and write ports into each cache bank. Each cache
bank has a return data bus connected to all processors on the
crossbar [14]. To reduce power the crossbar interconnection
operates at half the core frequency.

L2 Cache
Bank

1

L2 Cache
Bank

2

Processor
1

Processor
2

Processor 1
Read/Write Processor 2

Read/Write

Bank 2
Data Bus

Bank 1
Data Bus

(a)

Store Gathering
for Processor 1

Store Gathering
for Processor n

Tag Array
Data Array

Cache
Controller
Pipeline

Data Bus
To Processors

Load/Store Port
Processor 1

Load/Store Port
Processor n

Memory
Request

Data Bus
From Memory

Read
Claim
Queue

Arbiter Arbiter

(b)

Figure 2. Shared L2 caches a) Processor-cache interconnect.
b) Cache bank structure.

The logical structure of a single cache bank is illustrated in
Figure 2b. Read and write requests first arrive at the store
gathering buffers (one per processor). Store gathering is an
efficient method for supporting write-through L1 caches [27]. At
the store gathering buffer, incoming store data for the same cache
line are merged; if there are no other stores to the same cache line,
a new buffer entry is allocated. Loads bypass stores in the store
gathering buffer after checking the store gathering buffer for
memory dependencies. When a load encounters a store to the
same line address, the conflicting store and any older stores are
retired from the store gathering buffer to the L2 cache before the
load is allowed to proceed, i.e., a partial flush policy is
implemented [27]. When the store gathering buffer occupancy
reaches a high water mark (n), the buffer begins retiring stores to
the L2 cache, i.e., a retire-at-n-policy is used [27].

 After a request passes through the store gathering buffers,
the controller checks that the request does not conflict with other
pending L2 requests, i.e., to assure that the new request will not
cause a race or violate the memory consistency if it is allowed to
proceed [19]. If the request does not create a conflict, it is
allocated a cache controller state machine. The cache controller
state machine initiates tag array, data array, and external
coherence requests in order to fulfill the request. Write requests
require two back-to-back data array accesses because ECC covers
32 byte segments. The first access reads the cache line out of the
data array – the dirty data is then merged into the cache line and
the line’s new ECC is calculated – and the second data array
access stores the cache line and its ECC. Read requests require a
single data array access. After a read request accesses the data
array, the request’s cache line is sent through the read claim
queue and out of the cache bank on the bank’s data bus.

There are three shared resources in the baseline cache
microarchitecture: 1) the tag array bandwidth, 2) the data array
bandwidth, and 3) the storage capacity. Coherence state machines
are statically partitioned [14].

The tag array and data array bandwidth resources are
managed by arbiters that multiplex threads’ requests onto the
shared resources (Figure 2b). In addition, the data bus back to the
processors is shared, but it operates at the same rate as the data
array; therefore, the data array arbiter controls access to both
resources. For private caches, Read-over-Write, First-Come First-
Serve (RoW-FCFS) arbiter policies are effective at improving
performance and optimizing resource utilization [9][27]. RoW-
FCFS first prioritizes read over write requests (RoW) and then
prioritizes the oldest request (FCFS). In a multi-thread
environment, however, a RoW-FCFS arbiter for shared resources
allows an aggressive thread with many loads to starve other
threads from receiving shared cache bandwidth [19]. Therefore,
for the multithreaded case, we use the FCFS arbiter without RoW
as our baseline. We also consider round-robin arbitration, which
is sometimes considered “fair”, but, as we will show, it does not
provide performance isolation.

Cache capacity resources are managed through cache
replacement [7][13][22][23][29]. In general, each line in a shared
cache is associated with a specific thread. When a thread causes a
cache miss, the replacement policy takes cache capacity
associated with one thread and assigns the capacity to the thread
that caused the cache miss. In effect, the replacement policy
multiplexes threads onto the shared cache capacity resources.

3.2 Fair Queuing
A fair queuing scheduling algorithm offers guaranteed

bandwidth to simultaneous network flows over a shared link
[2][16][24][25][33]. That is, the scheduling algorithm provides
each flow its allocated share of link bandwidth regardless of the
load placed on the link by other flows. A fairness policy
distributes excess bandwidth in proportion to the flows’ allocated
shares. Excess bandwidth is either bandwidth that is not
allocated to any flow or it is bandwidth that has been allocated but
is not used by the flow to which it is allocated. A scheduler that
redistributes allocated, but unused bandwidth is work-conserving
[5][16]. In general, the fairness policy can be any policy that
distributes excess bandwidth, whether one would subjectively
consider it to be “fair” or not. Different fairness policies may be
more appropriate in different environments. An important
characteristic of a scheduling algorithm’s fairness policy is the

extent to which a flow receiving excess bandwidth in a given time
period will be penalized in later time period(s).

In an FQ scheduling algorithm a flow i is given a share 0 < φi
≤ 1 of the total link bandwidth. FQ scheduling algorithms often
operate within a virtual time framework where the virtual service
time equals the network packet’s length Li

k (expressed in units of
link capacity) time scaled by the reciprocal of the flow’s share φi.
In a basic implementation, when packet pi

k (kth packet of ith flow)
arrives at time ai

k, the FQ algorithm calculates the packet’s virtual
start-time Si

k and virtual finish-time Fi
k. A packet’s virtual finish-

time is the time the request must finish (its deadline) in order to
fulfill the minimum bandwidth guarantee under ideal conditions.
The virtual start-time (Equation 1) of a packet is the maximum of
its virtual arrival time and the virtual finish-time of the flow’s
previous packet. The virtual finish-time (Equation 2) is the sum
of a packet’s virtual start-time and its virtual service time.
Prioritizing packets earliest virtual finish-time first [2][16][24]
yields earliest deadline first (EDF) scheduling [5].

[1] Si
k = max { ai

k , Fi
k-1 }

[2] Fi
k = Si

k + Li
k / φi

Even though a flow is guaranteed a bandwidth, in the
presence of other flows it is not guaranteed that individual
requests will finish at the same time as they would in the absence
of all other flows. The reason is that the resource may be active
with another request (from a different flow) at the time a new
request arrives. If the new request could preempt the current
request immediately, then its deadline could be satisfied.
However, if there is a non-zero preemption latency, the deadline
may not be satisfied. In general, with EDF scheduling, as long as
the resource is not overloaded (e.g., ∑φi ≤ 1), a request will finish
its service no later than the <deadline> + <max preemption
latency> [5][16]. If a resource is not preemptible, then the max
preemption latency is the maximum service time.

4. VIRTUAL PRIVATE CACHES
Virtual private caches (VPC) provide QoS mechanisms for

sharing cache resources in CMP-based systems. The VPC
controller described in this section has a set of control registers
visible to system software that specify a VPC configuration for
each hardware thread sharing the cache. For each active thread,
the control registers specify a share of cache capacity (αi), and a
share of tag and data array bandwidth (φi). In their full generality,
these mechanisms allow software to allocate each of the
bandwidth resources independently (via separate control
registers), but, to simplify the discussion, we consider the case
where the shares are the same.

