
Achieving High Performance via Co-Designed Virtual Machines

J. E. Smith Subramanya Sastry
Timothy Heil Todd M. Bezenek

Dept. of Electrical and Computer Engr. Computer Sciences Dept.
University of Wisconsin-Madison University of Wisconsin-Madison
{jes,heilt}@ece.wisc.edu {sastry,bezenek}@cs.wisc.edu

Abstract
A virtual machine (VM) uses software to support a virtual
instruction set architecture on a hardware platform exe-
cuting a native instruction set. By co-designing the
hardware and software elements of a VM, and by using
an implementation-dependent native instruction set, there
will be many new opportunities for improved perfor-
mance and flexibility. Because the hardware-supported
instruction set is implementation dependent, performance
optimizations can be more easily passed from software
through to hardware, and performance feedback informa-
tion can be more easily passed from hardware up to the
software. Furthermore, optimizations can be performed
by software dynamically, as the program runs. A co-
designed virtual machine may include adaptive hardware
performance features, continuous hardware performance
feedback, and on-the-fly optimizing re-compilation by the
VM. Hardware and software can cooperate in finding
instruction level parallelism across large blocks of
dynamic instructions, and can efficiently implement of a
number of advanced microarchitecture techniques involv-
ing control independence, prediction, speculation, and
cache hierarchy management.

1. Introduction

Today’s virtual machines (VMs) use a layer of software
that allows programs compiled in one instruction set to be
run on a processor executing a (different) native instruc-
tion set. VMs have become popular in recent years for
providing platform independence; however, VMs also
open many new opportunities for enhancing performance.
The co-design of VM software and the underlying
hardware microarchitecture will enable enhanced instruc-
tion level parallelism (ILP) and new adaptable perfor-
mance mechanisms that cannot be realized when
hardware and application software are separated by a
fixed instruction set architecture as is conventionally
done.

In future high performance computers, we propose
that a virtual instruction set architecture (V-ISA) will be
the level for maintaining architectural compatibility. The

V-ISA is implemented with a VM that blends software
and hardware in a symbiotic manner via co-design. The
hardware supports an implementation-dependent archi-
tecture, or implementation instruction set architecture (I-
ISA). As such, the I-ISA has special features keyed to the
specific hardware optimizations built into the microarchi-
tecture. The co-designed VM implementation includes
fast compilation of the V-ISA to the I-ISA, efficient
hardware performance feedback, optimizing re-
compilation, and adaptive hardware performance
features, enabling performance improvements beyond
those that can be achieved with conventional hardware
and software.

Specifically, the software implementing the VM
becomes available for the hardware microarchitect to use
-- in contrast to the current paradigm where the hardware
designer is isolated from software via a fixed, often
inflexible instruction set architecture. This application of
VMs is also in contrast with most current VM proposals,
which focus on maintaining compatibility and portability
across platforms supporting existing ISAs, and whose
performance objectives are typically no more ambitious
than minimizing performance losses that occur in the pro-
cess.

2. The Search for High Performance

Processor microarchitecture has been evolving for many
years. Performance improvements have primarily come
from exploiting larger amounts of ILP and from the
increased use of prediction and speculation. Microarchi-
tectures have evolved from serial to pipelined to super-
scalar implementations. For this evolution to continue, it
is becoming evident that a substantially different, more
far-reaching approach must be used. Some of the current
obstacles to increased performance are:

(1) Instruction set compatibility has become a perfor-
mance obstacle. It is difficult to change an exist-
ing instruction set to enhance performance. In
fact, it is sometimes inadvisable because changes
that enhance performance in one generation may
lead to added design complications (with no per-
formance benefits) in future generations, e.g.



delayed branches. Furthermore, removing old
instructions is difficult because of the need to
maintain compatibility with older generation
software.

(2) Designers often make tradeoffs to provide the
best performance when averaged over a number
of application programs. However, these trade-
offs may not give the best performance for any of
the individual programs, or for individual phases
of larger programs. The ability to adapt for a
specific program or program phase is often lim-
ited by decisions made at hardware design time.

