
Automated Design of Application Specific Superscalar
Processors: An Analytical Approach

Tejas S. Karkhanis* and James E. Smith

{karkhani, jes}@ece.wisc.edu

Department of Electrical and Computer Engineering

University of Wisconsin - Madison

Abstract
Analytical modeling is applied to the automated design of

application-specific superscalar processors. Using an analytical
method bridges the gap between the size of the design space
and the time required for detailed cycle-accurate simulations.
The proposed design framework takes as inputs the design
targets (upper bounds on execution time, area, and energy),
design alternatives, and one or more application programs. The
output is the set of out-of-order superscalar processors that are
Pareto-optimal with respect to performance-energy-area. The
core of the new design framework is made up of analytical
performance and energy activity models, and an analytical
model-based design optimization process.

For a set of benchmark programs and a design space of
2000 designs, the design framework arrives at all performance-
energy-area Pareto-optimal design points within 16 minutes on
a 2 GHz Pentium-4. In contrast, it is estimated that a naïve
cycle-accurate simulation-based exhaustive search would re-
quire at least two months to arrive at the Pareto-optimal design
points for the same design space.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Performance, Design.

Keywords
Application specific processors, analytical model, performance
model, power model, design optimization.

1 Introduction
Widespread use of embedded microprocessors and the

competitive marketplace have created the need for energy effi-
cient microprocessors, occupying minimal silicon area, with
stringent time-to-market requirements. Furthermore, the de-
mand for increased functionality and higher performance are

pushing out-of-order superscalar microarchitectures into the
embedded microprocessor space; the PowerPC 440[1] is an
example. The eventual widespread use of out-of-order super-
scalar processors in performance-intensive embedded products
is inevitable. The challenge then is to design embedded out-of-
order superscalar processors with short time-to-market, and
that are performance-energy-area optimal for the target appli-
cation program(s).

The design of an application-specific processor requires
optimization at the circuit-level, the logic-level, and the mi-
croarchitecture-level. Current microarchitecture-level optimi-
zation methods are both human and computationally intensive.
Consequently, current methods either evaluate a small number
of designs from the design space, or they analyze a small part
of the application program. This motivates an automated mi-
croarchitecture design framework based on computationally
simple analytical models.

1.1 Design Framework Overview
The proposed automated design framework is composed

of a number of parts. The component database stores pre-
designed components, such as issue buffers, functional units,
reorder buffers, register files, and caches, along with their sili-
con area and energy consumption. The parameterized proces-
sor template specifies the pre-designed components and inter-
connections between the components of a superscalar proces-
sor. Performance and energy models are based on analytical
equations. The area model computes the total area of the su-
perscalar processor configuration by first finding the area oc-
cupied by each pre-designed component and then summing the
individual component areas.

The design optimization process employs a simple di-
vide-and-conquer approach to arrive at optimal designs from
the available components. The performance, energy, and area
of each configuration are evaluated with the respective models,
and a set of Pareto-optimal configurations is produced. From
this set of Pareto-optimal configurations the ones that satisfy
the design constraints are presented to the system designer. Or,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.

ISCA’07, June 9–13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00.

* Tejas Karkhanis was a student at University of Wisconsin-
Madison when this research was performed. He now works at the
Boston Design Center of Advanced Micro Devices.

if no designs satisfy the constraints, this information is also
conveyed to the designer. For a set of benchmark programs, the
design framework takes about 16 minutes to generate a set of
designs that are performance-energy-area Pareto-optimal.

1.2 Related Work
A naïve method for automatically generating Pareto-

optimal designs is to first generate the set of all designs from
the available components, then employ cycle accurate simula-
tions to arrive at performance and energy data for each con-
figuration. Then, the set of Pareto-optimal designs can be se-
lected – henceforth, this method is called the baseline method.
The baseline method will find the Pareto-optimal designs,
however it suffers from the obvious disadvantage of being very
time-consuming and therefore impractical in many situations.
As a result, researchers have explored methods that trade-off
accuracy for reduction in design optimization time.

Heuristic-based optimization methods [2-4] choose a
subset of the design space for evaluation by employing heuris-
tics such as the Conjugate Gradient method [5] and Simulated
Annealing [6]. Heuristic methods have two limitations: they
are prone to getting stuck in local minima, and they do not
provide insight into rationale that support the optimal choice.

Trace sampling [2,7,8] reduces the number of instructions
that must be simulated by tracing and skipping instructions
from the original application trace. The tracing and skipping
process continues until the entire original application trace is
executed. Then, the sampled trace is given as the input to a
cycle accurate simulator.

Statistical simulation [9-11] also reduces the total number
of instructions that the cycle accurate simulator must simulate.
This method first collects program statistics through functional
and trace-driven simulations. Next, a synthetic instruction trace
is generated using the collected program statistics. Finally, the
synthetic instruction trace is simulated with a cycle accurate
processor simulator. Typically, the synthetic instruction trace is
orders of magnitude smaller than the original program trace,
thereby reducing the design optimization time.

Although analytical performance models exist [12-
15,24], an automated design framework based on these models
has not been explored. While analytical performance model is
one aspect of an automated design framework, these models
alone do not constitute an automated design framework for the
combination of performance, power and area.

