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Abstract 
Analytical modeling is applied to the automated design of 

application-specific superscalar processors. Using an analytical 
method bridges the gap between the size of the design space 
and the time required for detailed cycle-accurate simulations.  
The proposed design framework takes as inputs the design 
targets (upper bounds on execution time, area, and energy), 
design alternatives, and one or more application programs. The 
output is the set of out-of-order superscalar processors that are 
Pareto-optimal with respect to performance-energy-area. The 
core of the new design framework is made up of analytical 
performance and energy activity models, and an analytical 
model-based design optimization process. 

For a set of benchmark programs and a design space of 
2000 designs, the design framework arrives at all performance-
energy-area Pareto-optimal design points within 16 minutes on 
a 2 GHz Pentium-4. In contrast, it is estimated that a naïve 
cycle-accurate simulation-based exhaustive search would re-
quire at least two months to arrive at the Pareto-optimal design 
points for the same design space. 

Categories and Subject Descriptors 
C.1.0 [Processor Architectures]: General 
 
General Terms 
Performance, Design. 
 
Keywords 
Application specific processors, analytical model, performance 
model, power model, design optimization. 

 

1 Introduction 
Widespread use of embedded microprocessors and the 

competitive marketplace have created the need for energy effi-
cient microprocessors, occupying minimal silicon area, with 
stringent time-to-market requirements. Furthermore, the de-
mand for increased functionality and higher performance are 

pushing out-of-order superscalar microarchitectures into the 
embedded microprocessor space; the PowerPC 440[1] is an 
example. The eventual widespread use of out-of-order super-
scalar processors in performance-intensive embedded products 
is inevitable. The challenge then is to design embedded out-of-
order superscalar processors with short time-to-market, and 
that are performance-energy-area optimal for the target appli-
cation program(s). 

The design of an application-specific processor requires 
optimization at the circuit-level, the logic-level, and the mi-
croarchitecture-level. Current microarchitecture-level optimi-
zation methods are both human and computationally intensive. 
Consequently, current methods either evaluate a small number 
of designs from the design space, or they analyze a small part 
of the application program. This motivates an automated mi-
croarchitecture design framework based on computationally 
simple analytical models. 

 

1.1  Design Framework Overview  
The proposed automated design framework is composed 

of a number of parts. The component database stores pre-
designed components, such as issue buffers, functional units, 
reorder buffers, register files, and caches, along with their sili-
con area and energy consumption. The parameterized proces-
sor template specifies the pre-designed components and inter-
connections between the components of a superscalar proces-
sor. Performance and energy models are based on analytical 
equations. The area model computes the total area of the su-
perscalar processor configuration by first finding the area oc-
cupied by each pre-designed component and then summing the 
individual component areas.  

The design optimization process employs a simple di-
vide-and-conquer approach to arrive at optimal designs from 
the available components. The performance, energy, and area 
of each configuration are evaluated with the respective models, 
and a set of Pareto-optimal configurations is produced. From 
this set of Pareto-optimal configurations the ones that satisfy 
the design constraints are presented to the system designer. Or, 
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if no designs satisfy the constraints, this information is also 
conveyed to the designer. For a set of benchmark programs, the 
design framework takes about 16 minutes to generate a set of 
designs that are performance-energy-area Pareto-optimal.  

1.2 Related Work 
A naïve method for automatically generating Pareto-

optimal designs is to first generate the set of all designs from 
the available components, then employ cycle accurate simula-
tions to arrive at performance and energy data for each con-
figuration. Then, the set of Pareto-optimal designs can be se-
lected – henceforth, this method is called the baseline method. 
The baseline method will find the Pareto-optimal designs, 
however it suffers from the obvious disadvantage of being very 
time-consuming and therefore impractical in many situations. 
As a result, researchers have explored methods that trade-off 
accuracy for reduction in design optimization time.  

Heuristic-based optimization methods [2-4] choose a 
subset of the design space for evaluation by employing heuris-
tics such as the Conjugate Gradient method [5] and Simulated 
Annealing [6]. Heuristic methods have two limitations: they 
are prone to getting stuck in local minima, and they do not 
provide insight into rationale that support the optimal choice.  

Trace sampling [2,7,8] reduces the number of instructions 
that must be simulated by tracing and skipping instructions 
from the original application trace. The tracing and skipping 
process continues until the entire original application trace is 
executed. Then, the sampled trace is given as the input to a 
cycle accurate simulator.  

Statistical simulation [9-11] also reduces the total number 
of instructions that the cycle accurate simulator must simulate. 
This method first collects program statistics through functional 
and trace-driven simulations. Next, a synthetic instruction trace 
is generated using the collected program statistics. Finally, the 
synthetic instruction trace is simulated with a cycle accurate 
processor simulator. Typically, the synthetic instruction trace is 
orders of magnitude smaller than the original program trace, 
thereby reducing the design optimization time. 