(3) Processors have limited visibility to ILP. It is
well known that the window of instructions visi-
ble to the hardware has to be increased to provide
higher ILP. Using hardware alone to increase the
instruction window size typically leads to greater
complexity, however. For substantial advances to
take place, it is likely that the instruction window
will have to become larger than hardware alone
can support. Potentially, a compiler could make
more instructions visible in the window, but
software’s view is static, and is often restricted.
In particular, the object-oriented programming
paradigm is becoming widely adopted, and by its
nature, the compile-time visible instruction win-
dow can be limited due to the presense of dynam-
ically dispatched method calls.

(4) Researchers have become clever in devising
hardware performance enhancements. Usually
these are targeted at some particular aspect of the
design and give a relatively small overall perfor-
mance improvement. Although each of these
features makes sense by itself, any individual pro-
gram may only be able to take advantage of a few
of them. And, implementing them all tends to
weigh down a clean pipeline structure with many
small, complicated, special-purpose "appendages"
-- possibly to such an extent that the overall com-
plexity wipes out the individual benefits.

VM co-design can overcome all of the above obsta-
cles and will open many new opportunities for computer
architects. It can provide a wider scope for finding ILP,
allow the hardware designer more flexibility in ISA
design, allow more dynamic adaptivity in hardware per-
formance features, and allow a cleaner pipeline design by
removing hardware appendages (by moving complexity
to software where it can be selectively applied). Further-
more, VM co-design can provide high performance for
object-oriented programs.

3. Virtual Architectures

Traditional processor architecture is based on an
inflexible division between hardware and software (see

Figure 1a). The inflexibility of this hardware/software
division has become inhibiting to microarchitecture
design. Microarchitects support this interface through
innovations in hardware, and the ability to reach above
the hardware/software interface is very limited. As
instruction sets have solidified, opportunities for architec-
tural (instruction set) innovations have become greatly
reduced. Only occasionally are current hardware
designers able to innovate by modifying instruction sets --
multimedia instruction extensions are a recent example.

The virtual architecture abstraction provides revo-
lutionary opportunities to computer architects. This

Native ISA

Virtual ISA

Hardware

Virtual Machine

b) Conventional virtual machine interface

Application Program Binary

Application Program Binary

VM Hardware

VM Software

Virtual ISA

c) Implementing a virtual architecture with a

Implementation
ISA

hardware/software co-designed virtual machine.

Application Program Binary

Native ISA

Hardware

a) Conventional hardware/software interface

Figure 1. Virtual machine co-design.



abstraction has become popular recently in the form of
Java bytecodes and Java virtual machine (JVM) imple-
mentations. Figure 1b illustrates the VM as it is used in
the Java environment. The VM layer effectively widens
the traditional ISA interface between hardware and
software. Application software is compiled to the virtual
architecture specification (i.e. Java bytecodes), and the
hardware is an implementation of an existing instruction
set, or native ISA. The VM is implemented with an addi-
tional software layer that is placed at the
hardware/software interface. The VM and the underlying
hardware implement the V-ISA through interpretation,
just-in-time compilation, adaptive recompilation, or some
combination of these techniques.

A primary goal in using VMs in this manner is to
provide platform independence. That is, the Java
bytecodes can be used on any hardware platform, pro-
vided that a VM is implemented for that platform. How-
ever, this additional layer of abstraction typically results
in lost performance because of inefficiencies in matching
the V-ISA and the native ISA via interpretation and just-
in-time (JIT) compilation. The V-ISA and the native ISA
are defined independently, so there is no real opportunity
for the two to mesh well. Consequently, a typical goal in
this environment is to provide performance approaching
that of a native ISA execution.

Through VM co-design, the V-ISA abstraction can
be exploited to exceed native processor performance.
This approach is illustrated in Figure 1c. Given a fixed

Interface
Virtual Architecture

Dynamic
Compilation

System

Native
Executable

Static
Compilation

System

Data
Persistent

VA
Binary

Profiles
Triggers,

Implementation
Architecture

Figure 2. Overview of a co-designed VM system.

