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Abstract 

 
Many dynamic optimization and/or binary translation 

systems hold optimized/translated superblocks in a code 
cache. Conventional code caching systems suffer from 
overheads when control is transferred from one cached 
superblock to another, especially via register-indirect 
jumps. The basic problem is that instruction addresses in 
the code cache are different from those in the original pro-
gram binary. Therefore, performance for register-indirect 
jumps depends on the ability to translate efficiently from 
source binary PC values to code cache PC values.  

We analyze several key aspects of superblock chaining 
and find that a conventional baseline code cache with 
software jump target prediction results in 14.6% IPC loss 
versus the original binary. We identify the inability to use 
a conventional return address stack as the most significant 
performance limiter in code cache systems. We introduce a 
modified software prediction technique that reduces the 
IPC loss to 11.4%. This technique is based on a technique 
used in threaded code interpreters.  

A number of hardware mechanisms, including a spe-
cialized return address stack and a hardware cache for 
translated jump target addresses, are studied for efficiently 
supporting register-indirect jumps. Once all the chaining 
overheads are removed by these support mechanisms, a 
superblock-based code cache improves performance due to 
a better branch prediction rate, improved I-cache locality, 
and increased chances of straight-line fetches. Simulation 
results show a 7.7% IPC improvement over a current gen-
eration 4-way superscalar processor. 

 
1. Introduction 

 
In recent years a number of systems have been pro-

posed and developed that dynamically translate and/or 
optimize binary programs from one instruction set to an-
other. Virtually all these systems first map the source bi-
nary code into superblocks [19] – code sequences with one 
entry point and multiple exit points – then translate and/or 
optimize the superblocks and place them in a code cache 
for repeated execution on the target platform. When exe-
cuting within a superblock, performance is enhanced, both 

because of optimizations that may have been done and 
because of straight-line instruction fetching that naturally 
occurs. However, when making transitions from one 
cached superblock to another, there is a potential for per-
formance loss. For example, if a code cache lookup 
mechanism must be invoked before each new superblock 
can be entered, then all performance gains would likely be 
lost (and then some). One commonly used optimization is 
to chain superblocks together so that one can immediately 
branch to the next, but this method only works with direct 
branches1. For indirect jumps, the problem is more difficult 
and remains a problem in many systems.  

In this paper, we study architecture support for efficient 
control transfers among superblocks being held in a code 
cache. This support is in the form of a few new instructions 
and some simple underlying hardware structures. The new 
instructions could be added to an existing instruction set. 
(To improve Java performance, Sun Microsystems recently 
added an instruction that improves indirect jump prediction 
in their UltraSPARC IIIi processor [32]) Or, if a new pro-
prietary instruction set is the objective, then the architec-
ture support can be included as part of the overall target 
instruction set architecture (ISA). 

 
1.1 Dynamic code caching 

 
In general, dynamic code caching systems perform ba-

sic block re-layout based on observed run-time program 
characteristics. Hence, a dynamic code caching system can 
adapt to run-time program behavior changes efficiently. 
Also dynamic superblocks provide long sequences of in-
structions that are highly likely to be executed, ideal for 
most dynamic optimization and high performance binary 
translation systems.  

When program execution begins, the source program 
binary image is first interpreted. As interpretation pro-
ceeds, basic blocks and/or control transfer edges are pro-
filed to find “hotspots” , i.e. frequently executed code re-
gions, and/or frequently followed control flow paths. 

                                                           
1 Following Alpha ISA convention, we use the term branch for a 
control-transfer instruction whose target address is fixed. A regis-
ter-indirect jump finds the target address by reading a specified 
register. 



When the profile data indicates that a certain portion of the 
program is being frequently executed, then control is 
passed to a translator (and/or optimizer). The translator 
forms a superblock, typically using profile data, translates 
the superblock, and places it in the code cache. It also 
places an entry in a dispatch table, i.e. a hash table that 
maps source binary program counter values (SPCs) to 
translated binary program counter values (TPCs). As the 
program continues, whenever there is a branch or jump in 
the interpreted code, the hashed SPC is used as an index 
into the dispatch table. If there is a hit, control is trans-
ferred to the mapped superblock in the code cache via the 
TPC. Similarly, when the end of a superblock is reached, 
the dispatch table is accessed to find the next superblock 
(if it exists). At that point if there is a miss in the dispatch 
table, control is passed back to the interpreter. Initially 
program execution switches between the interpreter and 
the code cache frequently, but eventually the program will 
be executed almost entirely within the code cache. 

