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ABSTRACT 

Just-In-Time instruction delivery is a general method for sav-
ing energy in a microprocessor by dynamically limiting the 
number of in-flight instructions.  The goal is to save energy by 
1) fetching valid instructions no sooner than necessary, avoid-
ing cycles stalled in the pipeline -- especially the issue queue, 
and 2) reducing the number of fetches and subsequent process-
ing of mis-speculated instructions.  A simple algorithm moni-
tors performance and adjusts the maximum number of in-
flight instructions at fairly long intervals, 100K instructions in 
this study. The proposed JIT instruction delivery scheme pro-
vides the combined benefits of more targeted schemes pro-
posed previously.  With only a 3% performance degradation, 
energy savings in the fetch, decode pipe, and issue queue are 
10%, 12%, and 40%, respectively. 

 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles – 
adaptable architectures, pipeline processors. 

General Terms 
Performance, Design 

Keywords 
Low-power, adaptive processor, instruction delivery 

1. INTRODUCTION 
Instruction delivery – fetch, decode, renaming, dispatch, and 

issue – account for a significant proportion of energy consumed in 
a superscalar microprocessor. For example, instruction delivery in 
the Alpha 21264[9] accounts for 25.5% of the total energy. In-

struction delivery energy consumption is higher than necessary, 
however, because of the performance-driven design philosophy 
that is typically followed. In particular, a conventional superscalar 
processor attempts to maximize the number of “ in-flight” instruc-
tions at all ti mes. Following a branch misprediction, it begins 
fetching at full speed and continues until the next branch mispre-
diction flushes the pipeline or until the issue queue (or re-order 
buffer) fill s, the decode pipeline backs up, and instruction fetch-
ing begins to stall .  

This philosophy often wastes energy because 1) useful in-
structions are fetched earlier than needed, then spend many cycles 
stalled in the decode pipeline and/or sitting in the issue queue 
waiting for operands, and 2) when a branch misprediction occurs, 
all the speculative instructions following the mispredicted branch 
in the issue queue and decode pipeline are flushed [7]. 

1.1 Just-In-Time (JIT) Instruction Delivery 
 We propose a simple, unified scheme for saving energy in 

the entire instruction delivery subsystem. This scheme monitors 
and dynamically adjusts the maximum number of in-flight instruc-
tions in the processor. The maximum number is determined by 
monitoring processor performance and is adjusted to the lowest 
number that does not reduce performance significantly. When the 
maximum number of in-flight instructions is reached, instruction 
fetching is inhibited. Often this occurs well before all pipeline 
stages and issue window slots are full . In effect, instructions are 
fetched just-in-time so performance is relatively unchanged, but 
fewer instruction delivery resources consume energy with stalled 
and/or flushed instructions. Overall , the resulting scheme works 
better than other previously proposed, more targeted approaches.  

1.2 Prior Approaches 
Several studies have focused on reducing energy in the in-

struction delivery portion of the microprocessor. Pipeline Gating 
[7] attempts to reduce flushed (mis-speculated) instructions by 
inhibiting instruction fetching when the number of low-confidence 
branch predictions exceeds a certain level. In a realistically mod-
eled superscalar pipeline, our approach performs better at reduc-
ing energy due to flushed instructions. 

Buyuktosunoglu, et al. [2] and Folegnani and Gonzalez [1] 
attempt to reduce energy by resizing the issue queue. The objec-
tive to reduce the number of instructions stalled in the issue 
queue, a high energy consumer. Again, our JIT scheme does better 
in terms of reduction of energy consumed by the issue queue.  

In [5] Banasadi, et al. attempt to save energy by gating the 
decode pipeline when the number of instructions to be decoded is 
fewer than the decode width. They do so by delaying the execu-
tion of instructions and managing the pipeline at single instruction 
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granularity. We perform no direct comparison with this method; 
we assume instructions flow up the pipeline in coarser granularity 
groups as would be done in a real microprocessor (see section 
4.1).  

 

2. QUANTIFYING ENERGY ACTIVITY 
We consider instruction delivery to be composed of three 

major parts: 1) instruction cache access, 2) instruction decoding, 
renaming, and dispatching into the issue queue, and 3) the issuing 
from the issue queue. For brevity, we refer to the entire de-
code/rename/dispatch portion simply as “ instruction decode”. 

