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ABSTRACT

Just-In-Time instruction delivery is a general method for sav-
ing energy in a microprocessor by dynamically limiting the
number of in-flight instructions. The goal isto save energy by
1) fetching valid instructions no sooner than necessary, avoid-
ing cycles stalled in the pipeline -- especially the issue queue,
and 2) reducing the number of fetches and subseguent process-
ing of mis-speculated instructions. A simple algorithm moni-
tors performance and adjusts the maximum number of in-
flight instructions at fairly long intervals, 100K instructionsin
this study. The proposed JIT instruction delivery scheme pro-
vides the combined benefits of more targeted schemes pro-
posed previoudy. With only a 3% performance degradation,
energy savings in the fetch, decode pipe, and issue queue are
10%, 12%, and 40%, respectively.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architedure Styles —
adaptable architectures, pipeline processors.

General Terms
Performance, Design

Keywords

Low-power, adaptive procesr, instruction delivery

1. INTRODUCTION

Instruction delivery — fetch, decode, renaming, dispatch, and
isale —acourt for asignificant propartion o energy consumed in
a superscdar microprocesor. For example, instruction delivery in
the Alpha 212649] acounts for 25.5% of the total energy. In-
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struction delivery energy consumption is higher than necessary,
however, because of the performance-driven design phlosophy
that istypicdly followed. In particular, a @nventional superscadar
procesor attempts to maximize the number of “in-flight” instruc-
tions at al times. Following a branch misprediction, it begins
fetching at full speed and continues until the next branch mispre-
diction flushes the pipeline or until the issue queue (or re-order
buffer) fill s, the decode pipeline bads up, and instruction fetch-
ing beginsto stall.

This philosophy often wastes energy because 1) useful in-
structions are fetched ealier than needed, then spend many cycles
stalled in the decde pipeline and/or sitting in the issue queue
waiting for operands, and 2 when a branch misprediction aceurs,
al the speculative instructions following the mispredicted branch
in the issue queue and deaode pipeline ae flushed [7].

1.1 Just-In-Time (JIT) Instruction Delivery
We propose asimple, unified scheme for saving energy in
the entire instruction ddlivery subsystem. This <heme monitors
and dynamicaly adjusts the maximum number of in-flight instruc-
tions in the processor. The maximum number is determined by
monitoring procesor performance and is adjusted to the lowest
number that does not reduce performance significantly. When the
maximum number of in-flight instructions is readed, instruction
fetching is inhibited. Often this occurs well before dl pipeline
stages and issue window slots are full. In effed, instructions are
fetched just-in-time so performance is relatively unchanged, but
fewer instruction delivery resources consume energy with stalled
and/or flushed instructions. Overall, the resulting scheme works
better than ather previously proposed, more targeted approaches.

1.2 Prior Approaches

Severa studies have focused on reducing energy in the in-
struction ddlivery portion d the microprocessor. Pipeline Gating
[7] attempts to reduce flushed (mis-speaulated) instructions by
inhibiti ng instruction fetching when the number of low-confidence
branch predictions exceals a cetain level. In aredisticdly mod-
eled superscdar pipeline, our approach performs better at reduc-
ing energy due to flushed instructions.

Buyuktosunaglu, et a. [2] and Folegnani and Gonzdez [1]
attempt to reduce anergy by resizing the issue queue. The objec-
tive to reduce the number of instructions galled in the isue
queue, a high energy consumer. Again, our J'T scheme does better
in terms of reduction d energy consumed by the issue queue.

In [5] Banasadi, et al. attempt to save energy by gating the
deaode pipeline when the number of instructions to be deaoded is
fewer than the deade width. They do so by delaying the exeau-
tion d instructions and managing the pipeline & single instruction



granularity. We perform no dred comparison with this method
we asame instructions flow up the pipeline in coarser granularity
groups as would be dore in a red microprocesor (see sedion
4.1).

2. QUANTIFYING ENERGY ACTIVITY

We onsider instruction celivery to be cwmposed of three
major parts: 1) instruction cace acces 2) instruction decoding,
renaming, and dspatching into the issue queue, and 3 theisaiing
from the isue queue. For brevity, we refer to the etire de-
code/rename/dispatch pation simply as “instruction decode”.