 
1.2 Code cache control transfers 

 
In the basic code cache scheme just described there is 

an obvious steady state performance cost because the dis-
patch table is accessed every time there is a control transfer 
(branch or jump) from one superblock to the next. Typi-
cally, this would require several instructions, including at 
least two memory accesses, ending in an indirect jump. 
Fortunately, direct branches, either conditional or uncondi-
tional, are relatively easy to optimize because their (taken) 
target addresses do not change during program execution. 
Superblocks can be chained together so that a direct branch 
from one superblock to another can be made directly with-
out relying on SPC to TPC mapping. Chaining is com-
monly done in systems that use code caches and is illus-
trated in Fig. 1.  

For indirect transfers, however, the problem is more dif-
ficult. Register-indirect jumps have their target addresses 
stored in a register, and the register value can change over 

the program’s execution. Furthermore, this address is an 
SPC value, not a TPC value. This means that the original 
jump target address being held in a register must be trans-
lated every time the indirect jump instruction is executed, 
not only when it is translated. The most straightforward 
solution is to consult the dispatch table for every indirect 
jump. Hence indirect jumps still have a significant per-
formance cost. 

To save table lookup overhead for each and every indi-
rect jump, many dynamic optimizers/translators implement 
a form of software-based jump target prediction. In 
[2][4][5][10][36], a sequence of instructions compares the 
indirect target SPC held in a register against an embedded 
translation-time target SPC. A match indicates a correct 
“prediction”  and the inlined direct branch instruction is 
executed; if not, the code jumps to the shared (slow) dis-
patch code. Although the example in Fig. 2 shows three 
sequential predictions, many systems use only one predic-
tion. 

 
I f  Rx == #addr _1 got o #t ar get _1 
El se i f  Rx == #addr _2 got o #t ar get _2 
El se i f  Rx == #addr _3 got o #t ar get _3 
El se hash_l ookup( Rx) ;  do it the slow way 

Figure 2. A code sequence that performs indirect 
jump target comparison 

 
The software prediction method is of limited value, 

however. First, if the target address is not one of the se-
lected addresses, then time is wasted by testing the possi-
bilities, and the dispatch table lookup has to be performed 
anyway. The performance cost of a misprediction is high. 
Second, there are a number of indirect jumps that are not 
very predictable using this method. For example procedure 
returns often have a number of call sites, and therefore a 
number of changing targets. Bruening et al. [4] identify the 
indirect jump problem as the highest overhead in a code 
cache system and report that a hash table lookup takes 15 
instructions, while the software comparison of the target of 
an indirect jump takes 6 instructions in the x86 ISA. 

Previous code cache systems considered the software 
prediction technique (along with partial inlining of jump 
target code) as an optimization. We find that this technique 
is rather a performance limiter, especially for returns, and 
we therefore consider alternative methods. We propose an 
enhanced software prediction technique and study further 
hardware support mechanisms to achieve zero overhead 
chaining. We also analyze reasons each method shows 
different performance characteristics, especially in  terms 
of dynamic instruction count expansion and branch predic-
tion performance changes. 

The techniques and support mechanisms studied in the 
paper can be used to accelerate any type of code cache 
systems – dynamic optimizers, high performance binary 
translators, or both. 
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Figure 1. Control transfers among superblocks 



1.3 Related work 
 
There are a variety of systems that use code caching 

techniques. First, there are transparent optimization sys-
tems that do not perform binary translation, but instead 
focus on dynamic optimizations. These systems include: 
HP Dynamo [2][4], Wiggins/Redstone [8], Mojo [7], and 
the system proposed by Merten et al. [27]. Another set of 
systems rely on code caching as part of a sandboxing 
framework for program analysis and security enhance-
ment. These systems include DELI [9] and DynamoRIO 
[5]. As with the dynamic optimizers, these systems do not 
perform binary translation. 

A second important class of systems performs binary 
translation from one conventional ISA to another (as well 
as optimization). For example, Strata [30], UQDBT [34] 
are designed to be retargetable to multiple target platforms. 
HP Shogun [25] and Aries [37] are used to provide binary 
compatibility for the existing ISA programs on a platform 
that executes a new instruction set. 

The Transmeta Crusoe Processor/Code Morphing Soft-
ware [15], IBM BOA [1], and the method proposed by 
Kim and Smith [24] perform dynamic binary translation 
from an existing ISA to a proprietary ISA with perform-
ance or power efficiency (or both) as a goal. These systems 
use a code cache to hold superblocks. The IBM DAISY 
system [10] is similar, except it holds “ tree regions”  in the 
cache rather than superblocks. 

Finally, high performance high-level language virtual 
machines (e.g., Java VM) that also use superblock-based 
code caching technique are emerging [3][35].  