Although analytical performance models exist [12-
15,24], an automated design framework based on these models 
has not been explored.  While analytical performance model is 
one aspect of an automated design framework, these models 
alone do not constitute an automated design framework for the 
combination of performance, power and area. 

1.3 Paper Contribution 
Cycle accurate simulation is at the center of the previous 

design frameworks in one way or another (even statistical 
simulation has a cycle-level microprocessor model). In con-
trast, the method proposed here is based on analytical model-
ing, and the overall design framework which incorporates the 
analytical model is henceforth referred to as the analytical 
method, for brevity. In the analytical method, the design opti-
mization process arrives at Pareto-optimal design parameters 
while accounting for the variation in resource requirements. 
Results suggest that a design framework based on first-order, 
computationally simple analytical models is feasible, and it can 
successfully bridge the long-standing gap between large num-
ber of design options and the inability of cycle-accurate simu-
lations to explore a large design space. 

2 Superscalar Processor Template 
The template for the parameterized superscalar processor 

is shown in Fig. 1. The processor core contains an instruction 
issue buffer, a load/store buffer, and a separate reorder buffer 
(ROB).  Processor parameters include the L1 instruction and 
data cache sizes, unified L2 cache size, branch predictor size, 
physical registers, rename map entries, and numbers of func-
tional units of each type. These parameterized components of 
the superscalar processor are pre-designed and stored in the 
component database along with the silicon area they will oc-
cupy and the energy modeling information. 

 

                     Fig. 1: Superscalar Processor Template 

3 Program Statistics 
The following set of application program statistics drive 

the automated design framework. These statistics are collected 
from functional or trace-driven simulations.  

• Critical-path lengths: The average length of the longest 
data dependence chain for each window or sequence of W 
consecutive dynamic instructions. There is one average 
length for each window size W, and the maximum W is the 
maximum-sized reorder buffer in the component database.  
This statistic is used in determining the reorder buffer size. 

• Dependence length distribution: The average length of 
the longest dependence chain leading to each instruction 
for each window size as defined above.  This statistic used 
in determining the issue buffer size. 

• Functional unit mix: the fraction of the executed instruc-
tions that use each of the functional unit types (e.g., an in-
teger ALU or data cache port). 

• Cache miss-rate: the number of instructions that miss in 
the cache divided by the number of instructions. The miss 
rates are determined for the set of caches in the design 
space; we used Tycho[16].   

• Branch miss-prediction rate: the number of branches 
that are miss-predicted divided by number of executed in-
structions in the program. The miss-prediction rate is 
measured for the set of branch predictors in the design 
space with a trace-driven branch predictor simulator. 



• Average load independence: for a load that misses in the 
L2 cache, the average number of other load misses within 
window W that are not transitively data dependent on the 
subject load miss. This statistic indicates the degree to 
which L2 misses can be overlapped. 

Program statistics for the functional unit mix and cache 
miss rate for the L1 data cache are accumulated over intervals 
of one million instructions and then mean and standard devia-
tion of the interval data is reported. As we shall see later (in 
Section 6), the design optimization process uses the mean and 
standard deviation to model the dynamic variation in resource 
requirements of a program. Table 1 has the time required by 
the trace-driven simulators to analyze a trace of 100 million 
instructions; when longer traces are used, these times will grow 
linearly.  

Table 1. Time for analyzing 100M instructions. 

Program Statistic Time  

Critical-path, Dependence 
length, Functional unit mix, 
Load independence 

1.8 min 

Cache miss rates 30 sec per config. 

Branch miss-prediction rates 2 mins per config. 

4 Performance Model 
For the performance model, we use interval analysis 

[26], which is based on a combination of methods proposed by 
Michaud et al.[12], Taha and Wills[15], and Karkhanis and 
Smith[17].  

The basis for the model is the observation that under 
ideal conditions, a superscalar processor can sustain an instruc-
tion per cycle (IPC) rate that is roughly equal to the superscalar 
pipeline width.  However, under non-ideal conditions, the 
smooth flow of instructions is intermittently disrupted by miss-
events such as cache misses and branch mispredictions. After a 
miss-event occurs, the issuing of useful instructions stops; 
there is then a period when no useful instructions are issued 
until the miss-event is resolved and instructions can once again 
begin flowing. 

This behavior is illustrated in Fig. 2. The number of in-
structions per cycle that are committed is shown on the y axis, 
and time (in clock cycles) is on the x axis. As illustrated in the 
figure, the effects of miss events divide execution time into 
intervals.  Intervals begin and end at the points where instruc-
tions just begin issuing following recovery from the preceding 
miss event. That is, an interval includes the time period follow-
ing the particular miss event when no instructions are issued. 