We focus on five types of instruction dHivery adivities. En-
ergy isdiredly related to these adivities.
= | fetch: aninstruction cache access.
= Decode pipe active: a valid instruction is in the decode

pipeline (decode, rename, dispatch), is being processed,
and is moving to the next pipeline stage on the following
cycle.

= Decode pipe stall: a valid instruction is in the decode
pipeline, but is being held (stalled) this cycle; it does not
move to the next pipeline stage the following cycle.

= |ssue queue active: a valid instruction is in the issue
queue and isissuing for execution this cycle.

* |ssue queue stall: a valid instruction is in the issue
queue, but is not issuing this cycle, for example because
its operands are not available or a required resource is
not available.

We then dvide eab o the aove five adivities into two
groups — one for instructions that eventually commit (Used) and
the other for mis-speaulated instructions (Flushed). For example,
Issuue-queue Stalled Used is the adivity for the instructions that
stall i n theissue queue and eventually commit.

This bre&kdown of energy-consuming adivity alows for a
form of clock gating where adive instructions may consume more
energy than stalled instructions, and where valid instructions may
consume more energy than invalid ores (i.e. empty pipeline slots).
For example, consider the logic shown in Figure 1. Here, atypicd
pipeline latch is $hown, as might appea in the decode pipeline.
An inpu multiplexor (typicdly built into the latch) is used to
"redrculate” latched pipeline values when the hold signa is ac-
tive. In addition, the valid hit from the precaling stage is used to
gate the latch itself; if there is no velid data being fed into the
latch, then the latch is not clocked. In this g/stem, a cetain
amourt of energy is consumed if an instruction moves up the
pipeline (the hold signal is inadive) and is latched into the next
stage. A different (lower) amourt is consumed if the hold signdl is
adive, the multi plexor feals the same data bad into the latch and
the latched is clocked, but the logic following the latch dces not
see ay of its inpus change. Findly, a different (still | ower)
amourt of energy is consumed if the valid signa is off, and the
latch is not clocked at all. Similarly, in the issue queue, a particu-
lar issue queue slot may consume different amourts of energy
depending on whether or nat it holds an adive instruction and
whether or nat the instruction adually issues.

The adivities given above can be used to compute over-
alldynamic energy consumption, given the anourt of energy per
adivity. For most of this paper, we focus on the adivity courts,
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Figure 1: A pipelinelatch. A valid bit from the previ-
ous stage is used to gate the clock signal. A hold sig-
nal from the succeeding stage is used to switch the
multiplexcr and recirculate data being stalled.

rather than energy numbers, to reduce the dependence of results
on specific drcuit and logic design styles’. In the penultimate
sedion, however, we give energy estimates for a particular state of
the at circuit/l ogic design technology.

3. IMPLEMENTING JIT INSTRUCTION

DELIVERY

The method we propaose is ill ustrated in Figure 2. The tota
number of in-flight instructions is kept in register instruction
count. For ead instruction fetched, instruction count is incre-
mented; for ead instruction that is either committed or squashed,
it is deaemented. There is aso an adjustable MAXcount , and
instruction fetching is inhibited whenever MAXcount is excealed
by instruction count.

To dynamicdly adjust the MAXcount value, we use a1 algo-
rithm that is very similar to ore previously propcsed for finding
optimal cade sizesin [8]. Thisagorithm isimplemented either in
hardware or low-level software, and “tunes’ for the least value of
MAXcount such that performanceis not reduced by some thresh-
old amount, e.g. 2%. For brevity, we only summarize the dgo-
rithm.

First, the dgorithm uses a small number of courters to moni-

MAXcount
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instruction count fdg

stop fetch if
instruction count > MAXcount
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Figure 2: Pipeline with control logic to dynamically limit the
number of in-flight instructions.