With respect to other related systems, there is a clear 
similarity with hardware trace caches [17][29] (which also 
cache superblocks, not really “ traces”  in the Multiflow 
[26] sense). A hardware trace cache uses hardware rather 
than software to form superblocks and to manage the trace 
cache. This difference results in a trade-off: hardware trace 
caches do not require chaining because the hardware ac-
cess mechanism is based on source PCs. However, total 
cache size and maximum allowable superblock size are 
limited by the amount of on-chip, near-processor storage. 
It should be noted that hardware trace caches and software 
code caches are not mutually exclusive. For example, 
many of the above code caching examples [3][4][5][7][34] 
[35] run on Pentium 4 processor that employs a hardware 
trace cache [17]. 

RePLay [12] can be considered an aggressive extension 
of the hardware trace cache. By converting highly predict-
able conditional branches into assertions, RePLay in-
creases the average superblock size to the level of soft-
ware-based code cache systems for more dynamic optimi-
zation opportunities.  

The system proposed by Merten et al [27] is an innova-
tive hybrid system. Although the code cache is placed in 

memory, the transition between native execution and “ in-
terpretation”  is automatically performed by hardware. 
When an optimized superblock is put into the code cache, 
its starting TPC is written into the branch target buffer 
(BTB). The next time a corresponding branch instruction is 
fetched, control is transferred to the optimized superblock 
by the BTB. This system also uses the software jump tar-
get prediction technique; however when the software pre-
diction fails, program control falls back to the source indi-
rect jump instruction. Therefore no dispatch table lookup is 
performed. Sooner or later, the program will again reach 
an optimized superblock. A limitation of this approach is 
that its application is restricted to dynamic optimization. 
Many dynamic binary translation systems, such as co-
designed virtual machines and high level programming 
language virtual machines, cannot use a hardware inter-
preter (for executing out-of-code-cache instructions effi-
ciently).  

Previously proposed chaining support mechanisms re-
lated to our study are explained and compared in their as-
sociated subsections. 

 
2. Support for  code cache control transfers 

 
2.1 Software-based register -indirect jump chain-

ing methods 
 
In Fig. 3, three different software-based indirect jump 

chaining options are depicted for an indirect function call 
instruction (e.g. JSR in the Alpha ISA)2. These software-
based methods affect the underlying hardware branch pre-
dictor behavior in a negative way as they convert a single 
indirect jump instruction to a sequence of codes including 
multiple control transfer instructions. In Fig. 3a, an indirect 
jump is converted to an unconditional branch to the shared 
dispatch code. The target address prediction rate of the 
register-indirect jump in the dispatch code is expected to 
be very poor because all indirect jumps lead to the same 
dispatch code and a single BTB entry is required to pro-
vide all the target addresses. 

The conventional indirect jump chaining method based 
on software prediction is shown in Fig. 3b. Here, the com-
pare-and-branch code reduces the number of times the 
shared dispatch code is executed. Hence the pressure on 
the BTB entry for the indirect jump in the dispatch code is 
somewhat reduced. However, many times the software 
prediction is incorrect and in that case two mispredictions 
can happen – one by the conditional branch in the com-
pare-and-branch code, another by the indirect jump in the 

                                                           
2 This type of instruction performs two tasks; (1) it saves the next 
instruction SPC to a register, then (2) jumps to the target SPC 
stored in a register. The first task is accomplished by a sequence 
of load-immediate instructions. 



dispatch code. The conditional branch has less impact be-
cause the branch predictor will eventually be trained to 
predict the branch as not-taken. 

We propose an alternative software method (Fig 3c): 
replicate the dispatch code after every register-indirect 
jump, thereby allowing “private”  target address prediction 
in case the superblock construction-time prediction fails. 
This way the number of mispredictions by the indirect 
jump in the dispatch code is reduced. This option trades off 
superblock size, which leads to increased I-cache pressure, 
for a better target address prediction rate. The private dis-
patch code concept is similar to the one used in threaded 
code interpreters [11]. However, we are unaware of any 
previous proposal or existing system that applies this 
“ threaded”  technique to a dynamically trans-
lated/optimized code cache system. 

 
2.2 Jump target-address lookup table 

 
One way to avoid the expensive dispatch table lookup 

almost entirely is to maintain a hardware cache of dispatch 
table entries. We call this specialized chaining support 
feature the Jump Target-address Lookup Table (JTLT). 
The JTLT is maintained by the code cache manager and 
always provides a correct translated address if there is a 
hit. The concept is similar to the software-managed TLBs 
used in virtual memory systems.  

Fig. 4 shows how a JTLT can be used in conjunction 
with a BTB as a checker/predictor pair. An indirect jump 
instruction’s target TPC is predicted with the normal BTB. 
This predicted target address flows through the pipeline 
with the jump instruction itself, just like any other predic-
tion mechanism. When the jump instruction reads the tar-
get SPC from its register, the JTLT is searched. If there is a 
hit at an entry that matches the predicted TPC, the predic-
tion is correct. There are two ways of mispredicting. First, 
the JTLT itself may miss. In that case, the hardware alone 
cannot provide the correct target TPC. The jump is not 
taken and the next sequential instruction, a branch to the 
dispatch code, is executed. Second, even if a JTLT entry is 

found, its TPC may be different from the one provided by 
the BTB. This is a BTB misprediction and fetch is redi-
rected to the TPC from the JTLT. 