1.3 Paper Contribution
Cycle accurate simulation is at the center of the previous

design frameworks in one way or another (even statistical
simulation has a cycle-level microprocessor model). In con-
trast, the method proposed here is based on analytical model-
ing, and the overall design framework which incorporates the
analytical model is henceforth referred to as the analytical
method, for brevity. In the analytical method, the design opti-
mization process arrives at Pareto-optimal design parameters
while accounting for the variation in resource requirements.
Results suggest that a design framework based on first-order,
computationally simple analytical models is feasible, and it can
successfully bridge the long-standing gap between large num-
ber of design options and the inability of cycle-accurate simu-
lations to explore a large design space.

2 Superscalar Processor Template
The template for the parameterized superscalar processor

is shown in Fig. 1. The processor core contains an instruction
issue buffer, a load/store buffer, and a separate reorder buffer
(ROB). Processor parameters include the L1 instruction and
data cache sizes, unified L2 cache size, branch predictor size,
physical registers, rename map entries, and numbers of func-
tional units of each type. These parameterized components of
the superscalar processor are pre-designed and stored in the
component database along with the silicon area they will oc-
cupy and the energy modeling information.

 Fig. 1: Superscalar Processor Template

3 Program Statistics
The following set of application program statistics drive

the automated design framework. These statistics are collected
from functional or trace-driven simulations.

• Critical-path lengths: The average length of the longest
data dependence chain for each window or sequence of W
consecutive dynamic instructions. There is one average
length for each window size W, and the maximum W is the
maximum-sized reorder buffer in the component database.
This statistic is used in determining the reorder buffer size.

• Dependence length distribution: The average length of
the longest dependence chain leading to each instruction
for each window size as defined above. This statistic used
in determining the issue buffer size.

• Functional unit mix: the fraction of the executed instruc-
tions that use each of the functional unit types (e.g., an in-
teger ALU or data cache port).

• Cache miss-rate: the number of instructions that miss in
the cache divided by the number of instructions. The miss
rates are determined for the set of caches in the design
space; we used Tycho[16].

• Branch miss-prediction rate: the number of branches
that are miss-predicted divided by number of executed in-
structions in the program. The miss-prediction rate is
measured for the set of branch predictors in the design
space with a trace-driven branch predictor simulator.

• Average load independence: for a load that misses in the
L2 cache, the average number of other load misses within
window W that are not transitively data dependent on the
subject load miss. This statistic indicates the degree to
which L2 misses can be overlapped.

Program statistics for the functional unit mix and cache
miss rate for the L1 data cache are accumulated over intervals
of one million instructions and then mean and standard devia-
tion of the interval data is reported. As we shall see later (in
Section 6), the design optimization process uses the mean and
standard deviation to model the dynamic variation in resource
requirements of a program. Table 1 has the time required by
the trace-driven simulators to analyze a trace of 100 million
instructions; when longer traces are used, these times will grow
linearly.

Table 1. Time for analyzing 100M instructions.

Program Statistic Time

Critical-path, Dependence
length, Functional unit mix,
Load independence

1.8 min

Cache miss rates 30 sec per config.

Branch miss-prediction rates 2 mins per config.

4 Performance Model
For the performance model, we use interval analysis

[26], which is based on a combination of methods proposed by
Michaud et al.[12], Taha and Wills[15], and Karkhanis and
Smith[17].

The basis for the model is the observation that under
ideal conditions, a superscalar processor can sustain an instruc-
tion per cycle (IPC) rate that is roughly equal to the superscalar
pipeline width. However, under non-ideal conditions, the
smooth flow of instructions is intermittently disrupted by miss-
events such as cache misses and branch mispredictions. After a
miss-event occurs, the issuing of useful instructions stops;
there is then a period when no useful instructions are issued
until the miss-event is resolved and instructions can once again
begin flowing.

This behavior is illustrated in Fig. 2. The number of in-
structions per cycle that are committed is shown on the y axis,
and time (in clock cycles) is on the x axis. As illustrated in the
figure, the effects of miss events divide execution time into
intervals. Intervals begin and end at the points where instruc-
tions just begin issuing following recovery from the preceding
miss event. That is, an interval includes the time period follow-
ing the particular miss event when no instructions are issued.

Fig. 2: Miss-events break program execution into inter-
vals

By dividing execution time into intervals, performance
behavior of an individual interval can be modeled by consider-
ing both the type of miss-event that terminates it and by the
number of instructions in the interval. First, program character-
istics and basic processor parameters (the reorder buffer size
and instruction issue width) feed a model that tracks instruction
issue rate as an interval evolves from beginning to end. Next,
statistics generated through analysis (or estimation) of cache
and predictor behavior yield distributions of interval lengths
for each interval type. Then, given the types of the intervals
and their lengths, the model provides an estimate of the total
time that wil l be spent in each interval type. Overall processor
performance is simply the aggregate performance over all the
interval types [26].

The methods for computing interval timings can be de-
rived using techniques similar to those used in an earlier model
[17]. This paper employs the formula given in equation 1.