 

Fig. 2: Miss-events break program execution into inter-
vals 

 

By dividing execution time into intervals, performance 
behavior of an individual interval can be modeled by consider-
ing both the type of miss-event that terminates it and by the 
number of instructions in the interval. First, program character-
istics and basic processor parameters (the reorder buffer size 
and instruction issue width) feed a model that tracks instruction 
issue rate as an interval evolves from beginning to end. Next, 
statistics generated through analysis (or estimation) of cache 
and predictor behavior yield distributions of interval lengths 
for each interval type. Then, given the types of the intervals 
and their lengths, the model provides an estimate of the total 
time that wil l be spent in each interval type. Overall processor 
performance is simply the aggregate performance over all the 
interval types [26].  

The methods for computing interval timings can be de-
rived using techniques similar to those used in an earlier model 
[17]. This paper employs the formula given in equation 1. 

 

CPI = (1/i) + { (1/NTOTAL) × { [(i-1)/2] × (miL1+mbrm+ miL2+mtbr) 
+ [miL1×cL2] + [miL2×cmm] + [mbr×(cdr+cfe)] + [MdL2×cmm]} }    (1)                                 

 

The first term is the ideal CPI; i is the peak issue rate. 
The remaining terms are divided by NTOTAL , the total number 
of dynamic program instructions, to reduce them to CPI. The 
second term is the inefficiency in the fetch/decode unit. This 
assumes an aggressive front end where all the inefficiency in 
front-end instruction flow is due to interruptions caused by 
miss-events.  mk is the fraction of instructions that result in a 
miss-event of type k; mtbr models the inefficiency due to cor-
rectly predicted taken branches. The third term reflects the 
additional cycles due to L1 instruction cache misses; cL2 is the 
L2 cache access delay in cycles. The fourth term reflects the 
additional cycles for instruction misses in the L2 cache; cmm is 
the memory access time. The fifth term is the additional cycles 
due to branch mispredictions [25]. It is the miss rate times the 
ROB drain time, denoted as cdr, plus the front-end pipeline 
length (fil l time), denoted as cfe. The parameter cdr is cycle 
penalty for not issuing at the peak issue rate when the ROB is 
running out of useful instructions. It is a function of the criti-
cal-path characteristic (see Section 3) and the ROB size, and it 
is computed iteratively as explained in [12, 17]. The final term 
is the additional cycles due to L2 data cache misses; MdL2 is 
computed from the L2 data cache miss rate and the load inde-
pendence statistic as described in the next paragraph. 

Equation 1 is based on certain assumptions regarding 
overlapping effects of miss-events [17]. Instruction cache 
misses and branch mispredictions inherently do not overlap 
with other instruction cache misses and branch mispredictions. 
Long data cache misses however can overlap with each other.  
Therefore, MdL2 is computed as (mdL2/Novr)/NTOTAL, where L2 
data misses overlap in groups of Novr, and mdL2 denotes the 
total number of L2 data misses. Novr is a function of the L2 
cache and the reorder buffer size and is obtained from the av-
erage load independence statistic (see Section 3). Given the L2 
cache and the reorder buffer size, the average load independ-
ence statistic is assigned to Novr.  

The accuracy of equation 1 is evaluated by comparing its 
CPI estimate with that generated from a cycle-accurate simula-
tor. For this comparison, 32-bit PowerPC traces of SPEC-
cpu2000 and MiBench workloads generated with the program 

time

IPC

branch
mispredicts

i-cache
miss long d-cache

miss



AMBER [18] are used. The baseline designs are PowerPC440-
like configuration [1] and a Power4-like configuration [19]. 

Equation 1 tracks cycle accurate simulation very well. 
Fig. 3a is a scatter plot for the analytical model CPI and de-
tailed simulation CPI for a total of 36 benchmarks (24 SPEC-
cpu2000 and 12 MiBench benchmarks). The correlation coeffi-
cient of analytical model and the cycle-accurate simulation CPI 
estimates is 0.95. 

The CPI difference between the analytical model and cy-
cle-accurate simulation is 5% averaged over absolute values of 
the CPI differences of all benchmarks. The benchmark mcf has 
the highest CPI difference of 13%. Fig. 3b has the distribution 
of the CPI differences. The distribution mean is -0.4 and the 
standard deviation is 6.2. The Shapiro-Wilkes goodness of fit 
value for the histogram is 0.97 out of a maximum possible of; 
when the histogram is a perfect Normal distribution the value 
is 1. 

A Normal distribution with the same mean and standard 
deviation as the data is overlaid on the bars for illustration. A 
correlation coefficient close to one and normally distributed 
differences indicate a fundamentally sound mechanistic model 
[20].  
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Fig. 3. Comparison of Analytical Model and Simulated 
EPI. a) EPI correlation. b) distribution of EPI differ-
ences. 

 

5  Energy Activity Model 
As has been noted, the performance model just described 

is similar to earlier work (although not identical). The method 
for energy modeling is new in this work. 