A hardware cache of dispatch table entries and associ-
ated instructions have been proposed previously. In [31] a 
SEARCH_SWI TCH_TABLE instruction queries the cache 
with the target SPC in a register; the target TPC is written 
to another register upon a hit. The next DYNAMI C_GOTO 
instruction reads the latter register and jumps to the TPC. 
A similar mechanism is proposed in [13]. However, this 
method is undesirable in systems where no scratch register 
(for keeping the target TPC) is available to the code cache 
manager.  

It appears that the “Translation Lookaside Buffer”  in 
[22] is also a hardware cache of dispatch table entries. It is 
not clear, however, exactly how the mechanism is used. 

If the JTLT is used, a register-indirect jump is not trans-
lated to a compare-and-branch code sequence and remains 
as an indirect jump. This suppresses dynamic instruction 
count expansion found in software-based prediction tech-
niques. However, the BTB/JTLT pair also has a couple of 
weaknesses. First, it requires on-chip storage space. In the 
Transmeta Crusoe processor a 256-entry “TLB”  [15] is 
used for this purpose. Assuming a 32-bit SPC and a 16-bit 
TPC, a 256-entry fully-associative JTLT uses 1.5KB of 
associative memory storage. Second, the BTB/JTLT pair 
does not provide a highly accurate return address stack  
(RAS) [21] type prediction capability for return instruc-
tions. 

 
2.3 Dual-address return address stack 

 
Most modern processors use a RAS mechanism, which 

can predict a return instruction’s target address very accu-
rately. In a dynamically managed code cache system, how-
ever, a conventional RAS cannot be utilized because the 
saved return target address is a SPC while the correspond-
ing TPC is needed for a return target address prediction. 
This inability to use a conventional hardware RAS leads to 
substantial performance loss, as can be seen in Fig. 5. For 
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non-return indirect jumps, the software-based prediction 
technique is almost as good as the dynamically trained 
BTB. However, returns are a totally different story. Com-
pared to a RAS, a BTB and the software prediction tech-
nique result in 34% and 25% more mispredictions, respec-
tively. Interestingly, the BTB performance is actually 
lower than the quasi-static software prediction 

A specialized RAS mechanism that contains an address 
pair, consisting of a return address SPC and its corre-
sponding TPC is shown in Fig. 6. When a return instruc-
tion is fetched, the next fetch address is predicted with the 
popped TPC. The SPC part of the pair flows down the 
pipeline with the return instruction and is compared to the 
register value. If the two values do not match, a RAS mis-
prediction is detected and fetch needs to be redirected. If a 

JTLT is also used, it can be relied upon to provide the cor-
rect target TPC. Otherwise, fetch redirection is accom-
plished by a branch to the dispatch code. Note that the se-
mantics of this return instruction are slightly different from 
the conventional definition – a conventional return always 
jumps to the target. Here, if the return prediction is not 
correct, the next sequential instruction is executed (or the 
JTLT sets the next TPC if used and is hit).  

With this specialized RAS, a return is not converted to 
the compare-and-branch sequence. The dual address RAS 
improves the prediction rate for returns and removes many 
extra instructions that would have been generated for a 
single return instruction, like the JTLT does. 

There are two ways to push a pair of addresses onto the 
dual address RAS. The first option is to use a special push-
dual-address-RAS instruction that pushes both return ad-
dresses. Finding the return target SPC at superblock con-
struction time is simple. If the corresponding TPC is not 
found at superblock construction time, an invalid address 
is written in the TPC field. Later when the return target 
superblock is constructed, the invalid address is replaced 
with a valid TPC. 

Another way to form a return address pair is to consult 
the JTLT when the original return SPC is pushed. With the 
JTLT, the return address TPC does not need to be embed-
ded as in the push-dual-address-RAS instruction. When an 
instruction that saves a return address is encountered, the 
JTLT is searched for a matching TPC. If a match is found, 
a pair of return addresses are formed and pushed onto the 
dual-address RAS. Note that a conventional load-
immediate instruction pair that saves a return SPC can not 
be used in this case. Typically, a load-immediate instruc-
tion does not contain a hint to push the RAS. Instead, a 
special save-return-address instruction that contains only 
the SPC can be used. 