CPI = (1/i) + { (1/NTOTAL) × { [(i-1)/2] × (miL1+mbrm+ miL2+mtbr)
+ [miL1×cL2] + [miL2×cmm] + [mbr×(cdr+cfe)] + [MdL2×cmm]} } (1)

The first term is the ideal CPI; i is the peak issue rate.
The remaining terms are divided by NTOTAL , the total number
of dynamic program instructions, to reduce them to CPI. The
second term is the inefficiency in the fetch/decode unit. This
assumes an aggressive front end where all the inefficiency in
front-end instruction flow is due to interruptions caused by
miss-events. mk is the fraction of instructions that result in a
miss-event of type k; mtbr models the inefficiency due to cor-
rectly predicted taken branches. The third term reflects the
additional cycles due to L1 instruction cache misses; cL2 is the
L2 cache access delay in cycles. The fourth term reflects the
additional cycles for instruction misses in the L2 cache; cmm is
the memory access time. The fifth term is the additional cycles
due to branch mispredictions [25]. It is the miss rate times the
ROB drain time, denoted as cdr, plus the front-end pipeline
length (fil l time), denoted as cfe. The parameter cdr is cycle
penalty for not issuing at the peak issue rate when the ROB is
running out of useful instructions. It is a function of the criti-
cal-path characteristic (see Section 3) and the ROB size, and it
is computed iteratively as explained in [12, 17]. The final term
is the additional cycles due to L2 data cache misses; MdL2 is
computed from the L2 data cache miss rate and the load inde-
pendence statistic as described in the next paragraph.

Equation 1 is based on certain assumptions regarding
overlapping effects of miss-events [17]. Instruction cache
misses and branch mispredictions inherently do not overlap
with other instruction cache misses and branch mispredictions.
Long data cache misses however can overlap with each other.
Therefore, MdL2 is computed as (mdL2/Novr)/NTOTAL, where L2
data misses overlap in groups of Novr, and mdL2 denotes the
total number of L2 data misses. Novr is a function of the L2
cache and the reorder buffer size and is obtained from the av-
erage load independence statistic (see Section 3). Given the L2
cache and the reorder buffer size, the average load independ-
ence statistic is assigned to Novr.

The accuracy of equation 1 is evaluated by comparing its
CPI estimate with that generated from a cycle-accurate simula-
tor. For this comparison, 32-bit PowerPC traces of SPEC-
cpu2000 and MiBench workloads generated with the program

time

IPC

branch
mispredicts

i-cache
miss long d-cache

miss

AMBER [18] are used. The baseline designs are PowerPC440-
like configuration [1] and a Power4-like configuration [19].

Equation 1 tracks cycle accurate simulation very well.
Fig. 3a is a scatter plot for the analytical model CPI and de-
tailed simulation CPI for a total of 36 benchmarks (24 SPEC-
cpu2000 and 12 MiBench benchmarks). The correlation coeffi-
cient of analytical model and the cycle-accurate simulation CPI
estimates is 0.95.

The CPI difference between the analytical model and cy-
cle-accurate simulation is 5% averaged over absolute values of
the CPI differences of all benchmarks. The benchmark mcf has
the highest CPI difference of 13%. Fig. 3b has the distribution
of the CPI differences. The distribution mean is -0.4 and the
standard deviation is 6.2. The Shapiro-Wilkes goodness of fit
value for the histogram is 0.97 out of a maximum possible of;
when the histogram is a perfect Normal distribution the value
is 1.

A Normal distribution with the same mean and standard
deviation as the data is overlaid on the bars for illustration. A
correlation coefficient close to one and normally distributed
differences indicate a fundamentally sound mechanistic model
[20].

0

0.4

0.8

1.2

1.6

0 0.5 1 1.5

Simulation CPI

A
n

a
ly

tic
a

l M
o

d
e

l C
P

I

(a)

(b)

Fig. 3. Comparison of Analytical Model and Simulated
EPI. a) EPI correlation. b) distribution of EPI differ-
ences.

5 Energy Activity Model
As has been noted, the performance model just described

is similar to earlier work (although not identical). The method
for energy modeling is new in this work.

5.1 Quantifying Energy
Each clock cycle, a microarchitecture component is as-

signed one of three energy activities: Active, Stalled, and Idle.
To be Active, the component is actively performing its in-
tended operation during the given clock cycle. For example, an
issue buffer slot is Active during a clock cycle when an instruc-
tion is actually issued from the slot. To be Stalled, the compo-
nent is not performing its intended operation, but holds valid
information (data and/or control) to be processed later. A com-
ponent is Idle when it does not hold valid information (data
and/or control). For example, an issue buffer entry is Idle if it
does not hold a valid instruction. This method of categorizing
energy activities is referred to as the ASI method.

The energy multipliers for ASI activities can be provided
in a number of ways. One option is to generate energy multi-
pliers via HSPICE simulations. For the results reported here
we employed first-order estimates from the Wattch [21] library
of power models.

5.2 Computing Energy Activities
The basic approach for computing energy activities relies

on the same underlying model as for estimating performance.
That is, the energy activities are related to the steady-state cy-
cles and miss-event cycles. One complication, however, is that
the performance model does not explicitly account for miss-
speculated instructions (although it does account for their per-
formance effects). To handle activities due to miss-speculated
instructions, each of the three ASI activities are divided into
two parts: Used and Flushed. The Used part is the energy ac-
tivity for committed instructions. The Flushed part models the
energy activity for instructions that are fetched following a
mispredicted branch, but later discarded. For example, the ac-
tivity for the issue buffer entries that hold miss-speculated in-
structions is Issue Buffer Stalled Flushed (IB_SF).

The overall analytical approach is: 1) compute the Used
portion of each type of energy activity, 2) compute the Flushed
portion of energy activity assuming the miss-speculated in-
structions have the same program statistics as the Used instruc-
tions, and 3) add the Used and Flushed activities of each type
for each component.