! This is not unlike giving microarchitecture performance in terms of
instructions per cycle (IPC) rather than instructions per second, which
would require estimation of the exad cycletime.



tor performance daraderistics. There is a processor cycle munter
and a ommitted instruction courter, incremented for ead com-
mitting instruction. By realing and cleaing these urters at
fixed intervals (e.g. 100K instructions) overall performance (in-
structions per cycle) can be determined. Also, there is a munter
for the number of branch instructions exeauted duing an interval;
this courter is used to deted the occurrence of program phase
changes[8].

To perform dynamic tuning, MAXcount is st to the maxi-
mum possble number of in-flight instructions (e.g. 64) and the
performanceis recorded after one 10K interval. In the following
interval, MAXcount is st to the minimum in-flight instructions
(eg. 8). In subsequent intervals MAXcount is incremented by
eight until the performance for an interva is within a threshold
value (e.g. 2%) of the performance for the maximum MAXcount;
this process is cdled a tuning cycle. MAXcount is kept at this
“optimal” value until either the performance (IPC) or the number
of dynamic branches changes by more than some “noise” margin;
in pradicethis is often hundeds of 100K instruction intervals. If
atuning cycle results in nochange in the optimal MAXcount, then
the IPC and kranch ndse levels are increased to prevent unreces-
sary tunings. The tuning algorithm itself has an overhead of at
most a few tens of cycles every 10K instructions and has mini-
mal performanceimpad [8].

4. EVALUATION METHODOLOGY

This dion presents the methoddogy used for evaluating
the performance of the propased JIT instruction celivery scheme.
First, the smulation model is described, then the spedrum of
simulated schemes and the workload. Finally, metrics used to
evaluate dfedivenessof various methods are defined.

4.1 Simulation M odel

To evaluate performance, we used a modified version d the
SimpleScdar simulator [4]. Modificaions are intended to model
the instruction delivery system in more detail and with greder
acaragy than is dore in baseline SimpleScdar. In particular, the
ise queue is modeled as a separate structure from the re-order
buffer. The isaue queue isaues out-of-order at most four instruc-
tions every cycle. Also, ead stage in the instruction decode pipe-
line is modeled and courters are provided to cournt the number of
instructions in ead stage, whether useful or later-to-be-flushed.
Finally, the instructions in the pipeline ae segmented at granular-
ity equal to the pipeline width. That is, the fetched groups of in-
structions that enter the pipeline together can orly move from one
pipeline level to the next as a unit. Thisisin contrast to the Sim-
pleScdar method d modeling the entire pipeline & one large
queue with single-instruction granularity. In effed, the single
instruction granularity would require a omplex switching net-
work conreding all the instruction slots within and between suc-
cesgve pipe stages..

Our simulation model aso dffersin ather ways from Pipe-
line Gating (PG) [7] and the Adaptive Isaue Queue (AIQ) [2]. In
[7], the authors use four stages before the isaue stage; we asume
a more redigtic and dlightly deeper pipeline of five stages. Thus
the branch misprediction penalty as well as the penalty for incor-
red confidence etimation increases. In [2], the aithors use
fetch/decode width of 16 instructions and issue width of 8 instruc-
tions. We use more mnservative fetch/deade/isaue widths of four
because performance benefits dgnificently diminish when going

beyond four, and we believe four is a more redistic number if
power efficiency isamajor design consideration.
Table 1 summarizes the processor parameters used in all
simulations.
Table 1: Processor Configuration

ROB size 64 entries
I ssue Queue Size 32entries
LSQ size 32entries

IF, 1D, IS, IC Width 4 instructions/cycle

Branch Predictor gshare: 4K entries, 10 bt GHR

Return Address Stack 64 entries

Branch Target Buffer 1K entry, 4 way

Functional Units 4 Int. ALUs, 1 Int. MULT/DIV

4 FP ALUs, 1 FP MULT/DIV

L11 and D Caches 1K sets, 2-way, 32 hyte block size

L2 Unified Cache 2K sets, 4-way, 64 byte block size

Pipeline Depth 5 stages before the isaue stage

4.2 Simulated Schemes

4.2.1 Establishing upper and lower bounds

To establish the ewelope in which we ae working we de-
termine upper (orade) and lower (baseline) bounds for instruction
delivery adivities. For the baseline simulation model, no adivity
saving mechanisms are used. The oracle model gives the same
performance & the baseline and uses orade knowledge to save
energy. In particular, branch mispredictions occur, but the oracle
model stops fetching until a mispredicted branch is resolved; no
mis-speaulated instructions are fetched. Furthermore, in the oracle
scheme instruction fetching for all committed instructions is de-
ferred as long as posshble such that 1) the instructionisue timeis
not delayed for any instruction and 2 in-order instruction fetching
of cade-line granularity is maintained.