V-ISA (e.g. Java bytecodes), the VM software and under-
lying hardware are co-designed. The underlying native
ISA is implementation dependent, and is not an existing
ISA as is the case in Figure 1b. We refer to this low-level
ISA as the implementation ISA (I-ISA) to emphasize its
implementation dependence. Because the I-ISA is imple-
mentation dependent, the hardware and software along
this boundary can be co-designed, blurring the division
between the two. The resulting flexibility enables the dis-
tribution of performance features between and across the
hardware/software interface.

In the current environment, Java bytecodes are an
obvious choice as a V-ISA, but the V-ISA could, in fact,
be a conventional RISC or CISC ISA. Or, if it is desir-
able to support a conventional "native" ISA and Java
bytecodes, both could be supported (or for that matter
multiple ISAs could be supported) by the same I-ISA. In
this case, the I-ISA may be better suited for some of the
V-ISAs than others -- but at least the designer can choose
where the tradeoffs should be. And, finally, because plat-
form independence is a good feature, it is still provided at
the V-ISA level.

4. VM Implementation

Figure 2 illustrates the co-designed virtual machine sys-
tem that we envision. A V-ISA binary is executed by a
combination of VM hardware and software. In this sys-
tem, progressively more aggressive software optimiza-
tions can be phased in. For example, when a V-ISA
binary is executed for the first time, it is compiled to the
I-ISA on demand by a JIT compiler that is fast and per-
forms simple optimizations. As the program runs, the
VM hardware and software work cooperatively to optim-
ize the program’s execution. The hardware collects
relevant performance information that is in a form
efficiently obtained and interpreted by the software; i.e. it
is designed to match the software’s needs. This com-
ponent of the optimization is termed dynamic compila-
tion.

Using hardware and software cooperatively to
optimize performance offers many opportunities for inno-
vation. For example, the VM hardware collects perfor-
mance information specific to the current VM software
optimization implementation. This data can be collected
on a per-instruction basis via software selection. Perfor-
mance information is then passed to the software via
instructions that read performance data by polling, by
hardware triggers that cause the VM software to be
invoked when a certain event occurs, or when some per-
formance characteristic is found to shift outside an
operating envelope -- as when a program changes pro-
cessing phases.

Conversely, the VM software can manage the VM
hardware through implementation-dependent instructions



(or instruction fields) for specific hardware performance
features. These instructions are statically inserted into the
I-ISA binary when the V-ISA is compiled, or dynami-
cally, as the I-ISA version of the program executes. For
example, given several load/store opcodes to control
which memory accesses trigger prefetches and the type of
prefetch, the prefetching behavior of the I-ISA binary can
be modified as information about data locality is received
from the VM hardware. VM software can also directly
execute special instructions to tune hardware perfor-
mance features to match the characteristics of the code
currently being executed. For example, an instruction
may reach into the hardware and adjust a branch predic-
tor global history length for a particular program or
region of a program.

The optimization process could potentially occur
many times during the execution of a program. Some of
the ways that optimizations are triggered by are (1) the
procurement of useful information from the VM
hardware, (2) changes in the behavior of the dynamic I-
ISA instruction stream, or (3) changes in input data. The
modified binary persists during a single program execu-
tion, and may persist across program executions. Saving
the modified binary between executions will allow object
code to continuously improve, and to automatically con-
form to a new data set or to changes in the system
hardware.

5. Example Performance Optimizations

Many current topics of interest in microarchitecture
research will benefit from VM co-design. The following
subsections focus on a few of them that are of interest to
us.

5.1. Trace Selection and Control Indepen-
dence

Maintaining a large and accurate window of executable
dynamic instructions is important for any high-
performance microarchitecture. This problem has
recently been addressed with the introduction of trace
processors [1]. In a trace processor, dynamic instruction
supply relies on accurate trace prediction and good trace
cache performance.

Trace processors also provide the potential of
maintaining a large instruction window in spite of
mispredicted branches by exploiting control indepen-
dence. A trace is control independent of a prior branch if
the trace is executed regardless of the outcome of the
branch. Control independent traces do not have to be
squashed and restarted if the branch is mispredicted.