5.1 Quantifying Energy 
Each clock cycle, a microarchitecture component is as-

signed one of three energy activities: Active, Stalled, and Idle. 
To be Active, the component is actively performing its in-
tended operation during the given clock cycle. For example, an 
issue buffer slot is Active during a clock cycle when an instruc-
tion is actually issued from the slot. To be Stalled, the compo-
nent is not performing its intended operation, but holds valid 
information (data and/or control) to be processed later. A com-
ponent is Idle when it does not hold valid information (data 
and/or control). For example, an issue buffer entry is Idle if it 
does not hold a valid instruction. This method of categorizing 
energy activities is referred to as the ASI method. 

The energy multipliers for ASI activities can be provided 
in a number of ways. One option is to generate energy multi-
pliers via HSPICE simulations. For the results reported here 
we employed first-order estimates from the  Wattch [21] library 
of power models. 

 

5.2 Computing Energy Activities 
The basic approach for computing energy activities relies 

on the same underlying model as for estimating performance. 
That is, the energy activities are related to the steady-state cy-
cles and miss-event cycles. One complication, however, is that 
the performance model does not explicitly account for miss-
speculated instructions (although it does account for their per-
formance effects). To handle activities due to miss-speculated 
instructions, each of the three ASI activities are divided into 
two parts: Used and Flushed. The Used part is the energy ac-
tivity for committed instructions. The Flushed part models the 
energy activity for instructions that are fetched following a 
mispredicted branch, but later discarded. For example, the ac-
tivity for the issue buffer entries that hold miss-speculated in-
structions is  Issue Buffer Stalled Flushed (IB_SF). 

The overall analytical approach is: 1) compute the Used 
portion of each type of energy activity, 2) compute the Flushed 
portion of energy activity assuming the miss-speculated in-
structions have the same program statistics as the Used instruc-
tions, and 3) add the Used and Flushed activities of each type 
for each component.  

 

5.3      Example: Issue Buffer ASI  
As just defined, an issue buffer entry can be Active, 

Stalled, or Idle during a given clock cycle. Let B denote the 
number of issue buffer entries. Under ideal conditions, an av-
erage of i slots are Active every cycle to sustain the steady-
state issue rate of i instructions per cycle. A processor configu-
ration requires CPI ideal×NTOTAL cycles to execute the program. 
Because CPI ideal is 1/i, Active-Used issue buffer activity under 
ideal conditions is then computed with equation 2. 

                                  IB_AUideal = NTOTAL                              (2) 

Of the B instructions in the issue buffer i issue every cy-
cle, so on average (B-i) issue buffer entries are Stalled. Equa-
tion 3 computes the issue buffer Stalled-Used activity under 
ideal conditions. Idle issue buffer activity under ideal condi-
tions is zero, because all issue buffer entries are occupied in a 
balanced design. 



                         IB_SUideal = { [(B/i)-1]×NTOTAL}                     (3) 

During an instruction cache miss, the issue buffer runs 
out of instructions and all B issue buffer entries are Idle until 
the missed instructions enter the issue buffer. Consequently, 
there are no Active-Used and Stalled-Used activities during 
this time. Idle-Used issue buffer activity due to instruction 
misses is modeled with equation 4. 

              IB_IUimisses = NTOTAL×[(miL1×cL2)+(mi L2×cmm)]×B     (4) 

When one or more loads miss in the L2 cache, instruction 
commit eventually stops. Fetch and dispatch stop relatively 
quickly thereafter. The issue buffer entries have unissued in-
structions following the missed load. Commit resumes only 
after the missed load data returns. There are no Active-Used 
and Idle-Used activities during this time. Stalled-Used issue 
buffer activity because of long data cache misses is computed 
with equation 5. 

                     IB_SUL2dmisses = NTOTAL×mdL2×B×cmm                 (5) 

Total Active-Used issue buffer activity is computed with 
equation 2. Total Stall-Used activity is computed by adding 
equations 4 and 5, written as equation 6. 

 

            IB_SUtotal = { [(B/i)-1]×NTOTAL} +[N×mdL2×B×cmm]     (6) 

 

The issue buffer experiences Idle-Used activity only during 
instruction cache misses, therefore the total Idle-Used activity 
is computed with equation 4. 

On every branch misprediction the issue buffer experi-
ences (cdr+cfe) mispeculated cycles. Out of (cdr+cfe) cycles (jdis-
1) are Idle cycles because after the pipeline flush all issue 
buffer entries are Idle, where jdis is the depth of the dispatch 
stage. 

For [(cdr+cfe)-(jdis-1)] cycles the issue buffer is processing mis-
peculated instructions. For brevity, let us define cbrm as 
(cdr+cfe). Equations 7, 8, and 9 compute the Active-Flushed, 
Stall-Flushed, and Idle-Flushed activities, respectively. 