5.3 Example: Issue Buffer ASI
As just defined, an issue buffer entry can be Active,

Stalled, or Idle during a given clock cycle. Let B denote the
number of issue buffer entries. Under ideal conditions, an av-
erage of i slots are Active every cycle to sustain the steady-
state issue rate of i instructions per cycle. A processor configu-
ration requires CPI ideal×NTOTAL cycles to execute the program.
Because CPI ideal is 1/i, Active-Used issue buffer activity under
ideal conditions is then computed with equation 2.

 IB_AUideal = NTOTAL (2)

Of the B instructions in the issue buffer i issue every cy-
cle, so on average (B-i) issue buffer entries are Stalled. Equa-
tion 3 computes the issue buffer Stalled-Used activity under
ideal conditions. Idle issue buffer activity under ideal condi-
tions is zero, because all issue buffer entries are occupied in a
balanced design.

 IB_SUideal = { [(B/i)-1]×NTOTAL} (3)

During an instruction cache miss, the issue buffer runs
out of instructions and all B issue buffer entries are Idle until
the missed instructions enter the issue buffer. Consequently,
there are no Active-Used and Stalled-Used activities during
this time. Idle-Used issue buffer activity due to instruction
misses is modeled with equation 4.

 IB_IUimisses = NTOTAL×[(miL1×cL2)+(mi L2×cmm)]×B (4)

When one or more loads miss in the L2 cache, instruction
commit eventually stops. Fetch and dispatch stop relatively
quickly thereafter. The issue buffer entries have unissued in-
structions following the missed load. Commit resumes only
after the missed load data returns. There are no Active-Used
and Idle-Used activities during this time. Stalled-Used issue
buffer activity because of long data cache misses is computed
with equation 5.

 IB_SUL2dmisses = NTOTAL×mdL2×B×cmm (5)

Total Active-Used issue buffer activity is computed with
equation 2. Total Stall-Used activity is computed by adding
equations 4 and 5, written as equation 6.

 IB_SUtotal = { [(B/i)-1]×NTOTAL} +[N×mdL2×B×cmm] (6)

The issue buffer experiences Idle-Used activity only during
instruction cache misses, therefore the total Idle-Used activity
is computed with equation 4.

On every branch misprediction the issue buffer experi-
ences (cdr+cfe) mispeculated cycles. Out of (cdr+cfe) cycles (jdis-
1) are Idle cycles because after the pipeline flush all issue
buffer entries are Idle, where jdis is the depth of the dispatch
stage.

For [(cdr+cfe)-(jdis-1)] cycles the issue buffer is processing mis-
peculated instructions. For brevity, let us define cbrm as
(cdr+cfe). Equations 7, 8, and 9 compute the Active-Flushed,
Stall-Flushed, and Idle-Flushed activities, respectively.

IB_AFtotal = (mbrm×NTOTAL×B) × [cbrm-(jdis-1)]

× [IB_AUtotal/(IB_AUtotal+IB_SUtotal+IB_IUtotal)] (7)

IB_SFtotal = (mbrm×NTOTAL×B)×[cbrm-(jdis-1)]

× [IB_SUtotal /(IB_AUtotal+IB_SUtotal+IB_IUtotal)] (8)

 IB_IFtotal = { (mbrm×NTOTAL×B)×[cbrm-(jdis-1)]

× [IB_IUtotal/(IB_AUtotal+IB_SUtotal+IB_IUtotal)]}

+ { (jdis-1)×mbrm× NTOTAL×B} (9)

5.5 Energy Activity Model Evaluation
To confirm that the analytical energy activity model is

accurate, energy per instruction (EPI) computed with the ana-
lytical model is compared with the EPI generated with cycle-
accurate simulation. To arrive at the EPI, energy activities are

obtained from the respective models. Energy activity multipli-
ers are taken from the models provided in power.h file of
Wattch [21]. Note that the same energy activity multipliers are
used for the analytical energy activity model and for the activi-
ties generated from cycle accurate simulation. The energy ac-
tivities are multiplied by their corresponding multipliers and
the total energy is calculated. Finally, the total energy is di-
vided by the number of dynamic program instructions.

For all benchmarks, the analytical energy activity model
tracks simulation (see Fig. 4a). The correlation coefficient is
0.99. The average difference between the analytical model and
cycle accurate simulation is about 5.4% over all benchmarks.
The benchmark mcf has the highest difference of 15%. The
distribution of the CPI differences shown in Fig. 4b has a sta-
tistical mean of 0.8 and a standard deviation of 6.7. The
Shapiro-Wilkes value for the normality test of the data is 0.93
out of a maximum of one, indicating that the histogram follows
a Normal distribution.

0

50

100

150

200

250

0 50 100 150 200 250

Simulation EPI (nJ)

A
na

ly
ti

ca
l

M
o

d
el

 E
P

I
(n

J)

(a)

-18 -8 2 12 22 32

% EPI Difference
0

4

8

12

16

20

N
um

be
r

of
be

nc
hm

ar
ks

(b)

Fig. 4. Comparison of Analytical Model and Simulation
EPI. a) EPI correlation. b) distribution of EPI differ-
ences.

6 Design Optimization Process
The design optimization process employs a divide-and-

conquer approach. The key insight is that the superscalar pipe-
line, cache, and branch predictor sub-systems can be optimized
independently, in isolation of each other [2,17]. The divide-
and-conquer process has several local optimization steps and a
global optimization step.