A recent study [2] explores the potential and limita-
tions of control independence in the context of super-
scalar processors. It predicts that control independence

can reduce the performance gap between real and oracle
branch prediction by half. In a detailed simulation,
overall performance improvements on the order of 30%
were observed.

Trace processors offer a complexity-effective solu-
tion for implementing control independence mechanisms
-- the distributed window organization naturally isolates
traces from one another. However, traces must be
selected to expose the control independent (re-
convergent) points in the program. That is, the hardware
trace selection algorithm (heuristics used to divide the
dynamic instruction stream into traces) must identify and
align traces at these control independent points.

Currently, trace selection is constrained by the lim-
ited view of program control flow available to hardware.
Hardware is able to expose some control independence,
but software can be used to apply sophisticated heuristics
to information gathered from a program’s control-flow
graph and profile information gathered by the hardware.

VM co-design provides the vehicle for this aggres-
sive trace selection. First, software can implement the
otherwise overly-complex analysis. Second, there is a
transfer of information between software and hardware,
through the I-ISA: hardware provides dynamic profile
information, and software supplies the hardware with
enough information to select good traces. Co-designed
trace selection can likewise be applied to improving
trace-prediction accuracy and trace-cache performance.

5.2. Improving Control Prediction with Data
Values

Conventional branch predictors use branch history to
predict future branch outcomes. Prediction methods have
become more elaborate, and clever ways have been found
to make predictors more efficient, e.g. by reducing alias-
ing. However, performance improvements are leveling
off.

For substantial improvements in branch prediction,
additional information must be used. In particular, cer-
tain hard-to-predict branches can be made much more
predictable by using data values -- i.e. the results of
non-branch instructions. However, folding data values
into the branch prediction process in a productive way is
very difficult because there is such a large number of data
values to choose from, and there are some branches for
which using data values hinders predictability.

Using virtual machines is a method for solving this
problem. Software can experiment on-the-fly with
branch prediction algorithms that use data values. This is
similar in spirit to the hardware tuning method for global
branch histories in [3]. Furthermore, opcodes in the
implementation ISA can be used to enable/disable the use
of data values on a per-instruction basis.



5.3. Memory Systems for Object Oriented
Applications

The increasing relative delay of memory is a growing
performance problem. The poor data locality between
objects and the poor instruction locality between methods
for different objects aggravates this problem.

Co-designed VMs can be used to improve memory
hierarchy performance by reorganizing cached data and
for improving cache hierarchy management (i.e. con-
straining the highest cache where a data item can reside.)
These methods can be tightly integrated with features in
the performance monitoring architecture to collect perfor-
mance data on a per-instruction (or per region) basis.
Optimizations include the ability to re-organize memory
data -- permitted by Java semantics, and the ability to pre-
fetch and otherwise move data in the hierarchy based on
type information available in Java bytecodes. Such infor-
mation can be directly communicated via the I-ISA, by
using special opcodes, for example. Additionally, perfor-
mance feedback from the hardware can allow dynamic
runtime optimizations based on usage patterns.

5.4. Performance Tradeoffs

For VM co-design to work, there are some important per-
formance tradeoffs that must be resolved. In particular,
the overhead of performing optimizations in software
must be offset by performance gains eventually realized.
This means that very fast and simple software methods
must be used when possible. Expensive optimizations are
amortized over many executions of the program by sav-
ing the results of dynamic optimizations, creating per-
sistent changes in an application’s binary. Costs can also
be minimized by using a hierarchical implementation of
different algorithms, with more complex, better optimiz-
ing algorithms being invoked only for portions of a pro-
gram that are heavily used.

6. Related Research

The virtual architecture co-design methodology presented
here builds on a long history of VM research, as well as
related research in other contexts. Virtual machines were
originally an OS concept. They permitted multiple, pos-
sibly different, OSes to coexist on one machine [5], but
did not involve a V-ISA or forms of runtime compilation.
Guest OSes interacted with a virtual machine monitor to
manipulate system resources. The monitor maintained
control of all system resources, and the ISA was crafted
to isolate each guest OS from the others [6]. This
represents the first in many steps toward virtual architec-
tures.