IB_AFtotal = (mbrm×NTOTAL×B) × [cbrm-(jdis-1)]  

× [IB_AUtotal/(IB_AUtotal+IB_SUtotal+IB_IUtotal)]                    (7) 

 

IB_SFtotal = (mbrm×NTOTAL×B)×[cbrm-(jdis-1)] 

× [IB_SUtotal /(IB_AUtotal+IB_SUtotal+IB_IUtotal)]                    (8) 

 

  IB_IFtotal = { (mbrm×NTOTAL×B)×[cbrm-(jdis-1)] 

× [IB_IUtotal/(IB_AUtotal+IB_SUtotal+IB_IUtotal)]}  

+ { (jdis-1)×mbrm× NTOTAL×B}                                                    (9) 

 

5.5 Energy Activity Model Evaluation 
To confirm that the analytical energy activity model is 

accurate, energy per instruction (EPI) computed with the ana-
lytical model is compared with the EPI generated with cycle-
accurate simulation. To arrive at the EPI, energy activities are 

obtained from the respective models. Energy activity multipli-
ers are taken from the models provided in power.h file of 
Wattch [21]. Note that the same energy activity multipliers are 
used for the analytical energy activity model and for the activi-
ties generated from cycle accurate simulation. The energy ac-
tivities are multiplied by their corresponding multipliers and 
the total energy is calculated. Finally, the total energy is di-
vided by the number of dynamic program instructions. 

For all benchmarks, the analytical energy activity model 
tracks simulation (see Fig. 4a). The correlation coefficient is 
0.99. The average difference between the analytical model and 
cycle accurate simulation is about 5.4% over all benchmarks. 
The benchmark mcf has the highest difference of 15%. The 
distribution of the CPI differences shown in Fig. 4b has a sta-
tistical mean of 0.8 and a standard deviation of 6.7. The 
Shapiro-Wilkes value for the normality test of the data is 0.93 
out of a maximum of one, indicating that the histogram follows 
a Normal distribution. 
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Fig. 4. Comparison of Analytical Model and Simulation 
EPI. a) EPI correlation. b) distribution of EPI differ-
ences. 

6 Design Optimization Process 
The design optimization process employs a divide-and-

conquer approach. The key insight is that the superscalar pipe-
line, cache, and branch predictor sub-systems can be optimized 
independently, in isolation of each other [2,17]. The divide-
and-conquer process has several local optimization steps and a 
global optimization step.  

The local optimization step arrives at the individually 
Pareto-optimal branch predictor, L1 instruction cache, L1 data 
cache, unified L2 cache, and superscalar pipeline by evaluating 
each subsystem separately. The Pareto-optimal caches and 



branch predictors are derived based on their miss-rates, silicon 
area, and energy consumption per access (component data pro-
vided in the component database and program statistics from 
Section 3). The Pareto-optimal superscalar pipelines are found 
with an analytical portion of the optimization process (Section 
6.1) that models relationships among various parameters of an 
idealized superscalar pipeline based on the application statis-
tics. This allows a direct method for superscalar pipeline de-
sign. Then, the performance and energy models are employed 
and the area information from the component database is used 
to find the Pareto-optimal superscalar pipelines. 

The global optimization step first constructs a cross-
product of the locally Pareto-optimal superscalar pipelines, 
branch predictors, and caches. Then, CPI and EPI values of all 
of these designs are evaluated with the analytical performance 
and energy activity models, respectively. Area is computed by 
summing up the areas of the individual components found in 
the component database. The Pareto-optimal superscalar proc-
essor designs are based on this CPI, EPI and Area data. 

The design optimization process is explained in this sec-
tion. First, the local optimization method for designing ideal-
ized superscalar pipeline is discussed in Section 6.1. Local 
optimization of branch predictor and cache is not explicitly 
discussed because it requires miss-rate data generated with 
straightforward trace-driven simulations. The global optimiza-
tion algorithm is the focus of Section 6.2. 

6.1 Superscalar Pipeline Design 
The superscalar pipeline design process is a sequence of 

six steps illustrated in Fig. 5. For a given issue width, each step 
uses results obtained in a previous step to derive additional 
parameters of the superscalar pipeline. First, the sufficient 
number of functional units of each type is determined for a 
particular issue width. Next, the number of reorder buffer en-
tries to sustain the issue rate is computed. Based on the reorder 
buffer size, the issue buffer size, number of physical registers, 
and load/store buffer size are derived using analytical model 
equations. 

 

Issue 
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Buffer 

Reorder 
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            Fig. 5. Superscalar Pipeline Design Process. 

Step 1: Compute Number of Functional Units 

A sufficient number of functional units of type h, denoted 
as Fh, depends on three parameters: 1) the maximum issue rate 
i, 2) the fraction of instructions that require functional unit of 
type h, and 3) the issue latency of that functional unit (issue 
latency =1 if the functional unit is fully pipelined). Because 
instructions that require functional unit of type h may come in 
bursts, the mean functional unit demand denoted as Dh�  and the 
standard deviation of the demand data denoted as Dh�  are used. 
Dh�  and Dh�  are collected over intervals of length one million 
instructions during the trace-driven simulations (Section 3). 