We focus on five types of instruction delivery activities. En-
ergy is directly related to these activities.  

� I fetch: an instruction cache access.  
� Decode pipe active: a valid instruction is in the decode 

pipeline (decode, rename, dispatch), is being processed, 
and is moving to the next pipeline stage on the following 
cycle. 

� Decode pipe stall: a valid instruction is in the decode 
pipeline, but is being held (stalled) this cycle; it does not 
move to the next pipeline stage the following cycle. 

� Issue queue active: a valid instruction is in the issue 
queue and is issuing for execution this cycle. 

� Issue queue stall: a valid instruction is in the issue 
queue, but is not issuing this cycle, for example because 
its operands are not available or a required resource is 
not available. 

We then divide each of the above five activities into two 
groups – one for instructions that eventually commit (Used) and 
the other for mis-speculated instructions (Flushed). For example, 
Issue-queue Stalled Used is the activity for the instructions that 
stall i n the issue queue and eventually commit.  

This breakdown of energy-consuming activity allows for a 
form of clock gating where active instructions may consume more 
energy than stalled instructions, and where valid instructions may 
consume more energy than invalid ones (i.e. empty pipeline slots). 
For example, consider the logic shown in Figure 1. Here, a typical 
pipeline latch is shown, as might appear in the decode pipeline. 
An input multiplexor (typically built i nto the latch) is used to 
"recirculate" latched pipeline values when the hold signal is ac-
tive. In addition, the valid bit from the preceding stage is used to 
gate the latch itself; if there is no valid data being fed into the 
latch, then the latch is not clocked. In this system, a certain 
amount of energy is consumed if an instruction moves up the 
pipeline (the hold signal is inactive) and is latched into the next 
stage. A different (lower) amount is consumed if the hold signal is 
active, the multiplexor feeds the same data back into the latch and 
the latched is clocked, but the logic following the latch does not 
see any of its inputs change. Finally, a different (still l ower) 
amount of energy is consumed if the valid signal is off , and the 
latch is not clocked at all . Similarly, in the issue queue, a particu-
lar issue queue slot may consume different amounts of energy 
depending on whether or not it holds an active instruction and 
whether or not the instruction actually issues.  

The activities given above can be used to compute over-
alldynamic energy consumption, given the amount of energy per 
activity. For most of this paper, we focus on the activity counts, 

rather than energy numbers, to reduce the dependence of results 
on specific circuit and logic design styles1. In the penultimate 
section, however, we give energy estimates for a particular state of 
the art circuit/logic design technology. 
 

3. IMPLEMENTING JIT INSTRUCTION 
DELIVERY 

The method we propose is ill ustrated in Figure 2. The total 
number of in-flight instructions is kept in register instruction 
count. For each instruction fetched, instruction count is incre-
mented; for each instruction that is either committed or squashed, 
it is decremented.  There is also an adjustable MAXcount , and 
instruction fetching is inhibited whenever MAXcount is exceeded 
by instruction count. 

To dynamically adjust the MAXcount value, we use an algo-
rithm that is very similar to one previously proposed for finding 
optimal cache sizes in [8]. This algorithm is implemented either in 
hardware or low-level software, and “ tunes” for the least value of 
MAXcount such that performance is not reduced by some thresh-
old amount, e.g. 2%. For brevity, we only summarize the algo-
rithm.  

First, the algorithm uses a small number of counters to moni-

                                                                 
1 This is not unlike giving microarchitecture performance in terms of 

instructions per cycle (IPC) rather than instructions per second, which 
would require estimation of the exact cycle time. 

Figure 1: A pipeline latch. A valid bit from the previ-
ous stage is used to gate the clock signal. A hold sig-
nal from the succeeding stage is used to switch the 
multiplexcr and recirculate data being stalled. 

Figure 2: Pipeline with control logic to dynamically limit the 
number of in-flight instructions. 
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tor performance characteristics. There is a processor cycle counter 
and a committed instruction counter, incremented for each com-
mitting instruction. By reading and clearing these counters at 
fixed intervals (e.g. 100K instructions) overall performance (in-
structions per cycle) can be determined. Also, there is a counter 
for the number of branch instructions executed during an interval; 
this counter is used to detect the occurrence of program phase 
changes [8]. 