A pioneering machine was the IBM System/38 [7]
which dynamically converted program code into internal

micro-code before it was executed. Hiding the details of
the micro-code from the virtual architecture provided
flexibility for future innovations. The follow-on AS/400
line from IBM provides the same flexibility using binary
translation [8]. Application programs are provided as a
program template. Before a program is run, an AS/400
platform compiles the program template into an execut-
able binary suitable for that platform. The success of this
approach was demonstrated by IBMs recent migration of
the AS/400 to the PowerPC architecture [9].

Another existing application treats a conventional
ISA -- which has traditionally been directly executed by
hardware -- as a virtual ISA, in order to provide cross-
platform compatibility. FX!32 transparently executes
Intel x86 binaries on DEC Alpha processors. Given an
Intel x86 binary, FX!32 interprets the x86 operations in
order to complete the first execution and provide profile
information. An optimizing compiler can then translate
the x86 code into high-performance Alpha code, and
transparently cache the compiled code on disk. Later
invocations of the application will use the optimized
code. As profile information accumulates from succes-
sive runs, FX!32 re-optimizes the application.

Currently, much virtual machine development is
motivated by the desire for platform independence. A
number of recent virtual architectures besides Java
attempt to satisfy the desire. Oberon [10], Inferno [11],
Python [12], ANDF [13, 14], Objective Caml [15, 16]
and Oblique [17] are such virtual architectures. Other
languages take advantage of these machine-independent
platforms by compiling to a virtual architecture. Scheme,
in the form of Kawa [18]; and IBM REXX, in the from of
NetRexx [19]; obtained machine independence by com-
piling into Java bytecodes.

Virtual machines have also been a preferred tool of
language designers. Early research in language design
spawned a number of virtual architectures. Languages
such as LISP [20], Smalltalk [21], and SELF [22] gained
popularity and attracted considerable attention in the
research community. The intent of each was to produce
an architecture with improved safety, security, reusabil-
ity, and extensibility. But these goals are difficult to
obtain with a low-level architecture designed for direct
execution. The resulting semantics and structure of these
new languages made them difficult to compile efficiently;
interpreted execution was natural. This quickly led to the
concept of a virtual architecture executed by a virtual
machine. Platform independence was an added advan-
tage.

The poor performance of interpreters spurred
research into making virtual machines faster. Dynamic
compilers built into VMs translated from the virtual ISA
to the native ISA and optimized the resulting code. A
VM for SELF included multiple compilers for different
levels of optimization [23]. Guided by profile



information, the VM frequently executed code for heavy
optimization, performing runtime adaptive optimizations
such as inlining of dynamically dispatched function calls.
This is much the same as the dynamic runtime optimiza-
tions employed in the contemporary virtual architecture
model.

Specialized hardware has also been used to
improve performance of virtual machines. The virtual
instruction set can be compiled into an instruction set that
is easily executed by a RISC processor. In addition, vari-
ous extensions to a RISC ISA can be used to improve the
performance of operations commonly used within the vir-
tual architecture. SOAR [24] and Mushroom [25] are
excellent examples of this approach. These processors
use special hardware to support type checking with
tagged memory, garbage collection with software
managed caches, object-oriented heap management with
object-oriented memory hierarchies, and function calls
with register windows. These specialized-hardware sys-
tems provide early examples of using hardware/software
co-design. The virtual machine compiled the virtual ISA
into a RISC ISA with direct support for virtual ISA
features. Tuning the virtual machine compiler and the
RISC ISA together allowed the implementation of perfor-
mance enhancements that would not have been possible
without using the co-design method.

Research has been done which supports our conjec-
ture that virtual architectures can be used to improve per-
formance. The DAISY (Dynamically Architected
Instruction Set from Yorktown) project at IBM’s T.J.
Watson Research Center articulates the microarchitect’s
desire to improve performance using innovations incom-
patible with a standard ISA [26]. The goal of DAISY is
to enhance instruction-level parallelism using VLIW
architectures that are incompatible with the architecture
being addressed. DAISY provides simple hardware sup-
port for completely emulating other architectures includ-
ing x86, S/390, PowerPC, and Java [27].