The VPC controller consists of the VPC Arbiters, which
manage the tag and data array bandwidth resources, and the VPC
Capacity Manager, which manages the cache capacity resources.
The VPC Arbiter and VPC Capacity Manager are compatible–
they are based on the same definition of QoS and fairness – and in
combination they achieve the VPC QoS objective.

4.1 VPC Arbiter
Each tag and data array has a VPC arbiter that selects a

pending request to access the shared resource next (see Figure 2b
in the background section). All VPC arbiters are implemented in
essentially the same way. The basic implementation is
parameterized and each arbiter instance is configured to manage
its resource’s specific timing characteristics. For example, the

data array’s arbiter is configured for the data array’s bandwidth
constraints and the fact that write operations on the data array
require two array accesses.

4.1.1 Arbiter Implementation
The proposed arbiter implementation is equivalent to the FQ

algorithm outlined in the background section, but is optimized to
reduce circuit complexity and support common performance
optimizations that reorder requests after they have entered
arbitration. In particular, this implementation reduces circuit
complexity by eliminating the priority queue in the
implementation outlined in the background section. Instead of the
priority queue, a VPC arbiter has a FIFO buffer for each thread
(see Figure 3). When a request enters arbitration for a resource,
the request’s ID is added to its thread’s arbiter buffer. A request
ID is a reference to a controller state machine, where the request’s
state information is stored. The arbiter buffers are small; a
request ID only requires a few bits of storage.

Thread 1
Request IDs

R.S0 R.L0
Add

Comparator

Thread 2
Request IDs

R.S1 R.L1
Add

Thread 3
Request IDs

R.S2 R.L2
Add

Thread 4
Request IDs

R.S3 R.L3
Add

Priority Multiplexer

Request ID

R.clk

Figure 3. VPC Arbiter Hardware Implementation

A VPC arbiter maintains a clock register R.clk and two
registers R.Li and R.Si for each thread1. The clock register in the
VPC implementation is a real time counter that simply counts
clock ticks and is used for determining arrival times ai

k (Section
3.2). The R.Li register stores a thread’s virtual service time L / φi,
where L is the service requirement of request mi

k (the kth request
from the ith thread) and φi is the thread’s fraction of the resource.
The service requirement L is the latency of the shared resource
(see Table 1 in the evaluation section). For write requests on the
data array, the service requirement is twice the latency of the data
array. The R.Li register only has to be calculated when the
thread’s service share φi is changed.

A key element of the implementation is the R.Si register
which tracks the time the virtual resource will become available
for a thread’s next request, i.e., the next request’s virtual start-
time Si

k. At the time a request is selected for service, then its R.Si
register is updated to indicate the time the virtual resource will be
available for the next request. Following paragraphs describe the
implementation algorithm in more detail.

When a request from thread i arrives at the FIFO buffer and
the buffer is empty, then the virtual resource is either available
immediately (if R.Si < R.clk) or it will not be available until R.Si.
(the time the preceding request finishes with the virtual resource).
This is shown in register transfer statement 3.

Arrival
[3] If thread i’s queue is empty and R.Si < R.clk then
 R.Si ←R.clk; else R. Si is unchanged

1 In our notation, we use the R. prefix to distinguish hardware

register values.

If thread i’s FIFO buffer is not empty when mi
k arrives, then

the virtual resource is backlogged, and mi
k ’s arrival time will

have no effect on its virtual start-time. Rather, its virtual start
time will be the virtual finish time of thread i’s immediately
preceding request, and, as will be described shortly, the preceding
request will update R.Si accordingly at the time it is selected.

The VPC Arbiter inspects the thread requests at the heads of
the FIFO buffers and calculates their virtual finish times. The
virtual finish time of request mi

k is Fi
k , and it is calculated

(statement 4) as the sum of mi
k ’s virtual start-time, which is

stored in the R.Si, and its virtual service time, which is stored in
R.Li.

Abriter Calculation
[4] Fi

 = R.Si + R.Li
 (R.Si + 2*R.Li for write requests on the data array)

The arbiter selects the request with the earliest virtual finish-
time. It then updates the R.Si register with the just-computed
finish time of the selected request (statement 5) to reflect the time
the virtual resource will become available for thread i’s next
request. It removes the request’s ID from the queue and uses the
ID to identify the request’s controller state machine which
initiates the access to the shared resource.

Arbiter Selection
[5] R.Si ← Fi

The implementation outlined in statements 3, 4, and 5,
enables performance optimizations that use intra-thread request
reordering, while maintaining the bandwidth guarantees and
fairness properties of the basic FQ algorithm. Any request in a
thread’s buffer can be selected to access the resource, and doing
so does not change the amount of service (bandwidth) the thread
receives relative to other threads [16].

Intra-thread reordering occurs within the thread’s buffer (i.e.,
the buffer is no longer strictly FIFO) and does not affect the rest
of the arbiter design. The primary reordering optimization we are
interested in here is prioritizing intra-thread Reads-over-Writes
(RoW), although there are other common reordering
optimizations that occur in a cache hierarchy, e.g., prioritizing
demand-fetches over prefetches, but we do not consider them in
this paper.

4.1.2 Scheduling and Preemption
Servicing the thread with the earliest virtual finish-time first

is the same as scheduling earliest deadline first (EDF) [5]. As
described in the background section, with EDF scheduling and a
non-preemptible resource, which is the case for shared cache
resources, a request will finish its service by the <deadline> +
<resource’s max service time> , where a request’s deadline is its
virtual finish-time. That is, a cache request may be delayed by
another thread’s maximum service time (in the worst case).

Despite the worst case behavior, the resource latency of
shared cache resources often does not affect a thread’s
performance (as will be shown in the evaluation section). General
purpose processor traffic tends to contain bursty L2 accesses, and
preemption latency is paid only once per burst [16]; the
performance effect is analogous to filling a pipeline. Hence, the
preemption latency is amortized over the burst of cache misses.
However, applications with low memory level parallelism (where
misses are less bursty) are more susceptible to preemption latency
effects.

4.1.3 Arbiter Fairness Policy
VPC arbiters mitigate the effects of preemption latency

through a fairness policy that is tailored to general-purpose
processor traffic. As described above, a fairness policy distributes
excess bandwidth. Excess bandwidth is bandwidth that is not
allocated to any thread or it is bandwidth that has been allocated
but is not used by the thread to which it is allocated. The VPC
arbiters’ fairness policy distributes excess bandwidth to the thread
that has received the least excess bandwidth in the past (relative to
its service share φi) [21][24]. This fairness policy differs from the
fairness policy commonly used in networks. In contrast with
network fairness, the VPC arbiter’s fairness policy takes into
account past bandwidth usage.