The local optimization step arrives at the individually
Pareto-optimal branch predictor, L1 instruction cache, L1 data
cache, unified L2 cache, and superscalar pipeline by evaluating
each subsystem separately. The Pareto-optimal caches and

branch predictors are derived based on their miss-rates, silicon
area, and energy consumption per access (component data pro-
vided in the component database and program statistics from
Section 3). The Pareto-optimal superscalar pipelines are found
with an analytical portion of the optimization process (Section
6.1) that models relationships among various parameters of an
idealized superscalar pipeline based on the application statis-
tics. This allows a direct method for superscalar pipeline de-
sign. Then, the performance and energy models are employed
and the area information from the component database is used
to find the Pareto-optimal superscalar pipelines.

The global optimization step first constructs a cross-
product of the locally Pareto-optimal superscalar pipelines,
branch predictors, and caches. Then, CPI and EPI values of all
of these designs are evaluated with the analytical performance
and energy activity models, respectively. Area is computed by
summing up the areas of the individual components found in
the component database. The Pareto-optimal superscalar proc-
essor designs are based on this CPI, EPI and Area data.

The design optimization process is explained in this sec-
tion. First, the local optimization method for designing ideal-
ized superscalar pipeline is discussed in Section 6.1. Local
optimization of branch predictor and cache is not explicitly
discussed because it requires miss-rate data generated with
straightforward trace-driven simulations. The global optimiza-
tion algorithm is the focus of Section 6.2.

6.1 Superscalar Pipeline Design
The superscalar pipeline design process is a sequence of

six steps illustrated in Fig. 5. For a given issue width, each step
uses results obtained in a previous step to derive additional
parameters of the superscalar pipeline. First, the sufficient
number of functional units of each type is determined for a
particular issue width. Next, the number of reorder buffer en-
tries to sustain the issue rate is computed. Based on the reorder
buffer size, the issue buffer size, number of physical registers,
and load/store buffer size are derived using analytical model
equations.

Issue
Width

Function
Units

Issue
Buffer

Reorder
Buffer Physical

Registers

Load/Store
Buffer

 Fig. 5. Superscalar Pipeline Design Process.

Step 1: Compute Number of Functional Units

A sufficient number of functional units of type h, denoted
as Fh, depends on three parameters: 1) the maximum issue rate
i, 2) the fraction of instructions that require functional unit of
type h, and 3) the issue latency of that functional unit (issue
latency =1 if the functional unit is fully pipelined). Because
instructions that require functional unit of type h may come in
bursts, the mean functional unit demand denoted as Dh� and the
standard deviation of the demand data denoted as Dh� are used.
Dh� and Dh� are collected over intervals of length one million
instructions during the trace-driven simulations (Section 3).

Equation 10 computes the sufficient number of functional
units of type h. The term [Dh� +(2×Dh�)] accounts for the varia-
tion in functional unit requirements. Simulation results (not
given here) show that two standard deviations added to the
mean account for functional unit requirements in at least 97%
of the length one million instruction intervals. A rationale for
this technique is based on two well-known statistical facts: 1)
the distribution of averages of “samples” taken from any un-
derlying distribution tends to a Normal distribution by the vir-
tue of Central Limit Theorem, and 2) adding two standard de-
viations to the mean of any Normal distribution accounts for
97.5% of the samples. In this case, a sample is a sequence of
dynamic instructions that is one million instructions long. Fi-
nally, Little’s Law is applied and the term [Dh� +(2×Dh�)] is
multiplied by the issue width I and the issue latency Yh. The
two standard deviation method is also used in subsequent steps
where there is a need for modeling bursts in resource demands.

 Fh = I x [Dh� +(2×Dh�)] x Yh (10)

Step 2: Compute Reorder Buffer Entries

The sufficient number of reorder buffer entries is com-
puted with equation 11 [12]. In the equation, W is the number
of reorder buffer entries, the function K(W) is the average criti-
cal-path distribution measured with trace analysis (see Section
3), and cexe is the average instruction execution latency com-
puted with the functional unit mix.

 i = W/[cexe x K(W)] (11)

Using equation 11 values of i are computed for a spectrum of
W values. The smallest W that yields i within 3% of the peak
issue rate is chosen as the reorder buffer size.

Step 3: Compute issue buffer entries

Equation 12 computes the number of issue buffer entries
based on the reorder buffer entries. The function A()is the aver-
age instruction dependence length for a sequence of W instruc-
tions (see Section 3). The ratio A(W)/K(W) determines the frac-
tion of reorder buffer residence time spent waiting in the issue
buffer for dependences to resolve.

 B = W x [A(W)/K(W)] (12)

Step 4: Compute Load/Store Buffer Entries

The load/store buffer entries must have sufficient entries
for all in-fl ight load and store instructions. The number of in-
flight instructions is W (reorder buffer size, computed in equa-
tion 11). Equation 13 computes the sufficient load/store buffer
entries. In the equation, DLDST� is the mean load/store demand
and DLDST� is the standard deviation in the demand.

 LS = W x [DLDST� + (2 x DLDST�)] (13)

Step 5: Compute Number of Physical Registers

The physical register file must be able to accommodate
the requirements of all in-flight instructions that write to a reg-
ister. The number of in-flight instructions is W (reorder buffer
size computed in equation 11). Equation 14 computes the suf-
ficient number of physical registers. The mean instruction de-
mand for the physical register file is donated by DWR� and the
standard deviation is denoted as DWR� .

 PR = W x [DWR� + (2 x DWR�)] (14)

6.2 Optimization Algorithm
The overall optimization algorithm operates in a se-

quence of eight steps. The first step collects program statistics.
Steps 2 to 5 perform local optimization. Steps 6 to 8 are for the
global optimization.