In any case, the dual-address RAS should be 
pushed/popped for all procedure calls and returns – some-
times even with an invalid TPC to maintain correct predic-
tion order. 
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Figure 5. Indirect jump target address 
prediction rates 
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The dual-address RAS can be thought as a hardware 
implementation of the shadow stack mechanism in FX!32 
[18]. Similar mechanism was first proposed in [14], then in 
[24]. In this paper, we provide an alternative return address 
pair construction method utilizing JTLT. 

 
2.4 Summary of special instructions and indirect 

jump chaining methods 
 
Table 1 summarizes the special instructions introduced 

so far. It should be noted that a code cache system can ju-
diciously choose a subset, based on performance require-
ments, implementation constraints and hardware budget. 

Table 2 summarizes the register-indirect chaining meth-
ods that we evaluate. Each is named via a pair of terms 
separated by a period; these are the prediction method for 
non-return jumps and for returns, respectively. For 
example, in the sw_pred.ras method, software prediction 
is used for non-return jumps and the dual-address RAS is 
used for returns. 

 
3. Evaluation methodology 

 
3.1 Isolating code cache effects 

 
We are primarily interested in the analysis and reduc-

tion of code cache chaining overhead, whether used in a 
translation or optimization-only implementation, so we 

would like to “ filter out”  the effects of binary optimization 
and instruction set translation. Therefore, we evaluate the 
proposed methods by using the “ identity translation”  
where we map the Alpha ISA onto itself and perform no 
optimizations (other than superblock formation). Of 
course, the methods proposed and studied in this paper can 
be applied to systems that dynamically optimize, translate, 
or both. 

It should be noted that a code caching system without 
any optimization techniques (other than automatic code re-
layout) is in itself an important design point when strict, 
bug-for-bug binary compatibility is required. 

 
3.2 Simulation environment 

 
Our aim is to evaluate performance impact of the vari-

ous chaining mechanisms, including specialized hardware 
support. To do this, we have written a code caching system 
in C and integrated it with a timing simulator. The simu-
lated code cache system performs all interpretation and 
superblock construction in the same sequence as in actual 
implementation. The timing simulator part of the simula-
tion system is based on the SimpleScalar 3.0C toolset [6] 
and is heavily modified to closely model modern processor 
pipeline designs. The same timing simulator without the 
code caching facility is also used as a baseline for com-
parisons. This baseline configuration is referred to as 
original.  

Table 1. Special instructions to reduce indirect chaining overhead 

categories Instruction Description 

Save-return-
address 

Save the immediate value (return target SPC) to a register. Also give a hint to the prediction hard-
ware to form a pair of return addresses using JTLT and push it onto the dual-address RAS. Load long 

immediate 
to register Push-dual-

address-RAS 

Contain two immediate values. Save the first immediate value (return target SPC) into a register. 
Give a hint to the prediction hardware to push both the first and the second (return target TPC) im-
mediate values onto the dual-address RAS. 

Predicted-
indirect-jump 

Conditionally jump using a register (contains jump target SPC). If there is a JTLT miss, do not 
jump; the next sequential instruction, an unconditional branch, will branch to the dispatch code. Conditional 

indirect 
jump Predicted-

return 

Conditionally jump using a register (contains return target SPC). Give a hint to the prediction hard-
ware to pop the return target TPC from the dual-address RAS. If the RAS prediction is incorrect, 
either (a) do not jump or (b) jump to the target TPC from the JTLT if the optional JTLT is used. 

 
Table 2. Summary of indirect jump chaining methods 

Description Indirect jump 
chaining method Dispatch code? Return prediction mechanism Related figures 

No_pred.no_pred Always BTB (an indirect jump in dispatch code) Fig. 3a 

Sw_pred.sw_pred When SW prediction failed 
BTB (a conditional branch plus an indirect 
jump in dispatch code) 

Fig. 3b/c 

Sw_pred.ras 
When SW prediction failed (non-return jumps) 
When RAS prediction failed (returns) 

RAS Fig. 3b, Fig. 6 

Jtlt.jtlt When JTLT missed BTB Fig. 4 

Jtlt.ras When JTLT missed RAS Fig. 4, Fig. 6 
 



When program control flow reaches an existing super-
block in the code cache, the simulator begins detailed tim-
ing simulation. Here the timing simulation starts with an 
initially empty pipeline. Similarly if an exit condition from 
the code cache is met (i.e., a superblock exit instruction’s 
target is not currently cached in the code cache), the mode 
is changed to interpretation after the last instruction in the 
pipeline is committed. Overall performance is then meas-
ured as source instructions per cycle (IPC) for execution of 
all cached (and chained) instructions.  