422 JIT I-fetch

The proposed JIT instruction dcelivery scheme is smulated
with performance tuning thresholds of 2%, 5%, and 10%.
JIT{X%} will be used to identify the scheme where the perform-
ancetuning threshold is X%.

4.2.3 Pipeline Gating

PG is smulated as proposed in [7]. A 128 entry JRS corfi-
dence etimator [10] is used. A branch is classfied as high confi-
dence when the murter accessd in the cnfidence table exceals
12. At most three low confidence branches are dlowed in the
processor at any given time.

4.2.4 Adaptive Issue Queue

The AIQ scheme proposed in [2] is $mulated. The issue
queue is 32 entries. It is re-sized up'down in churks of eight en-
tries. Every 8000cycles the utili zation d the queue is ssmpled. If
the utili zation exceals a threshold it is $zed up— for example, if
the current sizeis 8 and the utili zation is 7 then the queueis szed
up to 16 for the following interval. If the utili zetion is below a
size down threshold then the queue is $zed down. There ae dif-
ferent size up/down thresholds for different number of adive en-
tries. Also, if the performance after sizing down the queue is
worse than the performance before by a factor (0.9 in this case)
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then the queue is dzed up again. The isae queue is non
collapsing, thus holes might be present in the queue if instructions
isaie from the middle of the queue. We asaume the “holes’ will be
clock gated to save energy.

4.3 Benchmarks

We simulated SPEC 2000 INT benchmarks compiled with
base optimization level (-arch ev6 —non_shared —fast). The test
inpus were used and, al benchmarks were fast forwarded 100
milli on instructions and then simulated for 200 milli on committed
instructions except mcf. Benchmark mcf completes exeaution at
159 milli on committed instructions after fast-forwarding 100 mil-
lioninstructions.

4.4 Performance Metrics
To evaluate energy savings, we mlled the adivity courts (refer to
sedion 2 for the threeparts of the instruction ddlivery subsystem.
Both mis-speaulated (flushed) and committed (used) instructions
are included and are mnsidered as sparate adivities. For eah
type of adivity the aserage adivity is computed by taking the
arithmetic mean of that adivity over all benchmarks. Then, courts
for ead of the three parts (fetch, demde, and isaue queue) are
normalized between O and 1, so that ead is me fradion d the
overal adivity for the part being considered. Next, for al other (b)
(non-baseline) schemes the average adivity of ead part of in-
struction celivery is normalized with resped to the baseline total
average adivity.

For evauating performance we use the number of committed
instructions per cycle (IPC). Average IPC is cdculated by taking
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First, consider instruction fetch adivity in Figure 3(a). Be- S
cause it has foreknowledge of branch misprediction, the orade < 020 ]
method wastes no energy fetching flushed instructions. PG, based 000

on kranch prediction confidence reduces the adivity for flushed
instructions substantialy, as is intended; it saves abou half the
wasted flush adivity. However, PG reduces performance by
10%(Figure 4). The reason for the performance drop is that some ©
branch predictions are a&ssgned low confidence yet are crred

predictions. This occasionally causes the instruction deaode pipe- Figure 3: Normalized Activity
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line to be neallesdy starved of instructions. The performance
degradation we observe is worse than that observed by the aithors
in [7] primerily due to the longer instruction @peline (this ten-
dency was pointed out in [7]).