1. Software Evaluation: For the given application program(s),
measure miss-rates for all instruction caches, data caches,
unified caches, and branch predictors in the design space
with application analyzers (i.e. simple trace-driven simula-
tions).

2. Idealized Pipeline Design: Determine the idealized super-
scalar pipeline for all issue widths in the design space, as
explained in Section 6.1.

3. Cache Optimization: Find miss-rate, energy per access,
and area Pareto-optimal cache designs from the set of
caches evaluated in Step 1, each independently of the oth-
ers. Miss-rates are from Step 1. The area and energy per ac-
cess information of every cache in the design space is ob-
tained from the component database.

4. Branch Predictor Optimization: Find the miss-prediction
rate, energy per access, and area Pareto-optimal branch pre-
dictors from the set of branch predictors evaluated in Step 1.
The miss-prediction rate was measured in Step 1. The area
and energy of every branch predictor in the design space is
obtained from the component database.

5. Superscalar Pipeline Optimization: Find CPI, EPI, and
Area Pareto-optimal idealized superscalar pipelines from
the pipelines designed in Step 2. CPI of a superscalar pipe-
line is 1/i because the pipeline resources are sized to achieve
the peak issue rate of i. EPI is computed for superscalar
pipeline components with equations that model energy ac-
tivity under ideal conditions (Section 5). The area of a su-
perscalar pipeline is the sum of the areas of its individual
components, as specified in the component database.

6. Superscalar Processor Design: Using combinations of
Pareto-optimal caches (Step 3), branch predictors (Step 4),
and idealized processor pipelines (Step 5) compose super-
scalar processor designs.

7. Superscalar Processor Optimization: Find CPI, EPI, and
Area Pareto-optimal superscalar processors from the de-
signs in Step 6. The performance model from Section 4 will
compute the CPI. The energy activity model from Section 5
will compute the EPI. Area is computed by adding the
cache, branch predictor, and idealized superscalar pipeline
areas.

8. Superscalar Processor Selection: The processor designer
chooses a superscalar processor design from the Pareto-
optimal designs obtained in Step 7 that best meets his/her
CPI, EPI, and Area target(s).

7 Design Framework Evaluation
Two key findings from the following evaluation are: 1)

The set of Pareto-optimal designs produced with the analytical
method is the same set of designs generated with the exhaus-
tive baseline method, and 2) The Pareto-optimal CPI vs. Area,
EPI vs. Area, CPI vs. EPI, and (CPI×EPI) vs. Area curves from
analytical method track the same curves generated with the
baseline method. This section explains the evaluation process
and gives detailed results. Application software and infrastruc-
ture setup is discussed in Section 7.1. The results and the dis-
cussion are in Sections 7.2 and 7.3.

7.1 Design Space and Workloads
The superscalar processor design space used for the

evaluation is in Table 2; there are about 2000 design configura-
tions. Area of the pre-designed components is computed with
the Mulder and Flynn method [22, 23], and then stored in the
component database. For the evaluation, the number of front-
end pipeline stages is fixed at five, although the analytical
models will accommodate any pipeline length.

 Table 2. Design space used for evaluation

Parameterized component Range

L2 Unified Cache 64, 128, 256, 512 KB

L1 I and D Caches 1, 2, 4, 8, 16, 32 KB

Branch Predictor gShare 1, 2, 4, 8, 16K entries

Issue width 1 to 8

Functional units Up to 8 of each type

Issue Buffers 8 to 80; incr. of 16

Load/Store Buffers 16 to 256; incr. of 32

Reorder Buffers 16 to 256; incr. of 32

mcf

Area (million rbe)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

CPI

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Simulation-Based
Baseline Method
Analytical Model
Based Method

(a)

mcf

Area (million rbe)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

EPI
(nJ)

20

40

60

80

100

120

140

160

Simulation-Based
Baseline Method
Analytical Model
Based Method

(b)

mcf

CPI

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

EPI
(nJ)

20

40

60

80

100

120

140

160

Simulation-Based
Baseline Method
Analytical Model
Based Method

(c)

mcf

Area (million rbe)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
100

120

140

160

180

200

220

240

260

280

300

Simulation-Based
Baseline Method
Analytical Model
Bas d Method

same optimal design

EPIxCPI

(d)

 Fig. 6. Optimal CPI- EPI-area design points for mcf.

Programs from the MiBench and SPECcpu2000 are
used as benchmark application-specific software. Each pro-
gram is compiled for the 32-bit PowerPC instruction set and
uses the test inputs. The programs are fast-forwarded 500
million instructions and then both methods are evaluated on
the next 100 million instructions. The same instruction
traces are the input to the baseline method and to the ana-
lytical method.

Traces of length 100 million instructions are used to make
the baseline method, and therefore the comparison with
analytical method, tractable. The embedded processor archi-
tect, in general, can use much longer trace lengths. It will
become evident that analytical method will always be orders
of magnitude faster than baseline method.

7.2 Comparison with Baseline Method
A set of optimal designs was generated for a spectrum

of area targets with the analytical method and the baseline
method. In every case, the analytical method arrived at the
same Pareto-optimal designs as the baseline method. Then,
CPI versus Area, EPI versus Area, CPI versus EPI, and (CPI
x EPI) versus Area curves were plotted for the Pareto-
optimal designs generated with both methods. Results of
this comparison show that for all MiBench and SPEC-
cpu2000 programs the analytical method tracks the baseline

method very well. This result is not surprising. Sections 4 and 5
demonstrated CPI and energy activity analytical models track
cycle-accurate simulation with the differences following the
Normal distribution.