The VPC arbiter uses a different fairness policy because a
general-purpose processor and its memory system behave like a
closed system, i.e., the rate that a processor injects requests into
the memory system depends on the average latency of the
requests. Threads that consume more cache bandwidth tend to
increase the average latency experienced by other threads –
primarily by increasing the average preemption latency
experienced by other threads. These highly consumptive threads
also tend to have more memory level parallelism and are less
sensitive to latency. Therefore, the highly consumptive threads
should not receive excess bandwidth before threads that have
received less excess bandwidth in past time periods. In general,
the VPC arbiters’ fairness policy is very effective at averaging out
preemption latency. However, in cases where a thread is very
sensitive to L2 latency and is allocated a high percentage of the
cache bandwidth, artifacts of the preemption latency can still be
observed in a thread’s average performance.

The VPC arbiter implementation described in subsections
4.1.1 and 4.1.2 implements the desired fairness policy. VPC
arbiters schedule requests earliest virtual finish-time first. In
addition to acting as a deadline, the virtual finish-time of a
thread’s next request is an indicator of the amount of service the
thread has received, normalized to its share of the resource. For
example, if one thread is able to use a large amount of excess
resource in a burst, its virtual finish-times will run well ahead of
the clock register (R.clk) and the virtual finish times of other
threads. Therefore, servicing threads according to earliest virtual
finish-time (as described above) ensures threads meet their QoS
guarantees, and naturally distributes excess bandwidth to the
backlogged thread that has received the least excess bandwidth in
past time periods.

In contrast with the VPC arbiter, network fair queuing
algorithms often use a virtual clock to implement their fairness
policy. A virtual clock determines request arrival times (ai

k) and
computes virtual finish-times [2][33]. A virtual clock advances
faster when fewer threads are backlogged, which increases the
rate at which the non-backlogged threads’ virtual finish-times
advance, thus reducing the penalty for the backlogged threads that
are consuming excess service. A detailed comparison of fairness
policies and the extent to which a thread should be penalized for
consuming excess service is a topic for future work.

4.2 VPC Capacity Manager
4.2.1 Capacity Manager Implementation

The VPC Capacity Manager implements a way-partitioned
replacement policy that requires few changes to the baseline
cache microarchitecture. Hardware mechanisms that support

similar way-partitioned replacements policies have been proposed
in the past [7][13][22][23][29]. The VPC Capacity Manager
provides each thread with a VPC that has the same number of sets
as the shared cache and at least ⎣ αi * <ways in the shared
cache> ⎦ cache ways, where αI is thread i’s allocated share of the
cache. We discuss the rationale behind this property later in
Section 4.3, after we introduce the concept of performance
monotonicity. Note that in general the sum of the αI’s may be
less than one, i.e., there may be unallocated cache capacity. The
VPC Capacity Manager’s replacement policy chooses a victim
cache line from the destination cache set that satisfies one of the
following two conditions:
1) It is the least recently used (LRU) line owned by thread i,

such that thread i occupies more than αi of the ways in the
destination cache set.

2) If there are no cache lines that satisfy the first condition,
then it is the LRU line owned by the thread requesting the
replacement.

If Condition 1 is satisfied, then taking a cache line away
from thread i will not cause the thread to fall below its allocated
share of the cache ways. Furthermore, the LRU line owned by a
thread occupying more than its share of the cache ways, would
not have been in the thread’s cache if it were executing out of a
private cache with only αi of the cache ways. If there are no
threads that occupy more then their share of the cache ways
(Condition 2), then all threads must occupy exactly their share of
the cache ways. Therefore, the LRU cache line owned by the
thread would be the same cache line replaced if the thread were
executing out of a private cache with αi of the cache ways.

4.2.2 Capacity Manager Fairness Policy
As defined above, there may be multiple threads that occupy

more than αi of the ways in the destination cache set, and
therefore, there may be multiple cache lines that satisfy the first
condition of the replacement policy. The VPC Capacity
Manger’s fairness policy refines the replacement policy above by
specifying how to select a victim when more than one thread
occupies more than its share of the cache ways, and therefore,
specifies how excess cache capacity should be distributed.

In contrast with the VPC arbiter, the VPC Capacity Manager
cannot guarantee QoS and be work conserving without oracle
knowledge. Once cache capacity is allocated to a thread, the
capacity cannot be relinquished (and redistributed) as long as the
thread remains active, even if a cache line will go unused in the
future. Theoretically, the frame holding such a cache line could
be redistributed to another thread without affecting the owner’s
QoS, but without an oracle, this cannot be done. We plan to
explore the topic of work conserving capacity managers in future
work.

As discussed in the background section, the fairness policy
can be any policy that distributes excess resources, whether one
would subjectively consider it to be “fair” or not. There are many
existing capacity sharing algorithms that target “fairness”, e.g.
[7], or throughput which can be used to refine the VPC Capacity
Manager’s replacement policy and manage the excess cache
capacity. Because these methods have been studied elsewhere,
we focus our evaluation on scenarios where all of the shared
cache’s resources are allocated so the VPC Capacity Manger’s
fairness policy has no effect.

4.3 Discussion
We use resource allocation as a means for achieving a

desired QoS. In doing so we assume that a given level of
performance is guaranteed when an associated minimum resource
allocation is guaranteed. Resources above the allocated minimum
may be provided to a thread if they are available. An implicit
assumption is that a thread’s performance is a monotonically
increasing function of the amount of resources the thread is
offered. That is, if a thread is offered more resources, the thread’s
performance will remain the same or increase – it will not
decrease. Performance monotonicity, when combined with
guaranteed minimum resources will provide QoS.

Many computer systems do not strictly satisfy the
performance monotonicity assumption. Because of the
complexity of modern processors and their use of speculation,
there are situations where more resources can cause the ordering
of events to shift or new events to be generated, and these can
occasionally degrade performance. One example is prefetching –
giving a thread more memory bandwidth may increase the
number of prefetches. In some programs increasing prefetches
may lead to net performance loss due to cache pollution.

We conjecture that if one were to constrain a system
implementation so that performance monotonicity is strictly
satisfied in all cases, then it would rule out many performance
optimizations that significantly raise average performance. In
other words, by guaranteeing performance monotonicity, one
would reduce average performance only to avoid relatively rare
cases where performance might degrade slightly. We feel that in
many situations, this is not a good engineering choice, and
therefore one might opt for systems which do not guarantee
performance monotonicity. The wisdom of this choice can be
demonstrated through simulations (as we have done), which show
that in practical cases, QoS is in fact achieved, despite the
absence of guaranteed performance monotonicity.