AlQ saves me I-fetch adivity, athough na as much as PG.
Reducing the issue queue ultimately reduces fetch adivity when-
ever the queue and ppeline become full. The J T method saves as
much adivity as PG, when their performance levels are the same
(this occurs with JT using a threshold of 10%, noted as
JT{10%}). With JT{2%}, the overal performance lossis only
3%, and 9% of the instruction fetch activity is sved.

Now consider the decode pipeline adivity (including deaode,
rename, dispatch) shown in Figure 3(b). Here AIQ has more adiv-
ity than any of the other methods, including the baseline. These
are primarily stall cycles becaise ashortened isale queue caises
instructions to more realily bad up into the rest of the pipeline.
PG and the JIT methods provide similar adivity savings, but the
JT method tes dightly lessadivity when the IPC performanceis
the same (i.e for JT{10%}).

In saving issie queue adivity (Figure 3(c)) AlQ performs
quite well, as expeded. Infad, it has fewer instructions galed in
the queue than the orade scheme. But the undesirable dfed is
that its performance degradation is 12%. Note that this lossis
significantly more than reported in [2] where the degradation is
4%. As mentioned above — our simulation model has
fetch/decode/isaue width of four instructions whereas the authors
in [2] have a issue width of eight instructions. Anather contribu-
tor to the performance diff erenceis more acarate modeling of the
individual pipeline stages.

PG shows relatively littl e (6%) savings in stalled useful in-
structions, and reduces the adive flushed instructions by abou
half compared with the baseline. The JIT (10%) method govides
adivity savings as good as the AIQ method, and performs better.

To summarize, with equivalent (or les9 performance degra-
dation, the J' T scheme performs as well as PG in reducing adivity
due to flushed instructions, and simultaneoudly it performs as well
as AlQ at saving wasted adivity in the isuue queue. Additionally,
it reduces more adivity in the instruction decode pipeline than
either of these schemes. Although JIT saves adivity for accessing
the data cate and in the exeaution urits we do nd include these
savings here.

6. ENERGY ESTIMATES

To give a idea of adua energy benefits of the propased
scheme, we evaluated the energy consumed for a state of the at
microprocesor (POWER4™) [11]. The pipeline latches were
taken from this high-end design environment. A 2-to-1 static mux
was used to re-circulate the data when stalled. For the isae
queue, wakeup logic is modeled by courting the energy in the
comparators. For the seledion logic, energy of one abiter cdl
was cdculated. Then the number of arbiter cdls per arbiter was
cdculated based onthe number of entries in the issue queue. We
asume one abiter per isue port — in ou case four issue ports.
Every entry in the issie queue has ome mmparators (for tag
match).

Figure 5 gives the relative energy savings for the various
schemes dudied. The PG and JIT{10%} schemes save the most
energy (13%), followed by a 12% savings for the AlIQ. In the
instruction decode pipe JIT{10%} saves 14% of the energy. PG
saves 11%. AlQ increases the energy consumed in the instruction
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Figure5: Relative Energy Reduction in a High Performance
Processor.

deade pipe by 0.5% becaise of more instruction badk-ups as
noted ealier. In the isaue queue AlIQ and JT{10%} both reduce
the energy by 53%. PG reduces 21% of the energy. AIQ and
JT{10%} reduce more energy than the Orade but at a loss of
10%in IPC.

7. SUMMARY AND CONCLUSIONS

Energy reduction kenefits come from avoiding fetch of mis-
speaulated instructions and from avoiding stall s of useful instruc-
tions, espedaly in the isuue queue. In effed, JIT instruction de-
livery combines the advantages of PG and AIQ methods.

Further, the implementation is smpler than either of the pre-
viously proposed schemes. In PG a branch confidence table is



added to the processor resulting in area and paver overheal. As
pipelines get degoer the penalty for incorred confidence estima-
tion will i ncrease. AlQ hasto continually monitor every stage of
the isaue queue to tune it. In contrast, the proposed J T scheme
uses only a few nonintrusive curters and control logic. The
courters are very similar to the performance ourters existing in
current processors. Finally, with the JT method, reconfigura
tions occur a much coarser granularity (100K instructions) than
the other methods, allowing low level software or off-criticd-
path hardware to perform the dynamic adjustment of MAXcount.
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