Equation 10 computes the sufficient number of functional 
units of type h. The term [Dh� +(2×Dh� )] accounts for the varia-
tion in functional unit requirements. Simulation results (not 
given here) show that two standard deviations added to the 
mean account for functional unit requirements in at least 97% 
of the length one million instruction intervals. A rationale for 
this technique is based on two well-known statistical facts: 1) 
the distribution of averages of “samples”  taken from any un-
derlying distribution tends to a Normal distribution by the vir-
tue of Central Limit Theorem, and 2) adding two standard de-
viations to the mean of any Normal distribution accounts for 
97.5% of the samples. In this case, a sample is a sequence of 
dynamic instructions that is one million instructions long. Fi-
nally, Little’s Law is applied and the term [Dh� +(2×Dh� )] is 
multiplied by the issue width I and the issue latency Yh. The 
two standard deviation method is also used in subsequent steps 
where there is a need for modeling bursts in resource demands. 

 

               Fh = I x [Dh� +(2×Dh� )] x Yh                 (10) 

 

Step 2: Compute Reorder Buffer Entries 

The sufficient number of reorder buffer entries is com-
puted with equation 11 [12]. In the equation, W is the number 
of reorder buffer entries, the function K(W) is the average criti-
cal-path distribution measured with trace analysis (see Section 
3), and cexe is the average instruction execution latency com-
puted with the functional unit mix. 

 

                   i = W/[cexe x K(W)]                          (11)  

 

Using equation 11 values of i are computed for a spectrum of 
W values. The smallest W that yields i within 3% of the peak 
issue rate is chosen as the reorder buffer size. 

 

Step 3: Compute issue buffer entries 

Equation 12 computes the number of issue buffer entries 
based on the reorder buffer entries. The function A()is the aver-
age instruction dependence length for a sequence of W instruc-
tions (see Section 3). The ratio A(W)/K(W) determines the frac-
tion of reorder buffer residence time spent waiting in the issue 
buffer for dependences to resolve. 

 

                  B = W x [A(W)/K(W)]                       (12) 

 

Step 4: Compute Load/Store Buffer Entries 

The load/store buffer entries must have sufficient entries 
for all in-fl ight load and store instructions. The number of in-
flight instructions is W (reorder buffer size, computed in equa-
tion 11). Equation 13 computes the sufficient load/store buffer 
entries. In the equation, DLDST�  is the mean load/store demand 
and DLDST�  is the standard deviation in the demand. 

 

             LS = W x [DLDST�  + (2 x DLDST� )]                    (13) 



 

Step 5: Compute Number of Physical Registers 

The physical register file must be able to accommodate 
the requirements of all in-flight instructions that write to a reg-
ister. The number of in-flight instructions is W (reorder buffer 
size computed in equation 11). Equation 14 computes the suf-
ficient number of physical registers. The mean instruction de-
mand for the physical register file is donated by DWR�  and the 
standard deviation is denoted as DWR� . 

 

           PR = W x [DWR�  + (2 x DWR� )]                          (14) 

 

6.2 Optimization Algorithm 
The overall optimization algorithm operates in a se-

quence of eight steps. The first step collects program statistics. 
Steps 2 to 5 perform local optimization. Steps 6 to 8 are for the 
global optimization. 

1. Software Evaluation: For the given application program(s), 
measure miss-rates for all instruction caches, data caches, 
unified caches, and branch predictors in the design space 
with application analyzers (i.e. simple trace-driven simula-
tions). 

2.  Idealized Pipeline Design: Determine the idealized super-
scalar pipeline for all issue widths in the design space, as 
explained in Section 6.1. 

3.  Cache Optimization: Find miss-rate, energy per access, 
and area Pareto-optimal cache designs from the set of 
caches evaluated in Step 1, each independently of the oth-
ers. Miss-rates are from Step 1. The area and energy per ac-
cess information of every cache in the design space is ob-
tained from the component database. 

4.  Branch Predictor Optimization: Find the miss-prediction 
rate, energy per access, and area Pareto-optimal branch pre-
dictors from the set of branch predictors evaluated in Step 1. 
The miss-prediction rate was measured in Step 1. The area 
and energy of every branch predictor in the design space is 
obtained from the component database. 

5.  Superscalar Pipeline Optimization: Find CPI, EPI, and 
Area Pareto-optimal idealized superscalar pipelines from 
the pipelines designed in Step 2. CPI of a superscalar pipe-
line is 1/i because the pipeline resources are sized to achieve 
the peak issue rate of i. EPI is computed for superscalar 
pipeline components with equations that model energy ac-
tivity under ideal conditions (Section 5). The area of a su-
perscalar pipeline is the sum of the areas of its individual 
components, as specified in the component database. 

6.  Superscalar Processor Design: Using combinations of 
Pareto-optimal caches (Step 3), branch predictors (Step 4), 
and idealized processor pipelines (Step 5) compose super-
scalar processor designs. 