As a concrete example, consider mcf, essentially the worst-
case benchmark of the ones we studied; it has the highest CPI and
EPI differences when compared with detailed simulations. Figs.
6a-d has the CPI, EPI, and Area values of the Pareto-optimal de-
signs generated with the baseline method (solid line) and with the
analytical method (dashed line). The absolute difference between
the CPI values of the two curves in Fig. 6a is around 13% because
of the approximations in the first-order performance model. How-
ever, the optimal designs identified by the analytical method track
those identified by the baseline method quite well. Similarly, the
absolute difference between the EPI values of the two curves in
Fig. 6b is around 14% because of the approximations in the first-
order energy activity model. But, again the analytical method
tracks the baseline method; the same is true for CPI vs. EPI
curves in Fig. 6c. The important thing is that the (CPI×EPI) ver-
sus Area curves for both methods, in Fig. 6d, arrive at the same
optimal design points regardless of the absolute CPI and EPI dif-
ference.

7.3 Performance of the Analytical Method
The combination of the performance model and the

divide-and-conquer algorithm reduces the total time re-
quired to arrive at the Pareto-optimal processor designs. In
this work, the analytical method arrives at all Pareto-optimal
designs for a single program in about 16 minutes on a 2
GHz Pentium-4 machine. The baseline method, we estimate,
will need 2 months to find the Pareto-optimal designs, for
the same program, on the same machine. Given the applica-
tion statistics, the analytical method optimizes processor
parameters in little over a minute. The time breakdown ac-
cording to different tasks within the analytical method is in
Table 3. From the data it is evident that the analytical
method consumes most of its time with trace-driven simula-
tions.

The analytical method will always be more efficient
than the baseline method. To see this, equations for the de-
sign times of the baseline method and the analytical method
are developed.

 Table 3. Time breakdown for optimization.

Task within design framework Time (sec.)

Cache miss rates 512

Branch miss-prediction rate 250

Instr. Dep., Func. Unit Mix, Load stats 132

Design Optimization 70

Let Gi be the number of pre-designed components of
type i in the design space, NTOTAL the number of dynamic
instructions in the application software as previously de-
noted, TSIM the time per instruction for detailed cycle accu-
rate simulation, TT the time per instruction for a
cache/branch predictor trace-driven simulation, and TA the
time spent for analytical modeling of one processor configu-
ration (Sections 4, 5, and 6.1). The design time required
with the baseline method denoted by TBM is given by equa-
tion 15, and the design time with our analytical method de-
noted by TAM is given by equation 16.

 TBM = NTOTAL x TSI M x
�

iGi (15)

 TAM = [NTOTAL xTT x � iGi]+[TAx
�

iGi] (16)

Comparing equation 15 and equation 16, we can ob-
serve that equation 15 for TBM has a product term consisting
of all the Gi multiplied by the detailed simulation time for
the entire application software. The same product term in
equation 16 for TAM is multiplied only by the time it takes to
evaluate the analytical equations TA, which is independent
of the number of instructions in the application software and
involves a small number of algebraic equations; TA will be
orders of magnitude smaller than TSIM. The portion of TAM
that is a function of the benchmark length is the time re-
quired for collecting program statistics with trace-driven
simulations – (NTOTAL×TT× � iGi).

Because the Gi terms are summed and not multiplied, their
computation time is reduced considerably. Furthermore, in prac-
tice TT will generally be much less than TSIM. For instance, one
trace-driven simulation TT of a cache for trace length of 100 mil-
lion instructions takes about 2 minutes on a 2 GHz Pentium-4
machine, whereas a detailed cycle accurate simulation (TSIM)
takes 40 minutes for the same trace length, on the same machine.
Thus, analytical method will always be orders of magnitude faster
than cycle-accurate simulation methods.

8 Summary/Conclusions/Future Work
Competitive marketplace demands that area and energy effi-

cient embedded processors are designed as fast as possible, within
the time-to-market that is required. Naïve methods that employ
exhaustive search with cycle accurate simulations are not able to
scale with respect to application software size and the design
space. Analytical methods provide an attractive alternative be-
cause of their speed and the insights that analytical equations can
provide. At the same time, analytical models abstract out the non-
essential portions for designing superscalar processors. This paper
explored the applicability of analytical methods for automatically
designing out-of-order superscalar embedded processors.

The design optimization process employs a combination of
local optimization and global optimization. The local optimization
step reduces the number of sub-system combinations the global
optimization step must evaluate. Both the local and global optimi-
zation steps employ analytical models for fast optimization. In the
local optimization step an analytical portion quickly optimizes the
superscalar pipeline. The set of analytical equations provide a
method to balance various resources of the superscalar pipeline.
Apart from their use in the design framework, these equations
may be employed to gain insight into the relationship between
various resources of a balanced superscalar processor.

This paper showed that analytical method for automatic de-
sign of application-specific superscalar processor is feasible and
can provide the embedded processor designer with quick design
feedback. This framework is attractive for gauging relative bene-
fits of varying various superscalar processor parameters such as
the issue width, functional units of various types, and level 1 and
level 2 caches. The embedded processor architect can also run
cycle accurate simulations on the Pareto-optimal designs found
with the analytical method based framework. This will reduce the
absolute difference in CPI and Energy activities (EPI) without
requiring a simulation-based design space search.