Similar comments apply to algorithms for sharing cache
capacity. We conjecture that the VPC Capacity Manager (way-
partitioning) satisfies performance monotonicity. However, the
proposed VPC method comes at a cost; it increases the minimum
granularity at which the cache can be partitioned. Therefore,
when compared with more flexible capacity managers, e.g.,
capacity managers that partition cache capacity based on the
usage of the entire cache, the VPC method may have lower
average performance. However, these more flexible capacity
managers do not satisfy performance monotonicity. For example,
a capacity manager that does not distinguish between cache set
and cache way resources may offer a thread more cache sets and
fewer cache ways, which can increase the thread’s conflict misses
and decrease its performance.

5. EVALUATION

5.1 Performance Model
We use a detailed structural simulator developed at IBM

Research to evaluate the VPC arbiters. The simulator adopts the
ASIM modeling methodology [6], and is defined at an abstraction
level slightly higher than latch-level. The model’s default
configuration is of a single processor IBM 970 system [11]. In its
default configuration, the model has been validated to be ± 5% of
the 970 design group’s latch-level processor model. In this paper,
we use an alternative simulator configuration (see Table 1) to
avoid 970-specific design constraints. The primary difference is a

cache configuration that is more representative of future systems
than the 970’s cache configuration. We increased L2 cache size,
decreased the line size in order to reduce the demand on memory
bandwidth, and added another cache bank in order to support
additional processors. The L2 tag array and data array latencies
have been scaled to account for the increase in array size and to
be consistent with 45 nm technology [32] – array bandwidth is the
reciprocal of the array latency. The L2-to-L1 data bus is 16-bytes
wide, which balances the additional data array latency with the
data bus bandwidth. The total L2 latency to read the critical word
of a cache line from the L2 is 16 processor cycles – to receive the
entire line takes 22 processor cycles (see the timing diagram in
Figure 4). The L2 controller state machines are partitioned [14] –
each processor is allocated eight state machines per cache bank.
Threads are allocated equal portions of the cache ways, and there
are no unallocated cache ways, e.g., αi = .25 for all i. The 970
instruction and data prefetchers are disabled. VPC supported
prefetching is a topic for future work. For the uniprocessor
baseline, we use the RoW-FCFS arbiter policy. The same arbiter
policy is applied to the tag and data array. For the multiprocessor
baseline, we use FCFS because RoW-FCFS can cause starvation.

Table 1. System Configuration
(latencies measured in processor cycles)

Processors 4 processors operating at 2 Ghz
Issue Buffers 20 entry BRU/CRU, two 20 entry FXU/LSU,

20 entry FPU
Issue Width 8 units (2 FXU, 2 LSU, 2 FPU, 1 BRU, 1

CRU)
Reorder
Buffer

20 dispatch groups, 5 instructions per dispatch
group

Load / Store
Queues

32 entry load reorder queue, 32 entry store
reorder queue

I-Cache 16KB private, 4-ways, 64 byte lines, 2 cycle
latency, 8 MSHRs

D-Cache 16KB private, 4-ways, 64 byte lines, 2 cycle
latency, 16 MSHRs

L1-to-L2
Interconnect

operates at ½ core frequency, 2 cycle latency,
16 byte data bus per bank

L2 Cache operates at ½ core frequency, 2 banks, 16MB,
32-ways, 64 byte lines, 8 cache controller
state machines per thread, 4 cycle tag array
latency, 8 cycle data array, 8 store gathering
buffer entries per thread, read bypassing,
retire-at-6 policy, partial-flush on read conflict
latency

Memory
System

DDR2-800, controller operates at ½ core
frequency, 16 transaction buffer entries per
thread, 8 write buffer entries per thread,
closed page policy, 1 channel per thread, 2
ranks per channel, 8 banks per rank

Processor 1 Read Port
Bank 1 Tag Array

Bank 1 Data Array
Bank 1 Data Bus
Bank 2 Tag Array

Bank 2 Data Array
Bank 2 Data Bus

Read to Bank 1 Read to Bank 2

Processor Cycles

Critical Word

Figure 4. Cache Timing Diagram of back-to-back reads to

different cache banks

The simulator has a cycle accurate model of an on-chip
memory controller attached to a DDR2-800 memory system [21].
To isolate the effects of cache sharing, threads are allocated
private SDRAM channels by interleaving memory requests across
memory channels using the most significant bits of the physical
address and controlling the virtual-to-physical address mapping
such that the threads’ physical address spaces differ in the most
significant bits of the physical address.

5.2 Workloads
We use two microbenchmarks (see Table 2) and the SPEC

2000 benchmark suite to evaluate the performance of the VPC
arbiters. The microbenchmarks are designed to stress
performance isolation features. Each microbenchmark operates on
a two-dimensional array of 32-bit words (int array[R][C]). The
array’s rows are 64 bytes long (the L1 cache line size) and the
array’s total size is 32KB, twice the size of the L1 data cache.
The Loads microbenchmark stresses L2 load bandwidth by
continuously loading (lwz in PowerPC) the first column of each
row in the array, thus creating a constant stream of L2 read hits.
The main loop is unrolled; otherwise, the 970 branch information
queue (BIQ) [11] becomes a bottleneck. The Stores
microbenchmark stresses L2 store bandwidth and is the same as
the Loads microbenchmark but with store instructions (stw in
PowerPC).

Table 2. Microbenchmarks in C / PowerPC

Loads

while(true) {
 r2 <- &array[0][0]

 for(i=0; i<R; i+=4){
 lwz r3,0(r2)
 lwz r3,64(r2)
 lwz r3,128(r2)
 lwz r3,192(r2)
 r2 <- r2 + 256
 }
}

Stores

while(true) {
 r2 <- &array[0][0]

 for(i=0; i<R; i+=4){
 stw r3,0(r2)
 stw r3,64(r2)
 stw r3,128(r2)
 stw r3,192(r2)
 r2 <- r2 + 256
 }
}

Figure 5 shows the cache utilization of the microbenchmarks
with a varying number of L2 cache banks, e.g., Loads 2B uses the
baseline cache configuration with 2 cache banks. The Loads
benchmark fully utilizes two L2 banks and has about 80%
utilization on four L2 banks. Under ideal conditions the Loads
benchmark should be able to fully utilize four L2 banks.
However, the 970’s LSU reject mechanism causes loads to
acquire LMQ [11] entries and enter the L2 cache out-of-order.
Out-of-order cache accesses cause non-ideal bank interleaving,
and the processor’s in-order structures (the LRQ [11] and reorder
buffer) fill up and stall dispatch. The data bus and data array
utilization for the Loads benchmark are equal, illustrating that the
cache design is properly balanced as in the timing diagram in
Figure 4. The Stores benchmark is very aggressive; it fully
utilizes the data array in eight cache banks. Write requests enter
the L2 cache in-order, and therefore, have ideal bank interleaving.
A single-thread of the Stores benchmark achieves utilization of
100% for as many as eight cache banks. Obviously, designing for
this case is unattractive, e.g., a four processor CMP with 32 cache
banks. Our results show that with the VPC arbiters, CMP
designers can focus on designing for the common case, rather
than the worst case.