To collect statistics, we use the SPEC CPU2000 integer 
benchmarks compiled for the Alpha EV6 ISA at the base 
optimization level (–ar ch ev6 –non_shar ed –
f ast ). Note that the –f ast  option includes aggressive 
instruction scheduling, procedure inlining, and loop unroll-
ing. The compiler flags are the same as those reported for 
Compaq AlphaServer ES40 SPEC CPU2000 submission 
results. DEC C++ V.6.1-027 (for 252.eon) and C V.5.9-
005 (for the rest) compilers were used on Digital UNIX 
4.0-1229. The t est  input set was used for all benchmarks 
except for 253.perlbmk, where one of the t r ai n input set 
( - I . / l i b di f f mai l . pl  2 550 15 24 23 100) 
was used. All benchmarks were run to completion or 4.3 
billion instructions.  

NOPs defined in the Alpha ISA are properly recognized 
and removed when superblocks are formed. NOPs are usu-
ally generated by the compiler to align control-transfer 
target addresses to I-cache line boundaries. In original, 
NOPs are removed by the hardware in the decoding stage. 
We show the performance impact of removing NOPs in 

superblocks in section 4.3. 
Our superblock formation algorithm is a slightly modi-

fied version of Dynamo’s Most Recently Executed Tail 
(MRET) heuristic [2]. Unlike Dynamo, we stop construct-
ing a superblock when an indirect jump is encountered. We 
use a maximum superblock size of 200 instructions and a 
tail execution counter threshold of 50. 

 
3.3 Simulated processor  pipeline 

 

For the purposes of control transfers, an eight-stage out-
of-order superscalar processor pipeline simulator is used 
(additional pipeline stages for the non-control transfer in-
structions are not shown). The pipeline is shown in Fig. 7. 
Instruction fetch takes two cycles – one cycle for accessing 
the I-cache SRAM array and another cycle for shift and 
mask operation to select valid fetch target instructions. 
Control transfer information such as branch/jump types 
and their locations within an I-cache line is pre-decoded 
and stored in the I-cache array when the cache line is 

  
Fetch Align Decode Rename Dispatch Issue 

Write-
back Execute 

Taken branch/jump (single-
cycle address prediction) 

Taken branch/jump (two-cycle address 
prediction) � one cycle fetch bubble 

Direct branch target address misprediction �  
two-cycle fetch bubble plus fetch redirection delay 

Conditional branch (direction) 
misprediction or indirect jump target 
address misprediction: “deep pipeline 
flushes”  � minimum six-cycle fetch 
bubble plus fetch redirection delay  

Figure 7. Simulated pipeline showing 
misprediction penalties 

Table 3. Simulated microarchitecture parameters 

 4-way issue microarchitecture 8-way issue microarchitecture 

Branch prediction 
16K-entry, 12-bit global history g-share branch predictor; 16-entry RAS; 2K-entry, 4-way set associative 
BTB; 256-entry fully associative, LRU-replacement JTLT (if used) 

Branch predictor 
bandwidth 

Up to 1 prediction per cycle Up to 2 predictions per cycle 

32-KB size, direct-mapped, 2-cycle hit latency 
L1 I-cache 

64-byte line size 128-byte line size 

Fetch bandwidth 

Maximum 4 instructions per cycle; 
Fetch continues after the first predicted not-taken 
conditional branch; 
Fetch stops if a second branch is found 

Maximum 8 instructions per cycle; 
Fetch continues after the first and second predicted not-
taken conditional branches; 
Fetch stops if a third branch is found 

L1 D-cache 32-KB size, 4-way set-associative, random replacement, 64-byte line size, 2-cycle hit latency 

Unified L2 cache 1-MB size, 4-way set-associative, random replacement, 128-byte line size, 8-cycle hit latency 

Memory 128-cycle latency, 64-bit wide, 4-cycle burst 
Decode/issue/ 
retire bandwidth 

4  8  

Issue window size 64 128 

Execution re-
sources 

4 integer units, 2 L1 D-cache ports, 2 floating-
point adders, 2 floating-point multipliers 

8 integer units, 4 L1 D-cache ports, 4 floating-point ad-
ders, 4 floating-point multipliers 

Reorder buffer size 128  256  

 



brought into the I-cache. All branch prediction mecha-
nisms, i.e., branch (direction) predictor, BTB, and RAS 
can be configured as either single-cycle or two-cycle. This 
is to model the effect of multi-cycle branch prediction 
mechanisms [20] found in current pipelined processors. 
For example, the IBM POWER4 [33] and AMD Opteron 
[23] have such multi-cycle predictors which create fetch 
bubble(s) even for correctly predicted taken branches. Re-
garding predicted directions of conditional branches, when 
there is a disagreement between branch predictor and BTB 
for a conditional branch, the branch prediction overrides 
the BTB prediction. 

For machine resources, we use two sets of microarchi-
tecture parameters (Table 3). The first set models a moder-
ate-width processor, similar to current generation designs. 
The second set models a relatively aggressive processor. 
All evaluations are done with the 4-way issue microarchi-
tecture, except where noted. 

