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As microarchitecture and circuit technologies evolve, tradeoffs involving performance, power, 
and design complexity become increasingly difficult, and optimization methods become 
increasingly sophisticated. An important next step is toward microarchitectures that dynamically 
adapt to changing program characteristics. Researchers have put forward several proposals for 
multi-configuration hardware subsystems targeted at performance and/or power optimization. 
 

1. Caches and TLBs: Total size, line size, and ways can be configured dynamically to match 
program requirements. Power can be saved by using the smallest structures that give 
adequate performance. 

 
2. Branch predictors: Global history length can be varied to optimize performance. 

Powering down unneeded portions of a complex predictor can save power. 
 

3. Issue windows and pipelines: To save power, sections of the instruction issue window 
can be shut down when there is a low instruction parallelism. Portions of clustered 
microarchitectures can be disabled when not needed. 

 
Simultaneously managing several such multi-configuration units is a complex optimization 
problem. To manage this complexity, we are developing a co-designed virtual machine (VM), a 
layer of software hidden from all conventional software and designed concurrently with the 
hardware implementation. The base technology is used in the Transmeta Crusoe and the IBM 
Daisy projects to support whole-system binary translation. Referring to Fig. 12.2.1, we use the 
virtual machine monitor (VMM) as a "micro-operating system" for managing configurable 
resources in the microarchitecture. 
 
A key aspect of configuration management is matching the configuration with the requirements 
of a program’s current phase of execution. The phase, in turn, is a manifestation of the program’s 
instruction working set. Consequently, we are interested in detecting working set changes and in 
identifying recurring working sets. A working set change indicates that the VMM should 
determine the optimal configuration for the new working set. Identifying recurring working sets 
enables the VMM to re-instate a previously determined optimal configuration. Fig. 12.2.2 shows 
pseudo code for a reconfiguration algorithm to be used by a VMM. 
 
We have developed a simple hardware mechanism that the VMM uses to detect instruction 
working set changes and identify recurring working sets. The working set is captured by hashing 
the addresses of executed conditional branch instructions into a table holding a bit vector (Fig. 
12.2.3). When a table entry is touched, the corresponding bit is set to one. Instructions are 
sampled for a fixed interval of time, and at the end of the interval, the bit vector signature is 
compared with the one generated during the previous interval. 
 



For comparing two signatures we have developed a measure of “similarity”. The total number of 
ones in the exclusive OR of the signatures is divided by the total number of ones in their 
inclusive OR. This working set ratio indicates the degree to which the signatures differ. If the 
two working set signatures are very similar, the ratio is close to zero; if they are very different, 
the ratio is close to one. In practice, if the working set ratio is more than some threshold, a 
working set change (phase change) is registered; if not, the phase is stable. We performed a 
number of simulations using SPEC 2000 benchmarks and found that a threshold of .125 works 
well. Fig. 12.2.4 tabulates the statistics gathered by the phase table for a subset of the SPEC 2000 
benchmark suite. 
 
To evaluate the effectiveness of using working set signatures, we performed a preliminary study 
that compares a working set signature-based method and a phase table based method with an 
“oracle” algorithm. Level one instruction and data caches can be independently adjusted to 2K, 
8K and 32K byte sizes and a gshare branch predictor can be configured into 1K, 2K and 4K 
entries. This gives a total of 27 possible configurations. We define an optimal configuration 
during a given working set interval (100K instructions) as one which provides performance 
within 2% of the maximum configuration and which minimizes power consumption. The oracle 
algorithm is applied at the end of every working set sampling interval and performs 
reconfiguration when the performance falls outside the 2% optimal range. The signature-based 
algorithm reconfigures only when a working set change is detected due to a working set ratio of 
.125 or more. The phase table based algorithm goes one step further and simply looks up the 
optimal configuration from a table, if the phase had occurred in the past. The performance 
simulations use a 4-way superscalar processor model. Power consumption for the caches and 
predictor were generated using the Wattch power estimation tool (developed at Princeton 
University). Fig. 12.2.5 shows the performance achieved using each of the schemes. Fig. 12.2.6 
shows 1) the power saved relative to the base case using each of the algorithms and 2) the ratio 
of number of reconfigurations performed by the oracle algorithm to that performed by the 
signature based algorithm. Both the signature-based algorithm and the phase table based 
algorithms achieve performance and power savings similar to the oracle algorithm, thereby 
suggesting that the signature mechanism detects most significant working set changes and 
identifies recurring phases correctly. The overall power savings for the caches and branch 
predictor range from 10% to 60%. Furthermore, the number of re-configurations is lower than 
the oracle method by an average factor of 20.  
 