7.  Superscalar Processor Optimization: Find CPI, EPI, and 
Area Pareto-optimal superscalar processors from the de-
signs in Step 6. The performance model from Section 4 will 
compute the CPI. The energy activity model from Section 5 
will compute the EPI. Area is computed by adding the 
cache, branch predictor, and idealized superscalar pipeline 
areas. 

8.  Superscalar Processor Selection: The processor designer 
chooses a superscalar processor design from the Pareto-
optimal designs obtained in Step 7 that best meets his/her 
CPI, EPI, and Area target(s). 

 

7 Design Framework Evaluation 
Two key findings from the following evaluation are: 1) 

The set of Pareto-optimal designs produced with the analytical 
method is the same set of designs generated with the exhaus-
tive baseline method, and 2) The Pareto-optimal CPI vs. Area, 
EPI vs. Area, CPI vs. EPI, and (CPI×EPI) vs. Area curves from 
analytical method track the same curves generated with the 
baseline method. This section explains the evaluation process 
and gives detailed results. Application software and infrastruc-
ture setup is discussed in Section 7.1. The results and the dis-
cussion are in Sections 7.2 and 7.3. 

 

7.1 Design Space and Workloads 
The superscalar processor design space used for the 

evaluation is in Table 2; there are about 2000 design configura-
tions. Area of the pre-designed components is computed with 
the Mulder and Flynn method [22, 23], and then stored in the 
component database. For the evaluation, the number of front-
end pipeline stages is fixed at five, although the analytical 
models will accommodate any pipeline length. 

 

                Table 2. Design space used for evaluation 

Parameterized component Range 

L2 Unified Cache 64, 128, 256, 512 KB 

L1 I and D Caches 1, 2, 4, 8, 16, 32 KB 

Branch Predictor gShare 1, 2, 4, 8, 16K entries 

Issue width 1 to 8 

Functional units Up to 8 of each type 

Issue Buffers 8 to 80; incr. of 16 

Load/Store Buffers 16 to 256; incr. of 32 

Reorder Buffers 16 to 256; incr. of 32 
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                                                         Fig. 6. Optimal CPI- EPI-area design points for mcf. 

Programs from the MiBench and SPECcpu2000 are 
used as benchmark application-specific software. Each pro-
gram is compiled for the 32-bit PowerPC instruction set and 
uses the test inputs. The programs are fast-forwarded 500 
million instructions and then both methods are evaluated on 
the next 100 million instructions. The same instruction 
traces are the input to the baseline method and to the ana-
lytical method. 

Traces of length 100 million instructions are used to make 
the baseline method, and therefore the comparison with 
analytical method, tractable. The embedded processor archi-
tect, in general, can use much longer trace lengths. It will 
become evident that analytical method will always be orders 
of magnitude faster than baseline method. 

7.2 Comparison with Baseline Method 
A set of optimal designs was generated for a spectrum 

of area targets with the analytical method and the baseline 
method. In every case, the analytical method arrived at the 
same Pareto-optimal designs as the baseline method. Then, 
CPI versus Area, EPI versus Area, CPI versus EPI, and (CPI 
x EPI) versus Area curves were plotted for the Pareto-
optimal designs generated with both methods. Results of 
this comparison show that for all MiBench and SPEC-
cpu2000 programs the analytical method tracks the baseline 

method very well. This result is not surprising. Sections 4 and 5 
demonstrated CPI and energy activity analytical models track 
cycle-accurate simulation with the differences following the 
Normal distribution. 

As a concrete example, consider mcf, essentially the worst-
case benchmark of the ones we studied; it has the highest CPI and 
EPI differences when compared with detailed simulations. Figs. 
6a-d has the CPI, EPI, and Area values of the Pareto-optimal de-
signs generated with the baseline method (solid line) and with the 
analytical method (dashed line). The absolute difference between 
the CPI values of the two curves in Fig. 6a is around 13% because 
of the approximations in the first-order performance model. How-
ever, the optimal designs identified by the analytical method track 
those identified by the baseline method quite well. Similarly, the 
absolute difference between the EPI values of the two curves in 
Fig. 6b is around 14% because of the approximations in the first-
order energy activity model. But, again the analytical method 
tracks the baseline method; the same is true for CPI vs. EPI 
curves in Fig. 6c. The important thing is that the (CPI×EPI) ver-
sus Area curves for both methods, in Fig. 6d, arrive at the same 
optimal design points regardless of the absolute CPI and EPI dif-
ference. 

 



7.3 Performance of the Analytical Method 
The combination of the performance model and the 

divide-and-conquer algorithm reduces the total time re-
quired to arrive at the Pareto-optimal processor designs. In 
this work, the analytical method arrives at all Pareto-optimal 
designs for a single program in about 16 minutes on a 2 
GHz Pentium-4 machine. The baseline method, we estimate, 
will need 2 months to find the Pareto-optimal designs, for 
the same program, on the same machine. Given the applica-
tion statistics, the analytical method optimizes processor 
parameters in little over a minute. The time breakdown ac-
cording to different tasks within the analytical method is in 
Table 3. From the data it is evident that the analytical 
method consumes most of its time with trace-driven simula-
tions. 