DAISY contains a kernel -- unseen by the virtual
architecture -- which translates instructions from the vir-
tual ISA to the VLIW architecture. V-ISA code is
translated in virtual-memory-page-sized blocks, and is
triggered when program execution first enters a page.
The translation is cached in a separate region of memory.
The addition of aggressive VLIW scheduling provides
improved performance.

All aspects of the emulated architecture are
preserved, including precise exceptions and self-
modifying code semantics; even operating system kernel
code is emulated. Hardware support is provided for
unusual aspects of the virtual architectures, such as dif-
ferent floating point formats, status and comparison flags,
and the ability to access subsections of a register.

Many of the advantages of our virtual architecture
model are found in DAISY. For instance, DAISY uses a

dynamic optimizing VM co-designed with hardware sup-
porting special I-ISA features added to improve perfor-
mance. We extend the advantages of DAISY with more
adaptive, dynamic hardware optimizations and greater
reliance on hardware performance monitoring. Further,
our focus on a higher-level V-ISA enables better global
compiler optimization.

Contemporary compiler research is also moving
toward the virtual architecture model. Many advanced
compiler optimizations rely on information not available
at compile time [28]. These include link-time optimiza-
tions [29], post-link-time optimizations [30], and run-time
optimizations [31, 32, 33, 34, 35, 36]. Profiling is often
advocated as a way to provide this run-time information
to the compiler. Profiling can increase the performance
gain or reduce the code expansion of optimizations [37,
38, 39, 40, 41, 42, 43]. Virtual machines naturally pro-
vide this information to the compiler. When the compiler
is integrated within a VM, profile information specific to
the particular execution being optimized is provided.
This allows our virtual architecture model to adjust the
binary for each execution of the program -- whether it is
different because it has different input data, resides in dif-
ferent physical memory pages, is executing with a dif-
ferent set of other processes, or because a processor
upgrade recently took place.

Finally, research in hardware assisted profiling [44,
45, 46] will aid the dynamic optimizations within a vir-
tual machine. Hardware gathers detailed statistics down
to the level of specific instructions with very little over-
head. By taking advantage of the co-design model, the
VM will retrieve this information from the CPU through
software readable hardware registers and traps.

7. Summary

Using hardware/software co-design to implement a vir-
tual machine will provide a powerful new way of dynam-
ically optimizing executing programs. By exploiting
observed run-time performance characteristics, optimiza-
tions can improve the execution of code using dynamic
compilation, improve the efficiency of the memory sys-
tem by changing the data or instruction reference
behavior of the program, or make adjustments to underly-
ing hardware performance mechanisms. These optimiza-
tions will be done on a broad scale; not limited by a rela-
tively small issue window as in hardware-only
approaches. Higher performance will result from com-
bining the strengths of software compilation and dynamic
hardware execution.

Acknowledgements

This work was supported by NSF Grant MIP-9505853,
by an IBM Partnership Award, and by Sun Microsystems.



References

[1] E. Rotenberg, Q. A. Jacobson, Yiannakis Sazeides, J.
E. Smith, “ Trace Processors,” Thirtieth Intl. Symp.
on Microarch., pp. 138-148, December 1997.

[2] E. Rotenberg, Q. A. Jacobson, J. E. Smith, “A Study
of Control Independence in Superscalar Proces-
sors,” Fifth Intl. Symp. on High Perf. Comp. Arch.,
pp. 115-124, January 1999.

[3] Toni Juan, Sanji Sanjeevan, Juan J. Navarro,
“Dynamic History-Length Fitting: A third level of
adaptivity for branch prediction,” Fifth Intl. Symp.
on Comp. Arch., pp. 155-166, June 1998.

[4] David A. Solomon, “The Windows NT Kernel Archi-
tecture,” IEEE Computer 31(10), pp. 40-47,
October 1998.

[5] R. A. Meyer, L. H. Seawright, “A virtual machine
time-sharing system,” IBM System Journal 9(3),
pp. 199-217, 1970.