As we move towards increasingly complex microarchitectures, power/performance constraints 
will necessitate dynamic adaptation. Co-designed virtual machines are excellent candidates for 
managing the reconfigurable hardware, providing rich functionality and flexibility to the 
hardware designer. 
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Figure 12.2.1: The co-designed virtual machine architecture. The 
physical main memory space addressable by virtual machine 
software is larger than the memory space addressable by software 
supported by the architected hardware. Code and data to be used 
by the VMM are placed in hidden memory and the VMM may 
have access to implementation-dependent instructions that interact 
with hardware performance monitoring and configuration 
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Figure 12.2.2: Mechanism for collecting working set signatures. 
m bits selected from the program counter are used to address a 
table containing 2m bits.  The table is cleared at the beginning of 
each sampling interval, and a bit is set if a corresponding 
branch instruction is executed. 

  Figure 12.2.5: Performance as a result of reconfiguration. The 
   base case has 32K I and D caches and a 4K entry predictor. 
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Figure 12.2.6: Power savings as a result of re-configuration. The 
base case has 32K I and D caches and a 4K entry predictor. The 
line shows the ratio of reconfigurations performed by the oracle 
algorithm to reconfigurations performed by the signature-based 
algorithm. 
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if (state == STABLE)
if (working_set_change) 

state = UNSTABLE;

else if (state == UNSTABLE)
if (NOT working_set _change)

do table lookup;
if (entry found)

unit_size = table_entry_size;
state = STABLE;

else
unit_size = SMALLEST;
state = TUNING;

else if (state == TUNING)
if (NOT working_set _change)

if (all combinations tried)
select best configuration with performance
within 2% of best performance;
make table entry;
state = STABLE;

else
try next configuration;

else
state = UNSTABLE;

if (state == STABLE)
if (working_set_change) 

state = UNSTABLE;

else if (state == UNSTABLE)
if (NOT working_set _change)

do table lookup;
if (entry found)

unit_size = table_entry_size;
state = STABLE;

else
unit_size = SMALLEST;
state = TUNING;

else if (state == TUNING)
if (NOT working_set _change)

if (all combinations tried)
select best configuration with performance
within 2% of best performance;
make table entry;
state = STABLE;

else
try next configuration;

else
state = UNSTABLE;

Figure 12.2.3: Performance tuning in a VMM. This sequence 
is repeated after every execution interval (100K instructions). 

Figure 12.2.4: Statistics captured by the phase detection 
mechanism. The bit vector size is 4096 and the threshold used is 
.125. The columns from left to right show the benchmark name, 
number of dynamic phases detected, number of static phases 
detected, number of static phases that lead to 95% of the stable 
time, average stable phase length in units of 100K instructions, % 
of time in stable phases and % of time in unstable regions. 

Benchmark # Dynamic 
Phases 

# Static 
Phases 

95 th  % Average 
Length 

% time 
stable 

% time 
unstable 

applu 877 30 13 20 89 11 
apsi 250 19 7 76 95 5 
mgrid 2433 11 4 6 69 31 
wupwise 26 6 5 767 100 0 
perl 3746 59 17 2 45 55 
gzip 2927 14 6 4 62 38 
 