Microbenchmark L2 Cache Utilization

0%

25%

50%

75%

100%

Loads
2B

Loads
4B

Loads
8B

Loads
16B

Stores
2B

Stores
4B

Stores
8B

Stores
16B

U
til

iz
at

io
n

Data Array Data Bus Tag Array
Figure 5. L2 Cache Utilization of the Microbenchmarks

We use the SPEC CPU 2000 benchmark suite as the second
set of benchmarks because they are the best available source of
heterogeneous applications. The SPEC benchmark simulations
use twenty 100 million instruction sampled traces. Each trace has
been verified to be statistically representative of an entire SPEC
application [12]. Figure 6 shows the cache utilizations of the
individual SPEC benchmarks. As one would expect, the data
array has the highest utilization, but for a few benchmarks (e.g.,
equake and swim) the tag array has greater utilization than the
data array. equake and swim have few L2 write requests (see
Figure 7) and many L2 cache misses which require multiple tag
array accesses. Throughout our evaluation, we use data array
utilization as an indicator of a thread’s aggressiveness.

Benchmark L2 Cache Utilization

0%

25%

50%

75%

100%

ar
t

pe
rlb

m
k

vp
r

m
es

a

cr
af

ty

ga
p

m
cf

ap
si

tw
ol

f

fa
ce

re
c

gc
c

gz
ip

lu
ca

s

eq
ua

ke

sw
im

w
up

w
is

e

am
m

p

bz
ip

2

m
gr

id

si
xt

ra
ck

m
ea

n

U
til

iz
at

io
n

Data Array Data Bus Tag Array

Figure 6. L2 Cache Utilization of the SPEC Benchmarks

Figure 7 shows the percentage of L2 requests that are write
requests (after store gathering) and the store gathering rate (the
percentage of stores that are gathered with other stores in the store
gathering buffer). On average, write requests account for 55% of
all L2 requests (after store gathering), and 80% of stores are
gathered and do not require a separate L2 access. The 970’s
write-through L1 cache combined with store gathering is nearly as
bandwidth effective as write-back caches, but without the
complexities of write-back caches.

Store Gathering Rate and L2 Writes

0%

50%

100%

ar
t

pe
rlb

m
k

vp
r

m
es

a

cr
af

ty

ga
p

m
cf

ap
si

tw
ol

f

fa
ce

re
c

gc
c

gz
ip

lu
ca

s

eq
ua

ke

sw
im

w
up

w
is

e

am
m

p

bz
ip

2

m
gr

id

si
xt

ra
ck

m
ea

n

L2 Writes Store Gathering Rate
Figure 7. Percentage of L2 Requests that are Writes and the

Store Gathering Rate

5.3 QoS Performance
To illustrate performance isolation and QoS we provide

results from a number of experiments. Most experiments involve
multi-threaded execution, and to gauge QoS we define two
standards for comparison: target IPC (instructions per cycle) and
QoS IPC.

A benchmark’s target IPC is the benchmark’s IPC
performance when running on a uniprocessor cache with the same

resources as the thread’s allocated VPC. As described above, a
benchmark ideally should go no slower than this target, and if the
thread is offered excess bandwidth, it may go faster. However,
target IPC does not take into account the effects of resource
preemption latencies. Therefore, benchmarks may not meet their
target IPC; although we will show that they do in most cases. To
determine a benchmark’s target IPC, we simulate a uniprocessor
system with a private cache that has the same resources as the
VPC. The private cache has the same number of sets as the
shared cache and ⎣ αi ∗ < baseline cache ways> ⎦ cache ways.
In the private cache all resource latencies are scaled by: 1/φi∗
<baseline resource latency>. For example, for a VPC allocated.
.5 of the cache bandwidth and .25 of the cache ways (φi = .5 , αi =
.25), we simulate a uniprocessor with a L2 cache that has 8 cache
ways, an 8 cycle tag array latency, and 16 cycle data array
latency. For the cases where φi = 0 we set the target IPC to 0.

A benchmark’s QoS IPC takes into account the resources’
worst case preemption latencies. QoS IPC is a lower bound on a
thread’s IPC. To generate the QoS IPCs, we simulate a
uniprocessor system as we do for the target IPCs, except we add
the maximum preemption latency to the resource latencies and
keep the resource bandwidth the same. For example, we simulate
a uniprocessor system with the latencies equal to 1/φi * <baseline
resource latency> + <max preemption latency> cycles and
bandwidth equal to φi / <baseline resource latency> accesses per
cycle.

5.4 Results
For the first experiment we model the baseline CMP

executing two threads: the Loads microbenchmark on processor 1
and the Stores microbenchmark on processor 2. We analyze the
effects of the following cache arbiters: First Come First Serve
(FCFS), Read-over-Write First Come First Serve (RoW), Round-
Robin (RR), and VPC with five different VPC bandwidth
configurations. The IPC and data array utilization results are
shown in Figure 8. We omit the utilizations for the other shared
resources because the data array is the main bottleneck (see
Figure 5). The x-axis of Figure 8 specifies the cache arbiter
policy, and for the VPC arbiters, the share of cache bandwidth
allocated to the Stores benchmark – leftover bandwidth is
allocated to the Loads benchmark. For example, the label VPC
25% represents the configuration where the Stores benchmark is
allocated .25 of the cache bandwidths (φ1 = .25) and the Loads
benchmark is allocated .75 (φ2 = .75). The IPC graph includes the
target IPCs for each VPC configuration.

IPC

0

0.2

0.4

R
oW

FC
FS R

R

0% 25
%

50
%

75
%

10
0%

IP
C

Data Array Utilization

0%

50%

100%

R
oW

FC
FS R

R

0% 25
%

50
%

75
%

10
0%

U
til

iz
at

io
n

VPC VPC

Stores Stores Target Loads Loads Target
Figure 8. Loads and Stores Microbenchmarks IPC and Data

Array Utilization
With the RoW-FCFS arbiter, the Loads benchmark prevents

the Stores benchmark from receiving any cache bandwidth
(likewise, any application with a long stream of loads would

starve any other application’s stores). In a real system, this would
be a critical design flaw.

With FCFS, requests from the Loads and Stores benchmarks
are interleaved uniformly, i.e., there is one store from the Stores
benchmark for every load from the Loads benchmark. With a
uniform interleaving of requests, however, the data array
bandwidth is unevenly shared, and the demands of the two threads
appear to interfere with each other. The Stores benchmark
receives 67% of the data array bandwidth and the Loads
benchmark receives 33% of the data array bandwidth because
stores require twice as much data array bandwidth as loads. The
round-robin arbiters also interleave requests uniformly, and,
consequently, they provide the same performance and data array
utilization as the FCFS arbiters.