To perform dynamic tuning, MAXcount is set to the maxi-
mum possible number of in-flight instructions (e.g. 64) and the 
performance is recorded after one 100K interval. In the following 
interval, MAXcount is set to the minimum in-flight instructions 
(e.g. 8). In subsequent intervals MAXcount is incremented by 
eight until the performance for an interval is within a threshold 
value (e.g. 2%) of the performance for the maximum MAXcount; 
this process is called a tuning cycle. MAXcount is kept at this 
“optimal” value until either the performance (IPC) or the number 
of dynamic branches changes by more than some “noise” margin; 
in practice this is often hundreds of 100K instruction intervals. If 
a tuning cycle results in no change in the optimal MAXcount, then 
the IPC and branch noise levels are increased to prevent unneces-
sary tunings. The tuning algorithm itself has an overhead of at 
most a few tens of cycles every 100K instructions and has mini-
mal performance impact [8]. 

 

4. EVALUATION METHODOLOGY 
This section presents the methodology used for evaluating 

the performance of the proposed JIT instruction delivery scheme. 
First, the simulation model is described, then the spectrum of 
simulated schemes and the workload. Finally, metrics used to 
evaluate effectiveness of various methods are defined. 

4.1 Simulation Model 
To evaluate performance, we used a modified version of the 

SimpleScalar simulator [4]. Modifications are intended to model 
the instruction delivery system in more detail and with greater 
accuracy than is done in baseline SimpleScalar. In particular, the 
issue queue is modeled as a separate structure from the re-order 
buffer.  The issue queue issues out-of-order at most four instruc-
tions every cycle. Also, each stage in the instruction decode pipe-
line is modeled and counters are provided to count the number of 
instructions in each stage, whether useful or later-to-be-flushed. 
Finally, the instructions in the pipeline are segmented at granular-
ity equal to the pipeline width. That is, the fetched groups of in-
structions that enter the pipeline together can only move from one 
pipeline level to the next as a unit. This is in contrast to the Sim-
pleScalar method of modeling the entire pipeline as one large 
queue with single-instruction granularity. In effect, the single 
instruction granularity would require a complex switching net-
work connecting all the instruction slots within and between suc-
cessive pipe stages.. 

 Our simulation model also differs in other ways from Pipe-
line Gating (PG) [7] and the Adaptive Issue Queue (AIQ) [2]. In 
[7], the authors use four stages before the issue stage; we assume 
a more realistic and slightly deeper pipeline of five stages. Thus 
the branch misprediction penalty as well as the penalty for incor-
rect confidence estimation increases. In [2], the authors use 
fetch/decode width of 16 instructions and issue width of 8 instruc-
tions. We use more conservative fetch/decode/issue widths of four 
because performance benefits significantly diminish when going 

beyond four, and we believe four is a more realistic number if 
power eff iciency is a major design consideration. 

Table 1 summarizes the processor parameters used in all 
simulations. 

Table 1: Processor Configuration 

ROB size 64 entries 

Issue Queue Size 32 entries 

LSQ size 32 entries 

IF, ID, IS, IC Width 4 instructions/cycle 

Branch Predictor gshare: 4K entries, 10 bit GHR 

Return Address Stack 64 entries 

Branch Target Buffer 1K entry, 4 way 

Functional Units 4 Int. ALUs, 1 Int. MULT/DIV 

 4 FP ALUs, 1 FP MULT/DIV 

L1 I and D Caches 1K sets, 2-way, 32 byte block size 

L2 Unified Cache 2K sets, 4-way, 64 byte block size 

Pipeline Depth 5 stages before the issue stage 

4.2 Simulated Schemes 
4.2.1 Establishing upper and lower bounds 

To establish the envelope in which we are working we de-
termine upper (oracle) and lower (baseline) bounds for instruction 
delivery activities. For the baseline simulation model, no activity 
saving mechanisms are used. The oracle model gives the same 
performance as the baseline and uses oracle knowledge to save 
energy.  In particular, branch mispredictions occur, but the oracle 
model stops fetching until a mispredicted branch is resolved; no 
mis-speculated instructions are fetched. Furthermore, in the oracle 
scheme instruction fetching for all committed instructions is de-
ferred as long as possible such that 1) the instruction issue time is 
not delayed for any instruction and 2) in-order instruction fetching 
of cache-line granularity is maintained. 

