
12.2 Dynamic Microarchitecture Adaptation via Co-Designed Virtual Machines

James E. Smith, Ashutosh S. Dhodapkar
{jes, dhodapka}@ece.wisc.edu
Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI

As microarchitecture and circuit technologies evolve, tradeoffs involving performance, power,
and design complexity become increasingly difficult, and optimization methods become
increasingly sophisticated. An important next step is toward microarchitectures that dynamically
adapt to changing program characteristics. Researchers have put forward several proposals for
multi-configuration hardware subsystems targeted at performance and/or power optimization.

1. Caches and TLBs: Total size, line size, and ways can be configured dynamically to match
program requirements. Power can be saved by using the smallest structures that give
adequate performance.

2. Branch predictors: Global history length can be varied to optimize performance.

Powering down unneeded portions of a complex predictor can save power.

3. Issue windows and pipelines: To save power, sections of the instruction issue window
can be shut down when there is a low instruction parallelism. Portions of clustered
microarchitectures can be disabled when not needed.

Simultaneously managing several such multi-configuration units is a complex optimization
problem. To manage this complexity, we are developing a co-designed virtual machine (VM), a
layer of software hidden from all conventional software and designed concurrently with the
hardware implementation. The base technology is used in the Transmeta Crusoe and the IBM
Daisy projects to support whole-system binary translation. Referring to Fig. 12.2.1, we use the
virtual machine monitor (VMM) as a "micro-operating system" for managing configurable
resources in the microarchitecture.

A key aspect of configuration management is matching the configuration with the requirements
of a program’s current phase of execution. The phase, in turn, is a manifestation of the program’s
instruction working set. Consequently, we are interested in detecting working set changes and in
identifying recurring working sets. A working set change indicates that the VMM should
determine the optimal configuration for the new working set. Identifying recurring working sets
enables the VMM to re-instate a previously determined optimal configuration. Fig. 12.2.2 shows
pseudo code for a reconfiguration algorithm to be used by a VMM.

We have developed a simple hardware mechanism that the VMM uses to detect instruction
working set changes and identify recurring working sets. The working set is captured by hashing
the addresses of executed conditional branch instructions into a table holding a bit vector (Fig.
12.2.3). When a table entry is touched, the corresponding bit is set to one. Instructions are
sampled for a fixed interval of time, and at the end of the interval, the bit vector signature is
compared with the one generated during the previous interval.

For comparing two signatures we have developed a measure of “similarity”. The total number of
ones in the exclusive OR of the signatures is divided by the total number of ones in their
inclusive OR. This working set ratio indicates the degree to which the signatures differ. If the
two working set signatures are very similar, the ratio is close to zero; if they are very different,
the ratio is close to one. In practice, if the working set ratio is more than some threshold, a
working set change (phase change) is registered; if not, the phase is stable. We performed a
number of simulations using SPEC 2000 benchmarks and found that a threshold of .125 works
well. Fig. 12.2.4 tabulates the statistics gathered by the phase table for a subset of the SPEC 2000
benchmark suite.

To evaluate the effectiveness of using working set signatures, we performed a preliminary study
that compares a working set signature-based method and a phase table based method with an
“oracle” algorithm. Level one instruction and data caches can be independently adjusted to 2K,
8K and 32K byte sizes and a gshare branch predictor can be configured into 1K, 2K and 4K
entries. This gives a total of 27 possible configurations. We define an optimal configuration
during a given working set interval (100K instructions) as one which provides performance
within 2% of the maximum configuration and which minimizes power consumption. The oracle
algorithm is applied at the end of every working set sampling interval and performs
reconfiguration when the performance falls outside the 2% optimal range. The signature-based
algorithm reconfigures only when a working set change is detected due to a working set ratio of
.125 or more. The phase table based algorithm goes one step further and simply looks up the
optimal configuration from a table, if the phase had occurred in the past. The performance
simulations use a 4-way superscalar processor model. Power consumption for the caches and
predictor were generated using the Wattch power estimation tool (developed at Princeton
University). Fig. 12.2.5 shows the performance achieved using each of the schemes. Fig. 12.2.6
shows 1) the power saved relative to the base case using each of the algorithms and 2) the ratio
of number of reconfigurations performed by the oracle algorithm to that performed by the
signature based algorithm. Both the signature-based algorithm and the phase table based
algorithms achieve performance and power savings similar to the oracle algorithm, thereby
suggesting that the signature mechanism detects most significant working set changes and
identifies recurring phases correctly. The overall power savings for the caches and branch
predictor range from 10% to 60%. Furthermore, the number of re-configurations is lower than
the oracle method by an average factor of 20.

As we move towards increasingly complex microarchitectures, power/performance constraints
will necessitate dynamic adaptation. Co-designed virtual machines are excellent candidates for
managing the reconfigurable hardware, providing rich functionality and flexibility to the
hardware designer.

Acknowledgements

This work is being supported by an SRC grant 2000-HJ-782, NSF grant CCR-9900610, Intel
and IBM.