The analytical method will always be more efficient 
than the baseline method. To see this, equations for the de-
sign times of the baseline method and the analytical method 
are developed. 

            Table 3. Time breakdown for optimization. 

Task within design framework Time (sec.) 

Cache miss rates 512 

Branch miss-prediction rate 250 

Instr. Dep., Func. Unit Mix, Load stats 132 

Design Optimization  70 

 

Let Gi be the number of pre-designed components of 
type i in the design space, NTOTAL the number of dynamic 
instructions in the application software as previously de-
noted, TSIM the time per instruction for detailed cycle accu-
rate simulation, TT the time per instruction for a 
cache/branch predictor trace-driven simulation, and TA the 
time spent for analytical modeling of one processor configu-
ration (Sections 4, 5, and 6.1). The design time required 
with the baseline method denoted by TBM is given by equa-
tion 15, and the design time with our analytical method de-
noted by TAM is given by equation 16. 

 

                           TBM = NTOTAL x TSI M x 
�

iGi                     (15) 

 

                     TAM = [NTOTAL xTT x � iGi]+[TAx
�

iGi]          (16) 

 

Comparing equation 15 and equation 16, we can ob-
serve that equation 15 for TBM has a product term consisting 
of all the Gi multiplied by the detailed simulation time for 
the entire application software. The same product term in 
equation 16 for TAM is multiplied only by the time it takes to 
evaluate the analytical equations TA, which is independent 
of the number of instructions in the application software and 
involves a small number of algebraic equations; TA will be 
orders of magnitude smaller than TSIM. The portion of TAM 
that is a function of the benchmark length is the time re-
quired for collecting program statistics with trace-driven 
simulations – (NTOTAL×TT× � iGi). 

Because the Gi terms are summed and not multiplied, their 
computation time is reduced considerably. Furthermore, in prac-
tice TT will generally be much less than TSIM. For instance, one 
trace-driven simulation TT of a cache for trace length of 100 mil-
lion instructions takes about 2 minutes on a 2 GHz Pentium-4 
machine, whereas a detailed cycle accurate simulation (TSIM) 
takes 40 minutes for the same trace length, on the same machine. 
Thus, analytical method will always be orders of magnitude faster 
than cycle-accurate simulation methods. 

8 Summary/Conclusions/Future Work 
Competitive marketplace demands that area and energy effi-

cient embedded processors are designed as fast as possible, within 
the time-to-market that is required. Naïve methods that employ 
exhaustive search with cycle accurate simulations are not able to 
scale with respect to application software size and the design 
space. Analytical methods provide an attractive alternative be-
cause of their speed and the insights that analytical equations can 
provide. At the same time, analytical models abstract out the non-
essential portions for designing superscalar processors. This paper 
explored the applicability of analytical methods for automatically 
designing out-of-order superscalar embedded processors. 

The design optimization process employs a combination of 
local optimization and global optimization. The local optimization 
step reduces the number of sub-system combinations the global 
optimization step must evaluate. Both the local and global optimi-
zation steps employ analytical models for fast optimization. In the 
local optimization step an analytical portion quickly optimizes the 
superscalar pipeline. The set of analytical equations provide a 
method to balance various resources of the superscalar pipeline. 
Apart from their use in the design framework, these equations 
may be employed to gain insight into the relationship between 
various resources of a balanced superscalar processor. 

This paper showed that analytical method for automatic de-
sign of application-specific superscalar processor is feasible and 
can provide the embedded processor designer with quick design 
feedback. This framework is attractive for gauging relative bene-
fits of varying various superscalar processor parameters such as 
the issue width, functional units of various types, and level 1 and 
level 2 caches. The embedded processor architect can also run 
cycle accurate simulations on the Pareto-optimal designs found 
with the analytical method based framework. This will reduce the 
absolute difference in CPI and Energy activities (EPI) without 
requiring a simulation-based design space search.  

The analytical method of automatic processor design and 
analysis opens up numerous possibilities and provides inspiration 
for future work. Our technique can be combined with previously 
proposed orthogonal automated design methods such as Simu-
lated Annealing, and Trace Sampling. For example, Trace Sam-
pling can be used to reduce the original program trace before the 
program is analyzed with trace-driven simulations. Simulated 
Annealing may be applied in the global optimization part of the 
design framework. The basic approach explored in this paper can 
be employed to design a single superscalar processor for a set of 
application programs. The same approach can be employed to 
design multi-core processors. In particular for multi-core proces-
sors, simulating each core in detail with cycle accurate simula-
tions can get impractical. In future, we extend the analytical mod-
eling method presented in this paper to intelligently and quickly 
optimize multi-core processors. 
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