4.2.2 JIT I-fetch 
The proposed JIT instruction delivery scheme is simulated 

with performance tuning thresholds of 2%, 5%, and 10%. 
JIT{X%} will be used to identify the scheme where the perform-
ance tuning threshold is X%. 

4.2.3 Pipeline Gating 
PG is simulated as proposed in [7]. A 128 entry JRS confi-

dence estimator [10] is used. A branch is classified as high confi-
dence when the counter accessed in the confidence table exceeds 
12. At most three low confidence branches are allowed in the 
processor at any given time. 

4.2.4 Adaptive Issue Queue 
The AIQ scheme proposed in [2] is simulated. The issue 

queue is 32 entries. It is re-sized up/down in chunks of eight en-
tries. Every 8000 cycles the utili zation of the queue is sampled. If 
the utili zation exceeds a threshold it is sized up – for example, if 
the current size is 8 and the utili zation is 7 then the queue is sized 
up to 16 for the following interval. If the utili zation is below a 
size down threshold then the queue is sized down. There are dif-
ferent size up/down thresholds for different number of active en-
tries. Also, if the performance after sizing down the queue is 
worse than the performance before by a factor (0.9 in this case) 



then the queue is sized up, again. The issue queue is non-
collapsing, thus holes might be present in the queue if instructions 
issue from the middle of the queue. We assume the “holes” will be 
clock gated to save energy. 

4.3 Benchmarks 
We simulated SPEC 2000 INT benchmarks compiled with 

base optimization level (-arch ev6 –non_shared –fast). The test 
inputs were used and, all benchmarks were fast forwarded 100 
milli on instructions and then simulated for 200 milli on committed 
instructions except mcf. Benchmark mcf completes execution at 
159 milli on committed instructions after fast-forwarding 100 mil-
lion instructions. 

4.4 Performance Metrics 
To evaluate energy savings, we collect the activity counts (refer to 
section 2) for the three parts of the instruction delivery subsystem. 
Both mis-speculated (flushed) and committed (used) instructions 
are included and are considered as separate activities. For each 
type of activity the average activity is computed by taking the 
arithmetic mean of that activity over all benchmarks. Then, counts 
for each of the three parts (fetch, decode, and issue queue) are 
normalized between 0 and 1, so that each is some fraction of the 
overall activity for the part being considered. Next, for all other 
(non-baseline) schemes the average activity of each part of in-
struction delivery is normalized with respect to the baseline total 
average activity. 

For evaluating performance we use the number of committed 
instructions per cycle (IPC). Average IPC is calculated by taking 
the harmonic mean of the IPC over all benchmarks. Performance 
is then normalized with respect to the baseline. 

 

5. RESULTS 
Figure 3(a-c) has normalized activities averaged over all the 

benchmarks as described in the preceding section.  Fig. 4 shows 
the normalized IPC averaged over all benchmarks. 

First, consider instruction fetch activity in Figure 3(a). Be-
cause it has foreknowledge of branch misprediction, the oracle 
method wastes no energy fetching flushed instructions. PG, based 
on branch prediction confidence, reduces the activity for flushed 
instructions substantially, as is intended; it saves about half the 
wasted flush activity.  However, PG reduces performance by 
10%(Figure 4). The reason for the performance drop is that some 
branch predictions are assigned low confidence, yet are correct 
predictions.  This occasionally causes the instruction decode pipe- Figure 3: Normalized Activity 

Figure 4: Normalized IPC 
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line to be needlessly starved of instructions. The performance 
degradation we observe is worse than that observed by the authors 
in [7] primarily due to the longer instruction pipeline (this ten-
dency was pointed out in [7]). 