The analytical method of automatic processor design and
analysis opens up numerous possibilities and provides inspiration
for future work. Our technique can be combined with previously
proposed orthogonal automated design methods such as Simu-
lated Annealing, and Trace Sampling. For example, Trace Sam-
pling can be used to reduce the original program trace before the
program is analyzed with trace-driven simulations. Simulated
Annealing may be applied in the global optimization part of the
design framework. The basic approach explored in this paper can
be employed to design a single superscalar processor for a set of
application programs. The same approach can be employed to
design multi-core processors. In particular for multi-core proces-
sors, simulating each core in detail with cycle accurate simula-
tions can get impractical. In future, we extend the analytical mod-
eling method presented in this paper to intelligently and quickly
optimize multi-core processors.

 Acknowledgements
This work was supported by SRC contract 2000-HJ-

782, NSF grants CCR-9900610, CCR-0311361, and EIA-
0071924, IBM, and Intel Corporation. We also thank Lieven
Eeckhout, Stijn Eyerman, and anonymous reviewers for
numerous suggestions that improved this work.

References
[1] IBM, "PowerPC 440 Processor Core," available at

http://www-306.ibm.com/.

[2] T. M. Conte, "Systematic Computer Architecture Proto-
typing," PhD Thesis: University of Illinois, 1992.

[3] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C.
Cronquist, and M. Sivaraman, "PICO: Automatically
designing custom computers," IEEE Computer, Sept.
2002, pp. 39-47.

[4] B. Kumar and E. S. Davidson, "Computer System De-
sign Using a Hierarchical Approach to Performance
Evaluation," Communications of the ACM, vol. 23,
1980, pp. 511-521.

[5] M. A. Bhatti, Practical Optimization Methods with
Mathematica Applications: Springer Verlag, 2000.

[6] S. Kirkpatrick, C. Gellat, and M. Vecchi, "Optimization
by Simulated Annealing," Science, vol. 220-4598,
1983, pp. 671-680.

[7] E. Perelman, G. Hamerly, and B. Calder, "Picking
Statistically Valid and Early Simulation Points," In-
ternational Conference on Parallel Architectures and
Compilation Techniques, 2003, pp. 244-255.

[8] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe, "SMARTS: accelerating microarchitecture simula-
tion via rigorous statistical sampling," International
Symposium on Computer Architecture, 2003, pp. 84-97.

[9] L. Eeckhout, "Accurate Statistical Workload Model-
ing," PhD Thesis: University of Gent, 2002.

[10] S. Nussbaum and J. E. Smith, "Modeling Superscalar
Processors via Statistical Simulation," International
Conference on Parallel Architectures and Compilation
Techniques, 2001, pp. 15-24.

[11] M. Oskin, F. T. Chong, and M. Farrens, "HLS: combin-
ing statistical and symbolic simulation to guide micro-
processor designs," International Symposium on Com-
puter Architecture, 2000, pp. 71-82.

[12] P. Michaud, A. Seznec, and S. Jourdan, "An Explora-
tion of Instruction Fetch Requirement in Out-Of-Order
Superscalar Processors," International Journal of Par-
allel Processing, vol. 29-1,2001, pp. 35-38.

[13] D. B. Noonburg and J. P. Shen, "Theoretical Modeling
of Superscalar Processor Performance," International
Symposium on Microarchitecture, 1994, pp. 52-62.

[14] E. Riseman and C. Foster, "The Inhibition of Potential
Parallelism by Conditional Jumps," IEEE Trans. on
Computer Architectures, vol. C-21, 1972, pp. 1405-
1411.

[15] T. Taha and D. S. Wills, "An Instruction Throughput
Model of Superscalar Processors," International Work-
shop on Rapid Systems Prototyping, 2003, pp. 156-163.

[16] M. D. Hill and A. J. Smith, "Evaluating Associativity in CPU
Caches," IEEE Transactions on Computers, 1989, pp. 1612-
1630.

[17] T. Karkhanis and J. E. Smith, "A First-Order Superscalar
Processor Model," International Symposium on Computer
Architecture, 2004, pp. 338-349.

[18] "Computer Hardware Understanding Development Tools 2.0
Reference Guide for MacOS X," July 2002.

[19] J. M. Tendler, et. al., "IBM Power 4: System Microarchitec-
ture," IBM Journal of Research and Development, 2002, pp.
5-26.

[20] S. Kachigan, Statistical Analysis. New York: Radius Press,
1986.

[21] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions," International Symposium on Computer Architecture,
2000, pp. 83-94.

[22] J. M. Mulder and M. Flynn, "An Area Model for On-Chip
Memories and its Application," IEEE Journal of Solid-State
Circuits, vol. 26, 1991, pp. 98-106.

[23] M. J. Flynn, Computer Architecture: Pipelined and Parallel
Processor Design: Jones and Bartlett Publishers, 1995.

[24] E. Ipek, et al., “Efficiently Exploiting Architectural Design
Spaces via Predictive Modeling,” Architectural Support For
Programming Languages and Operating Systems, 2006, pp.
195-206.

[25] S. Eyerman, J. Smith, and L. Eeckhout, “Characterizing the
Branch Misprediction Penalty” , International Symposium on
Performance Analysis of Systems and Software, 2006, pp. 48-
58

[26] S. Eyerman, et al., “A Performance Counter Architecture for
Computing Accurate CPI Components,” Architectural Sup-
port For Programming Languages and Operating Systems,
2006, pp. 175-174.