[6] Gerald J. Popek, Robert P. Goldberg, “Formal
Requirements for Virtualizable Third Generation
Architectures,” Comm. of the ACM, 17(7), pp.
412-421, July 1974.

[7] Viktors Berstis, “Security and Protection of Data in
the IBM System/38,” Seventh Int. Symp. on Comp.
Arch., pp. 245-252, May 1980.

[8] Frank G. Soltis, Paul Conte, Inside the AS/400:
Featuring the AS/400E Series, 2nd Ed., November
1997.

[9] Brian E. Clark, “64 Bits, No Buts -- Implementing a
True 64-Bit Computer System,” presentation,
Engineering Hall, Univ. of Wisconsin at Madison,
March 1997.

[10] M. Franz, T. Kistler, “Slim Binaries,” Technical
Report No. 96-24, Dept. of Info. and Comp. Sci.,
Univ. of California, Irvine, June 1996.

[11] Lucent Technologies, Inferno Release 2.0 Reference
Manual, 1997.

[12] Jeff Bauer, “An Introduction to Python,” Linux Jour-
nal #21, January 1996.

[13] Christian Fabre, Francois de Ferriere, Fred Roy,
“Java-ANDF Feasibility Study,” Final Report,
Open Software Foundation Research Institute,
March 1997.

[14] Gianluigi Castelli, proj. dir., “ESPRITE Project
6062,” Project description OMI/GLUE/R/01-10-92,
January 1992.

[15] Didier Remy, Jerome Vouillon, “Objective ML: An
effective object-oriented extension to ML,” Theory

And Practice of Objects Systems, 4(1), pp. 27-50,
1998.

[16] Xavier Leroy, “The ZINC experiment, an economi-
cal implementation of the ML language,” INRIA
Technical Report 117, 1990.

[17] Luca Cardelli, “A Language with Distributed
Scope,” DEC SRC Technical Report, May 1995.

[18] Per Bothner, “Kawa -- Compiling Dynamic
Languages to the Java VM,” USENIX Annual Tech.
Conf., June 1998.

[19] Peter Heuchert, Frederik Haesbrouck, Norio
Furukawa, Ueli Wahil, “Creating Java Applications
using NetRexx,” IBM ITSO Redbook SG24-2216-
00, September 1997.

[20] Guy Steele Jr., Richard Gabriel, “The Evolution of
Lisp,” SIGPLAN Notices 28(3), pp. 231-270,
March 1993.

[21] Adele Goldberg, David Robson, Smalltalk-80: The
Language and Its Implementation, Addison-
Wesley, 1983.

[22] David Ungar, Randall B. Smith, “SELF: The Power
of Simplicity,” Proc. of Obj. Oriented Sys. and
Prog. Lang., pp. 227-241, 1987.

[23] Urs Holzle, “Adaptive Optimization for Self: Recon-
ciling High Performance with Exploratory Pro-
gramming,” Sun Microsystems Laboratories
Technical Report TR-95-35, 1995.

[24] David Ungar, Ricki Blau, Peter Foley, Dain Sam-
ples, David Patterson, “Architecture of SOAR:
Smalltalk on a RISC,” Eleventh Intl. Symp. on
Comp. Arch., pp. 188-197, June 1984.

[25] Mario Wolczko, Ifor Williams, “The influence of the
object-oriented language model on a supporting
architecture,” Twenty-sixth Hawaii Intl. Conf. on
Sys. Sci., January 1993.

[26] Kemal Ebcioglu, Erik R. Altman, “DAISY:
Dynamic Compilation for 100% Architecture Com-
patibility,” IBM Research Report RC 20538,
August 1996.

[27] Kemal Ebcioglu, Erik R. Altman, Erdem Hokenek,
“A Java Processor Based on Fast Dynamic VLIW
Compilation,” Intl. Workshop On Security and
Efficiency Aspects of Java, January 1997.

[28] Sarita V. Adve, Doug Burger, Rudolf Eigenmann,
Alasdair Rawsthorne, Michael D. Smith, Catherine
H. Gebotys, Mahmut T. Kandemir, David J. Lija,
Alok N. Choudhary, Jesse Z. Fang, Pen-Chung
Yew, “Changing Interaction of Compiler and
Architecture,” IEEE Computer 30(12), pp. 51-58,
December 1997.