AIQ saves some I-fetch activity, although not as much as PG. 
Reducing the issue queue ultimately reduces fetch activity when-
ever the queue and pipeline become full . The JIT method saves as 
much activity as PG, when their performance levels are the same 
(this occurs with JIT using a threshold of 10%, noted as 
JIT{ 10%} ). With JIT{ 2%} , the overall performance loss is only 
3%, and 9% of the instruction fetch activity is saved.  

Now consider the decode pipeline activity (including decode, 
rename, dispatch) shown in Figure 3(b). Here AIQ has more activ-
ity than any of the other methods, including the baseline.  These 
are primarily stall cycles because a shortened issue queue causes 
instructions to more readily back up into the rest of the pipeline. 
PG and the JIT methods provide similar activity savings, but the 
JIT method has slightly less activity when the IPC performance is 
the same (i.e for JIT{ 10%} ).  

In saving issue queue activity (Figure 3(c)) AIQ performs 
quite well , as expected.  In fact, it has fewer instructions stalled in 
the queue than the oracle scheme.  But the undesirable effect is 
that its performance degradation is 12%. Note that this loss is 
significantly more than reported in [2] where the degradation is 
4%. As mentioned above – our simulation model has 
fetch/decode/issue width of four instructions whereas the authors 
in [2] have an issue width of eight instructions. Another contribu-
tor to the performance difference is more accurate modeling of the 
individual pipeline stages. 

PG shows relatively littl e (6%) savings in stalled useful in-
structions, and reduces the active flushed instructions by about 
half compared with the baseline.  The JIT (10%) method provides 
activity savings as good as the AIQ method, and performs better. 

To summarize, with equivalent (or less) performance degra-
dation, the JIT scheme performs as well as PG in reducing activity 
due to flushed instructions, and simultaneously it performs as well 
as AIQ at saving wasted activity in the issue queue. Additionally, 
it reduces more activity in the instruction decode pipeline than 
either of these schemes.  Although JIT saves activity for accessing 
the data cache and in the execution units we do not include these 
savings here. 

 

6. ENERGY ESTIMATES 
To give an idea of actual energy benefits of the proposed 

scheme, we evaluated the energy consumed for a state of the art 
microprocessor (POWER4TM) [11]. The pipeline latches were 
taken from this high-end design environment. A 2-to-1 static mux 
was used to re-circulate the data when stalled. For the issue 
queue, wakeup logic is modeled by counting the energy in the 
comparators. For the selection logic, energy of one arbiter cell 
was calculated. Then the number of arbiter cells per arbiter was 
calculated based on the number of entries in the issue queue. We 
assume one arbiter per issue port – in our case four issue ports. 
Every entry in the issue queue has some comparators (for tag 
match).  

Figure 5 gives the relative energy savings for the various 
schemes studied. The PG and JIT{ 10%} schemes save the most 
energy (13%), followed by a 12% savings for the AIQ. In the 
instruction decode pipe JIT{ 10%} saves 14% of the energy. PG 
saves 11%. AIQ increases the energy consumed in the instruction 

decode pipe by 0.5% because of more instruction back-ups as 
noted earlier. In the issue queue AIQ and JIT{ 10%} both reduce 
the energy by 53%. PG reduces 21% of the energy. AIQ and 
JIT{ 10%} reduce more energy than the Oracle but at a loss of 
10% in IPC.  

 

7. SUMMARY AND CONCLUSIONS 
Energy reduction benefits come from avoiding fetch of mis-

speculated instructions and from avoiding stalls of useful instruc-
tions, especially in the issue queue. In effect, JIT instruction de-
livery combines the advantages of PG and AIQ methods.  

Further, the implementation is simpler than either of the pre-
viously proposed schemes. In PG a branch confidence table is 

Figure 5: Relative Energy Reduction in a High Performance 
Processor. 
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added to the processor resulting in area and power overhead. As 
pipelines get deeper the penalty for incorrect confidence estima-
tion will i ncrease. AIQ has to continually monitor every stage of 
the issue queue to tune it. In contrast, the proposed JIT scheme 
uses only a few non-intrusive counters and control logic. The 
counters are very similar to the performance counters existing in 
current processors. Finally, with the JIT method, reconfigura-
tions occur a much coarser granularity (100K instructions) than 
the other methods, allowing low level software or off-criti cal-
path hardware to perform the dynamic adjustment of MAXcount.  
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