 
4. Performance results 

 
We first consider characteristics of cached code (Table 

4). From the 3rd column of the table, it is apparent that all 
benchmark programs almost always execute within the 
code cache – even for these very short (in real terms) 
benchmark runs. On the other hand, the total static code 
cache size in the 5th column indicates that the code work-
ing set sizes of the benchmark programs, with possible 
exception of 176.gcc, are fairly small. Of primary interest 
in this data is the average number of instructions between 
taken control transfer instructions in the last column. On 
average, dynamic superblock caching achieves about a 
two-fold increase compared to original program execution. 

Another important statistic is the number of extra in-
structions generated by indirect chaining methods. Fig. 8 
shows the dynamic instruction count expansion rates when 
the dispatch code consumes 20 instructions. It is obvious 
that without any register-indirect jump chaining support, as 
in the no_pred.no_pred method, program performance will 
be unacceptable as 35% more instructions have to be exe-
cuted. Conventional software prediction in 
sw_pred.sw_pred method cuts the number to about 16% by 
executing only the relatively short compare-and-branch 
code when the prediction is correct (Both shared and 
threaded versions result in the same instruction count ex-
pansion). Providing a dual-address RAS reduces another 
10.6% of the total instructions. This is not only because 
return instructions now seldom reach the dispatch code, 
but also because the compare-and-branch code is not gen-
erated for a source return instruction. Similarly, JTLT re-
moves almost all extra instructions for all jumps. 

 

Table 4. General superblock characteristics 

Average number of instructions between 
taken control transfer instructions Benchmark 

No. of dy-
namic 
source in-
structions 

% of instruc-
tions exe-
cuted in 
code cache 

No. of 
static 
super-
blocks 

Total cached 
 code size 
(bytes) 

Superblock 
completion 
rate 

original code cache 

164.gzip 3.50 billion 0.9999 366 53,188 0.76 13.6 27.3 
175.vpr 1.54 billion 0.9996 467 74,284 0.58 13.7 28.2 
176.gcc 1.89 billion 0.9938 11,599 1,877,468 0.73 9.7 19.1 
181.mcf 259 million 0.9989 214 23,472 0.70 8.7 10.1 
186.crafty 4.18 billion 0.9995 1,665 336,164 0.55 12.7 30.0 
197.parser 4.07 billion 0.9996 2,441 335,948 0.77 8.1 13.9 
252.eon 95 million 0.9899 633 79,756 0.88 14.3 23.6 
253.perlbmk 4.29 billion 0.9998 426 356,164 0.91 10.4 18.8 
254.gap 1.2 billion 0.9978 2,630 411,768 0.80 9.9 19.2 

255.vortex 4.29 billion 0.9991 2,547 707,212 0.91 10.7 36.3 
256.bzip2 4.29 billion 0.9999 235 27,100 0.96 14.0 20.1 
300.twolf 253 million 0.9946 873 127,940 0.61 14.5 23.2 

Average  0.9977   0.76 11.7 22.5 
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Figure 8. Dynamic instruction count expansion 



4.1 Branch prediction performance 
 
Chaining has a significant effect on a program’s branch 

prediction characteristics because it can add extra control-
transfer instructions or can even remove some source con-
trol transfer instructions (i.e., unconditional direct branches 
inside a superblock). For direct conditional branches, 
chaining does not change prediction performance signifi-
cantly. Nonetheless, a lower number of taken branches and 
inlined unconditional branches tend to reduce pressure on 
the branch prediction hardware. On the other hand, chain-
ing of register-indirect jumps does have a large effect on 
branch prediction performance, and each scheme exhibits 
different branch prediction characteristics. Fig. 9 shows 
detailed breakdown of all control transfer mispredictions 
that are resolved after the instruction is executed.  

First, note that the performance impact of register-
indirect jump mispredictions was not very significant in 
the original program execution. However their effect is 
exacerbated in a code cache system. The conventional 
chaining method, sw_pred.sw_pred, experiences 46% 
more mispredictions than original. This increase is mostly 
due to the mispredictions of the indirect jump in the shared 

dispatch code. A threaded version, sw_pred.sw_pred 
(threaded) reduces this type of mispredictions by 44% 
thanks to the private dispatch code. However it still gener-
ates 23% more mispredictions than original. Introducing 
the dual-address RAS further reduces the indirect jump 
misprediction to the level of original. 

The JTLT also reduces mispredictions by cutting the 
dispatch code execution frequency. However, j t l t . j t l t  still 
has 24% more mispredictions than the original program 
execution. This is about the same as the best software-
based method, sw_pred.sw_pred (threaded). This may 
seem surprising at first but it does make sense considering 
the prediction performance in Fig. 5.  