[29] Amir H. Hashemi, David R. Kaeli, Brad Calder,
“Efficient Procedure Mapping Using Cache Line
Coloring,” Prog. Lang. Design and Impl., pp. 171-
182, June 1997.

[30] David. W. Goodwin, “Interprocedural Dataflow
Analysis in an Executable Optimizer,” Prog. Lang.
Design and Impl., pp. 122-133, June 1997.

[31] Joseph A. Fisher, “Walk-Time Techniques: Catalyst
for Architectural Change,” IEEE Computer 30(9),
pp. 40-42., September 1997.

[32] Todd B. Knoblock, Erik Ruf, “Data Specialization,”
Prog. Lang. Design and Impl., pp. 215-226, May
1996.

[33] Mark Leone, Peter Lee, “A Declarative Approach to
Run-Time Code Generation,” Workshop on Comp.
Support for Sys. Soft., pp. 8-17, February 1996.

[34] Charles Consel, Luke Hornof, Francois Noel,
Jacques Noye, Nicolae Volanschi, “A Uniform
Approach for Compile-time and Run-time Speciali-
zation,” INRIA Research Report RR-2775, January
1996.

[35] Massimiliano Poletto, Dawson R. Engler, M. Frans
Kaashoek, “tcc: A System for Fast, Flexible, and
High-level Dynamic Code Generation,” Prog.
Lang. Design and Impl., pp. 109-121, June 1997.

[36] Pedro C. Diniz, Martin C. Rinard, “Dynamic feed-
back: an effective technique for adaptive comput-
ing,” Prog. Lang. Design and Impl., pp. 71-84,
June 1997.

[37] Robert G. Burger, R. Kent Dybvig, “An Infrastruc-
ture for Profile-Driven Dynamic Recompilation,”
Intl. Conf. on Comp. Lang., pp. 240-249, May
1998.

[38] Glenn Ammons, James R. Larus, “Improving Data-
flow Analysis with Path Profiles,” Prog. Lang.
Design and Impl., pp. 72-84, June 1998.

[39] Raymond Lod, Fred Chow, Robert Kennedy, Shin-
Ming Liu, Peng Tu, “Register Promotion by Sparse
Partial Redundancy Elimination of Loads and
Stores,” Prog. Lang. Design and Impl., pp. 26-37,
June 1998.

[40] A. V. S. Sastry, Roy D. C. Ju, “A New Algorithm for
Scalar Promotion Based on SSA Form,” Prog.
Lang. Design and Impl., pp. 15-25, June 1998.

[41] Cliff Young, David S. Johnson, David R. Karger,
Michael D. Smith, “Near-optimal Intraprocedural
Branch Alignment,” Prog. Lang. Design and Impl.,
pp. 183-193, June 1997.

[42] Rastislav Bodik, Rajiv Gupta, Mary Lou Soffa,
“Complete Removal of Redundant Expressions,”

Prog. Lang. Design and Impl., pp. 1-14, June 1998.

[43] Andrew Ayers, Robert Gottlieb, Richard Schooler,
“Aggressive Inlining,” Prog. Lang. Design and
Impl., pp. 134-145, June 1997.

[44] Glenn Ammons, Thomas Ball, James R. Larus,
“Exploiting Hardware Performance Counters With
Flow and Context Sensitive Profiling,” Prog. Lang.
Design and Impl., pp. 85-96, June 1997.

[45] Jeffrey Dean, James E. Hicks, Carl A Waldspurger,
William E. Weihl, George Chrysos, “ProfileMe:
Hardware Support for Instruction-Level Profiling
on Out-of-Order Processors,” Thirtieth Symp. on
Microarch., pp. 292-302, December 1997.

[46] Thomas M. Conte, Kishore N. Menezes, Mary Ann
Hirsch, “Accurate and Practical Profile-Driven
Compilation Using the Profile Buffer,” Twenty-
ninth Symp. on Microarch., pp. 36-45, December
1996.