References

[1] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S. Dwarkadas, "Memory Hierarchy

Reconfiguration for Energy and Performance in General Purpose Architectures," 33rd Intl.
Sym. on Microarchitecture, pp. 245-257, Dec. 2000.

[2] T. Juan, S. Sanjeevan, J. Navarro, “Dynamic History-Length Fitting: A Third Level of
Adaptivity for Branch Prediction,” 25th Intl. Sym. on Comp. Architecture, pp. 155-166, Jul
1998.

[3] H. Mizuno, T. Kawahara, “ChipOS: Open Power-Management Platform to Overcome the
Power Crisis in Future LSIs”, ISSCC 2001, pp. 344-45.

[4] K. Ebcioglu, E. Altman, "DAISY: Dynamic Compilation for 100% Architecture
Compatibility, 24th Intl. Sym. on Comp. Architecture, pp. 26-37, Jun 1997.

Figure 12.2.1: The co-designed virtual machine architecture. The
physical main memory space addressable by virtual machine
software is larger than the memory space addressable by software
supported by the architected hardware. Code and data to be used
by the VMM are placed in hidden memory and the VMM may
have access to implementation-dependent instructions that interact
with hardware performance monitoring and configuration
f t

Operating
System

A pplica tion
Progra m s

V M M

D ata
Tab les

C on figuration H WProfiling H W

H
a

rd
w

a
reH

id
d

e
n

M
e

m
o

ry

V
is

ib
le

M
e

m
o

ry

Operating
System

Operating
System

A pplica tion
Progra m s

A pplica tion
Progra m s

V M MV M M

D ata
Tab les
D ata

Tab les

C on figuration H WC on figuration H WProfiling H WProfiling H W

H
a

rd
w

a
reH

id
d

e
n

M
e

m
o

ry

V
is

ib
le

M
e

m
o

ry

program counter

m n

1
0
0
1
1
0
1
0
1
0
0
0
1

working set

signatureprogram counter

m n

1
0
0
1
1
0
1
0
1
0
0
0
1

working set

signature

Figure 12.2.2: Mechanism for collecting working set signatures.
m bits selected from the program counter are used to address a
table containing 2m bits. The table is cleared at the beginning of
each sampling interval, and a bit is set if a corresponding
branch instruction is executed.

 Figure 12.2.5: Performance as a result of reconfiguration. The
 base case has 32K I and D caches and a 4K entry predictor.

Performance lost due to reconfiguration

0

1

2

3

applu apsi mgrid wupwise perl gzip

benchmarks

IP
C

base
oracle
signature-based
phase table based

Figure 12.2.6: Power savings as a result of re-configuration. The
base case has 32K I and D caches and a 4K entry predictor. The
line shows the ratio of reconfigurations performed by the oracle
algorithm to reconfigurations performed by the signature-based
algorithm.

Power saved due to reconfiguration

0

10

20

30

40

50

60

70

applu apsi mgrid wupwise perl gzip

benchmarks

%
 s

av
ed

 r
el

at
iv

e
to

 b
as

e
ca

se

0

10

20

30

40

50

60
oracle

signature-based

phase table based

reconfigs

or

ac
le

 r
ec

on
fig

s/

si
gn

at
ur

e
ba

se
d

re
co

nf
ig

s

if (state == STABLE)
if (working_set_change)

state = UNSTABLE;

else if (state == UNSTABLE)
if (NOT working_set _change)

do table lookup;
if (entry found)

unit_size = table_entry_size;
state = STABLE;

else
unit_size = SMALLEST;
state = TUNING;

else if (state == TUNING)
if (NOT working_set _change)

if (all combinations tried)
select best configuration with performance
within 2% of best performance;
make table entry;
state = STABLE;

else
try next configuration;

else
state = UNSTABLE;

if (state == STABLE)
if (working_set_change)

state = UNSTABLE;

else if (state == UNSTABLE)
if (NOT working_set _change)

do table lookup;
if (entry found)

unit_size = table_entry_size;
state = STABLE;

else
unit_size = SMALLEST;
state = TUNING;

else if (state == TUNING)
if (NOT working_set _change)

if (all combinations tried)
select best configuration with performance
within 2% of best performance;
make table entry;
state = STABLE;

else
try next configuration;

else
state = UNSTABLE;

Figure 12.2.3: Performance tuning in a VMM. This sequence
is repeated after every execution interval (100K instructions).

Figure 12.2.4: Statistics captured by the phase detection
mechanism. The bit vector size is 4096 and the threshold used is
.125. The columns from left to right show the benchmark name,
number of dynamic phases detected, number of static phases
detected, number of static phases that lead to 95% of the stable
time, average stable phase length in units of 100K instructions, %
of time in stable phases and % of time in unstable regions.

Benchmark # Dynamic
Phases

Static
Phases

95 th % Average
Length

% time
stable

% time
unstable

applu 877 30 13 20 89 11
apsi 250 19 7 76 95 5
mgrid 2433 11 4 6 69 31
wupwise 26 6 5 767 100 0
perl 3746 59 17 2 45 55
gzip 2927 14 6 4 62 38