The VPC arbiters precisely provide each thread its allocated
share of the cache bandwidth over a broad range of allocations.
The VPC arbiters are able to divide bandwidth so well because
both the Loads and Stores benchmarks keep constant pressure on
the L2 cache – there are always pending requests from both
threads. Because the performance of these benchmarks depends
almost completely on L2 bandwidth, both benchmarks meet their
target IPCs; there are no preemption latency effects. In addition,
the VPC arbiters’ fairness policy has no effect on their
performance because there is no excess bandwidth to distribute.

For our second experiment we model the baseline CMP
executing a SPEC benchmark on processor 1 (the subject thread)
and the Stores microbenchmark on processors 2, 3, and 4
(background threads). We model the subject thread with FCFS,
round-robin, and three VPC bandwidth allocations: φ1 = .25, φ1 =
.5, and φ1 = 1. Remaining bandwidth is allocated equally
amongst the background threads. For example, the label VPC .25
represents the configuration where the subject thread is allocated
.25 of the cache bandwidth (φ1 = .25) and each background thread
is allocated .25 (φi = .25).

 Figure 9 shows the IPC and data array utilization of the
subject thread. The IPCs are normalized to the subject thread’s
target IPCs for φ1 = 1 , i.e., the subject thread running on a private
cache with full cache bandwidth. In addition to the normalized
IPC of the subject thread, the graph shows the target IPC for φ1 =
.25 and φ1 = .5 , and the QoS IPC for φ1 = 1 .

This experiment illustrates 1) the VPC arbiters’ ability to
isolate a foreground task from aggressive (possibly even
malicious) background tasks, 2) the effects of the VPC arbiters’
fairness policy, and 3) the VPC arbiters’ ability to provide
differentiated service.

The FCFS and round-robin arbiters do not provide
performance isolation. The FCFS arbiters fail to meet the subject
threads’ Target IPCs (Target .25) on all of the benchmarks. The
subject threads’ average normalized IPC is .3 (the harmonic mean
of the normalized IPCs). Benchmark mcf has the worst
normalized IPC, it receives only 4% of the cache bandwidth (far
below its implicit share of the cache bandwidth) and has a
normalized IPC of .13 (an 8x increase in runtime compared to the
thread running alone). FCFS is unable to provide performance
isolation because it is a greedy policy. Threads that have higher
resource demands are given unimpeded access to the shared
bandwidth resources.

The round-robin arbiters fail to meet the subject threads’
Target IPCs on 12 out of 20 benchmarks – the subject threads
average normalized IPC is .54. The round-robin arbiters provide

better isolation than the FCFS arbiters because they distribute
bandwidth more fairly than FCFS. However, the round-robin
arbiters still do not provide a sufficient level of QoS and
performance isolation. There are two reasons why round-robin
fall short. First, round-robin does not account for requests’
different service requirements; threads that have a higher
percentage of stores receive more service. Second, round-robin
does not take into account past resource usage. Therefore,
aggressive threads are able to increase the average latency of less
aggressive threads, and force the less aggressive threads to
backoff.

In contrast with the FCFS and round-robin arbiters, the VPC
arbiters meet the QoS objectives for all workloads on all VPC
configurations. For the φ1 = .25 and φ1 = .5 VPC configurations,
each subject thread’s IPC is greater than its target IPC.
Preemption latency does not have a significant effect with these
VPC configurations because 1) the preemption latencies are
relatively small compared to the allocated VPC resource latencies,
and 2) the fairness policy penalizes aggressive threads for
consuming excess resource, thereby causing the less aggressive
(more latency-sensitive) subject thread’s requests to receive
service soon after they arrive at the cache controller.

For the φ1 = 1 VPC configuration, the subject threads meet
their QoS IPCs – the QoS IPCs take into account the resources’
preemption latencies. In this case, the subject thread’s VPC
resources are equivalent to the real cache, and therefore, the
effects of the resources’ preemption latencies can be observed in
the benchmarks’ IPCs. From these results we observe the varying
degrees of memory level parallelism in the benchmarks. In
general, benchmarks that have less memory level parallelism tend
to be more sensitive to preemption latency.

As the subject thread’s allocated share of cache bandwidth
decreases, the variation between the thread’s actual IPC and its
target IPC increases. This occurs for a two reasons. As the
allocated share decreases, the range of guaranteed cache latencies
increases – the range is roughly [<baseline latency> , 1 / φi ∗
<baseline latency> + <maximum preemption latency>].
Furthermore, with the VPC arbiters’ fairness policy, requests from
less aggressive threads (usually more latency-sensitive) are given
higher priority, and therefore, their average latency tends to be
much closer to the <baseline latency> end of the range rather

than the 1 / φi ∗ <baseline latency> + <maximum preemption
latency> end of the range. We intend to study the fairness policy
in more detail in future work, specifically whether an alternative
fairness policy can provide tighter bounds on performance than
those derived using network FQ theory.

The top eight benchmarks in Figure 9 demand more than .25
of the cache bandwidth (see Figure 6). With the φ1 = .25
configuration, these threads are bandwidth constrained. On
average, they receive 23% of the cache bandwidth. The average
normalized IPC of the lower twelve subject threads is .95. The
average normalized IPC of all the subject threads (with φ1 = .25)
is .75, much better than FCFS and round-robin.

The only subject thread that demands more than .5 the cache
bandwidth is art. With the φ1 = .5 VPC configuration, art’s
normalized IPC is .51. Its performance depends mostly on L2
cache bandwidth and it receives .5 of the cache bandwidth. The
average normalized IPC excluding art is .98, and including art the
average is .94.

For the φ1 = 1 VPC configuration, the average normalized
IPC is .99. The worse case performance degradation is mcf with a
normalized IPC of .92; mcf is very susceptible to preemption
latency. These results show that the φ1 = 1 VPC configuration is
good for prioritizing a foreground thread while running less
important background tasks.

For our last experiment, we compare the performance of
FCFS (a greedy technique), RR (which has some fairness
attributes), and VPC (a QoS and fair technique) on multiprogram
SPEC 2000 workloads. The purpose of this experiment is to show
that providing QoS and fairness improves aggregate throughput
and resource utilization when compared to a greedy technique. In
real-time system, this is often not the case – providing QoS often
reduces utilization. For a general-purpose system low resource
utilization is unacceptable, and as this experiment illustrates, it is
not the case with the VPC arbiters. To generate workloads, we
used a perl script that uses random selection without replacement
to generate three four-processor workloads from the top twelve
SPEC benchmarks. We ran this script three times to generate nine
workloads. Therefore, each benchmark appears once in the first
set of three workloads, once in the second, and once in the third.
Figure 10 shows individual benchmarks’ normalized IPCs as well
as the harmonic mean of each workload’s four IPCs, and shows

Normalized IPC

0

0.5

1

art

perlbm
k

vpr

m
esa

crafty

gap

m
cf

apsi

tw
olf

facerec

gcc

gzip

lucas

equake

sw
im

w
upw

ise

am
m

p

bzip2

m
grid

sixtrack

hm
ean

N
or

m
al

iz
ed

 IP
C

Data Array Utilization

0%

25%

50%

75%

100%

art

perlbm
k

vpr

m
esa

crafty

gap

m
cf

apsi

tw
olf

facerec

gcc

gzip

lucas

equake

sw
im

w
upw

ise

am
m

p

bzip2

m
grid

sixtrack

m
ean

U
til

iz
at

io
n

FCFS RR Target .25 VPC .25 Target .5 VPC .5 QoS 1 VPC 1

Figure 9. Subject Thread Normalized IPC and Data Array Utilization

the individual and mean data array utilizations. Cache bandwidth
is allocated in equal proportions (φi = .25 for i from 1 to 4). Each
thread’s IPC is normalized to its target IPC for φi = .25.

For the multiprogram workloads with the baseline FCFS
arbiters there are 7 out of 36 benchmarks that do not meet their
target IPC; in the worst case, the normalized IPC is .71. With the
VPC arbiters, each benchmark meets its target IPC, i.e., the
normalized IPC of each benchmark is greater than one.

Overall, there are significant differences between the
individual threads’ normalized IPCs with the FCFS arbiters and
with the VPC arbiters. The average relative performance
difference between the FCFS and VPC arbiters is 28% , i.e. thread
i’s relative performance difference is: | FCFSi – VPCi | / average
(FCFSi , VPCi) , where FCFSi is the thread’s normalized IPC
with FCFS and VPCi is the thread’s normalized with the VPC
arbiters. This result emphasizes the significance of shared cache
bandwidth and the importance of QoS. Furthermore, there is -.21
correlation between the threads’ normalized IPCs with FCFS and
the threads’ normalized IPCs with the VPC arbiters, when mcf ’s
IPCs are excluded (mcf is an outlier), the correlation is -.72,
which is a strong negative correlation. With FCFS, more
aggressive threads tend to have better performance and less
aggressive threads tend to have worse performance. In contrast,
with the VPC arbiters, all threads get their allocated share of the
bandwidth and excess bandwidth is offered to the less aggressive
threads first. Therefore, relative to FCFS, more aggressive
threads tend to have lower performance and less aggressive
threads tend to have better performance.

Normalized IPC

0.6

1

1.4

1.8

2.2

mesa
facerec

gap crafty

gcc
perlbmk
vpr art

apsi gzip
mcf twolf

crafty gzip
vpr art

gcc mcf
mesa
apsi

perlbmk
gap twolf
facerec

gap apsi
vpr gzip

perlbmk
mcf gcc
facerec

art mesa
crafty
twolf

N
or

m
al

iz
ed

 IP
C

Data Array Utilization

0%

20%

40%

60%

mesa
facerec

gap crafty

gcc
perlbmk
vpr art

apsi gzip
mcf twolf

crafty gzip
vpr art

gcc mcf
mesa
apsi

perlbmk
gap twolf
facerec

gap apsi
vpr gzip

perlbmk
mcf gcc
facerec

art mesa
crafty
twolf

U
til

iz
at

io
n

FCFS FCFS hmean VPC VPC hmean

Figure 10. Multiprogram Workload Normalized IPC and
Data Array Utilization

With the FCFS arbiters, the average (arithmetic mean) data
array utilization per thread is 22% and has a standard deviation of
10.3%. With the VPC arbiters, the threads’ data array utilizations
closely track their allocated shares of cache bandwidth. The
average data array utilization per thread is 23% and has a
standard deviation of 2.8%. Most of the deviation results from
workloads that do not demand their full share of the cache
bandwidth, e.g., the benchmarks gcc, gzip, and facerec. On
average, the VPC arbiters improve data array utilization by 4% on
the combined workloads.

We use two performance metrics to compare the
performance of the VPC, RR, and FCFS arbiters when running
the multiprogram workloads: the harmonic mean of each

workload’s normalized IPCs and the weighted speedup. The
harmonic mean of the normalized IPCs emphasizes both
throughput and fairness [18]. The weighted speedup is the sum of
the normalized IPCs; it measures aggregate throughput. Results
are in terms of performance improvements with respect to the
FCFS baseline. On average, the VPC arbiters improve the
harmonic mean of normalized IPCs by 14% and the weighted
speedup by 10%. The RR arbiters improve the harmonic mean of
normalized IPC by 10% and the weighted speedup by 4%. This
result illustrates that providing QoS and fairness actually
improves throughput not only with respect to the greedy FCFS
policy, but also when compared with the more fair RR policy.
This result is very positive considering that improving an
aggregate performance metric was not our primary objective – our
primary objective was to develop consistent (performance
isolated) QoS mechanisms for managing shared cache resources.
Note that we could have exploited performance isolation by
adjusting the φi values in order to optimize one of the popular
aggregate performance metrics. However, as described in the
related work section, aggregate performance metrics alone are
incompatible with existing operating system and virtual machine
performance abstractions. Furthermore, performance depends on a
collection of resources (e.g, the processor, caches, and SDRAM
memory system), and consequently, should be accounted for by a
policy that has a global view of the system – not just a policy
managing a single resource. Meaningful objectives and effective
global policies are a topic for future work.

6. SUMMARY AND CONCLUSIONS
The Virtual Private Machine framework is a means for

supporting microarchitecture resource sharing. In this framework,
hardware mechanisms allow hardware resources to be allocated to
executing threads, thus realizing a Virtual Private Machine.
VPMs provide threads QoS so that a thread’s performance is at
least as good as a standalone, real private machine having the
same resources as allocated to the VPM.

Virtual Private Cache hardware consists of two major
components: the VPC Arbiters, which manage shared resource
bandwidth, and the VPC Capacity Manager. The VPC Arbiter
implementation presented in this paper is a significant component
of the overall VPM framework. Although, the arbiter design is
proposed in the context shared caches it can be applied to other
shared microarchitecture resources. Both the VPC Arbiter and
VPC Capacity Manager provide minimum service guarantees that
when combined achieve the global VPM QoS objective.
However, due to the nature of modern out-of-order processors we
can not prove that VPMs will meet their QoS performance
objective unless we assume performance monotonicity. That is, a
thread’s performance is a monotonically increasing function of
the amount of resources a thread is offered.

Our evaluation shows that existing cache arbiter policies
allow threads that share cache bandwidth to affect each other
significantly and in an uncontrollable manner. With the FCFS or
round-robin arbiters in a desktop environment, for example, an
aggressive background task may prevent the user from watching a
movie, even when there is ample processing power available. In
contrast, we show VPCs meet their QoS performance objective on
all workloads studied and have a fairness policy amenable to
general-purpose multithread systems. Furthermore, we show
VPCs can improve CMP throughput by eliminating negative
interference.

7. ACKOWLEDGEMENTS
This work was supported by an IBM Fellowship and by

equipment donations and financial support from Intel. The first
author would like to thank Professor Parmesh Ramanathan for his
clarity and insights in teaching real-time systems. We would also
like to thank Ravi Nair and Dan Prener of IBM for their advice
and support during the development of simulation infrastructure.

8. REFERENCES
[1] Banga, G., Druschel, P., and Mogul, J., Resource containers: A

new facility for resource management in server systems, In Proc.
of the 3rd USENIX Symp. On Operating Systems and Design
Implementation, Feb. 1999. pp 45-58.

[2] Bennett, J. C., and Zhang, H., Hierarchical packet fair queuing
algorithms. In Trans. On Networking, Oct. 1997. pp 675-689.

[3] Brown, J., Application Customized CPU Design: The Xbox 360
Story, on IBM Developerworks, Dec. 2005.

[4] Cazorla, F. J., Ramırez, A., Valero, M., Knijnenburg, P. M. W.,
Sakellariou, R., and Fernandez., E., QoS for High-Performance
SMT Processors in Embedded Systems. IEEE Micro, 2004. pp
24–31.

[5] Chetto, H., and Chetto, M., Some Results of the Earliest
Deadline Scheduling Algorithm. IEEE Trans. on Software
Engineering. 15, 10, Oct. 1989. pp 1261-1269.

[6] Emer J., et al., Asim: A Performance Model Framework. IEEE
Computer, Feb. 2002. pp 68-76.

[7] Kim, S., Chandra, D., and Solihin, Y., Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proc. of
the 13th Intl. Conf. on Parallel Architecture and Compiler
Techniques, Sept. 2004. pp 111-122.

[8] Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A.,
Enforcing Performance Isolation Across Virtual Machines in
Xen. In Proc. of the USENIX 7th Intl. Middleware Conference,
Dec.2006.

[9] Hennessy J. L., and Patterson, D., A., Computer Architecture: A
Quantitative Approach, Third Edition, Morgan Kaugmann,
2002.

[10] Hsu, L. R., Reinhardt, S. K., Iyer, R., and Makineni, S.,
Communist, utilitarian, and capitalist cache policies on CMPs:
caches as a shared resource. In Proc. of the 15th Intl. Conf. on
Parallel Architectures and Compilation Techniques, Sept. 2006.
pp 13-22.

[11] IBM PowerPC 970FX RISC Microprocessor User’s Manual,
Version 1.6, Dec. 2005.

[12] Iyengar, V. S., Trevillyan, L. H., and Bose, P., Representative
Traces for Processor Models with Infinite Cache. In Proc. of the
2nd Symp. on High-Performance Computer Architecture, Feb.
1996. pp 62-72.

[13] Iyer, R. CQoS: a framework for enabling QoS in shared caches
of CMP platforms. In Proc, of the 18th Intl. Conf. on
Supercomputing, June 26, 2004. pp 257-266.

[14] Kumar, R., Zyuban, V., and Tullsen, D. M., Interconnections in
Multi-Core Architectures: Understanding Mechanisms,
Overheads and Scaling. In Proc. of the 32nd Intl. Symp. on
Computer Architecture, June 2005. pp 408-419.

[15] Kongetira, P., Aingaran, K., and Olukotun, K., Niagara: A 32-
Way Multithreaded Sparc Processor. IEEE Micro, 25, 2, Mar.
2005. pp 21-29.

[16] Le Boudec, J.Y., and Thiran, P., Network Calculus, Springer
Verlag, 2004.

[17] Lee, J. W. and Asanovic, K., METERG: Measurement-Based
End-to-End Performance Estimation Technique in QoS-Capable
Multiprocessors. In Proc. of the 12th IEEE Real-Time and
Embedded Technology and Applications Symp, April 2006. pp
135-147.

[18] Luo, K., Gummaraju, J., and Franklin, M., Balancing throughput
and fairness in SMT processors. In Proc. of the Intl. Symp. on
Performance Analysis of Systems and Software, Jan. 2001. pp
164-171.

[19] Mak, P., et al., Shared-cache clusters in a system with a fully
shared memory. In IBM Journal of R&D Vol. 41 July/Sept.
1997. pp 429-448.

[20] Micron., 1Gb DDR2 SDRAM Component: MT47H128M8B7-
25E, June 2006.

[21] Nesbit, K.J., Aggarwal, N., Laudon, J., and Smith, J.E., Fair
Queuing Memory Systems, In Proc. of 39th Intl. Symp. On
Microarchitecture, Dec 2006. pp 208-222.

[22] Qureshi, M. K. and Patt, Y. N. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to
Partition Shared Caches. In Proceedings of the 39th Intl. Symp.
on Microarchitecture, Dec. 2006. pp 423-432.

[23] Rafique, N., Lim, W., and Thottethodi, M. Architectural support
for operating system-driven CMP cache management. In
Proceedings of the 15th Intl. Conf. on Parallel Architectures and
Compilation Techniques, Sept. 2006. pp 2-12.

[24] Sariowan, H., Cruz R.L., and Polyzos G.C., Scheduling for
quality of service guarantees via service curves. In Proc. of the
4th Intl. Conf. on Computer Communication and Networks,
Sept. 1995. pp 512-520.

[25] Shreedhar, M., and Varghese, G., Efficient fair queueing using
deficit round robin. In Proc. of the Conference on Applications,
Technologies, Architectures, and Protocols For Computer
Communication, August 1995. pp 231-242.

[26] Silberschatz, A., Galbin, P. B., and Gagne, G., Operating System
Concepts, Seven Edition, John Wiley & Sons, Inc., 2004.

[27] Skadron, K., and Clark, D. W., Design Issues and Tradeoffs for
Write Buffers. In Proc. of the 3rd Symp. on High-Performance
Computer Architecture. Feb. 1997. pp 144-155.

[28] Stewart, D. B., and Mortier, R., Virtual private machines: user-
centric performance. In Proc. of the 11th Workshop on ACM
SIGOPS European Workshop: Beyond the PC, Sept., 2004. pp
36-40.

[29] Suh, G. E., Devadas, S., and Rudolph, L., A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning. In Proceedings of the 8th Intl. Symp. on High-
Performance Computer Architecture, Feb. 2002. pp 117-128.

[30] Tendler, J. M., et. al., Power4 System Mircoarchitecture,
Technical white paper, Oct. 2001.

[31] Verghese, B., Gupta, A., and Rosenblum, M. Performance
isolation: sharing and isolation in shared-memory
multiprocessors. In Proc. of the 8th Intl. Conf. on Architecture
Support For Programming Language and Operating Systems,
Oct. 1998. pp 181-192.

[32] Wilton, S., and Jouppi, N., CACTI: An Enhanced cache Access
and Cycle Time Model, In Journal of Solid-State Circuits, Vol.
31, May 1996. pp 677-688.

[33] Zhang H., Service Disciplines for Guaranteed Performance
Service in Packet-switching Networks, In Proc. of the IEEE,
vol.83, Oct. 1995. pp 1374-1398.