The best method, jtlt.ras, has 5.6% fewer overall mis-
predictions than original due to a reduction in conditional 
branch mispredictions. This is possible because fewer 
taken branches reduce negative interference in the branch 
predictor pattern history table [28]. 

It should be pointed out that branch prediction perform-
ance comes close to the original program only after intro-
ducing the dual-address RAS. Interestingly, sw_pred.ras 
produces fewer mispredictions than jtlt.jtlt, the hardware-
intensive technique. 
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Figure 9. Classification of control transfer mispredictions 



4.2 I -cache performance 
 
Another important program characteristic that can be 

affected by the chaining method is I-cache performance. 
Fig. 10 shows that, in general, superblock-based code 
caching helps reduce I-cache misses, except for the 
threaded variation which suffers more I-cache misses due 
to the replicated dispatch code. That is, improved I-cache 
locality by superblock caching works to offset increased I-
cache pressure from chaining (as is implied by the dy-
namic instruction count increase). 

Of special interest is the dramatic miss reduction in 
164.gzip. Here, code re-layout eliminates cache thrashing. 
Although this is a valid optimization, it is probably limited 
to direct-mapped caches. If 164.gzip is omitted, the best 
methods that use JTLT show a 6.3% I-cache miss reduc-
tion. (24.3% if 164.gzip is included). 

 
4.3 IPC performance 

 
Fig. 11 shows overall performance in terms of the 

original source IPC. The results show that the conventional 
indirect jump method that relies on software prediction 
(sw_pred.sw_pred) performs poorly, resulting in 14.6% 
IPC loss. Here, improved fetch bandwidth is offset by the 
chaining overhead, mostly due to increased branch mispre-
dictions and extra instructions. Interestingly, this result 
contradicts previous results reported in [2] where a 6% 
speedup is reported just through superblock code caching. 

We believe the following factors contribute to the differ-
ence in results: 
• Efficiency of hardware prediction mechanisms: the 

PA-8000 processor, used in [2], does not predict indi-
rect jumps and always stalls fetch until the target ad-
dress is resolved [16]. Hence, converting a register-
indirect jump to the software prediction compare-and-
branch code greatly reduces fetch stall cycles in the 
PA-8000. In contrast, our simulation model predicts 
jump target with a BTB and does not stall fetch, so a 
similar benefit is not realized. This is confirmed by 
[4]: where the Dynamo system was ported to a Pen-
tium II platform (which does predict indirect jump tar-
gets with a BTB), resulting in substantial slowdowns 
due to indirect jumps – even worse than we report 
here. 

• Differences in the superblock formation algorithm: we 
stop constructing a superblock whenever an indirect 
jump is encountered. Hence some straight-line fetch 
optimization opportunities are not exploited. 

Returning to Fig. 11, a threaded version, 
sw_pred.sw_pred (threaded), performs 3.2% better than 
the conventional sw_pred.sw_pred, showing that indirect 
jump prediction performance improvements more than 
offset any losses in I-cache performance when replicated 
dispatch code is used. Even this best performing software-
only method still lags original program performance by 
11.4%. 

It is only after specialized hardware mechanisms are in-
troduced that the identity-translation code cache system 
outperforms original program execution. Referring to 
j t l t . j t l t , the introduction of the JTLT greatly enhances 
performance both by suppressing extra instructions and in 
improving predictor performance. As a result, j t l t . j t l t  
achieves a 4.6% performance improvement over original. 

However, even more important is the effect of the dual-
address RAS. This is evident in the sw_pred.ras method; 
2.1% IPC improvement is achieved without requiring any 
extra on-chip storage as in the JTLT. This is a 15.4% im-
provement over the best performing software-only method 
(and a 19.6% improvement over the conventional method, 
sw_pred.sw_pred). Finally, combining both the JTLT and 
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Figure 10. Number of I-cache misses 
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Figure 11. IPC comparisons 



dual-address RAS (j t l t . ras ) results in a 7.7% IPC im-
provement over original.  

Next we consider the effect of Alpha NOP removal in 
superblocks. The benefit can be seen by looking at the per-
formance of jtlt.ras (retain NOPs). If not removed, these 
NOPs put more pressure than necessary on the fetch 
mechanism and reduce effective fetch bandwidth. The re-
sults show that 1.5% of the total 7.7% IPC improvement 
comes from NOP removal in superblocks. 

Fig. 12a shows the IPC performance improvement 
(jtlt.ras IPC over original program IPC) when the effect of 
two-cycle predictors is accounted for. Here, both suffer 
from fetch bubbles generated by taken branches and 
jumps. However, the reduced number of taken branches in 
jtlt.ras allows it to tolerate the predictor latencies better. On 
average, jtlt.ras performs better than original by 12.8%. 

Finally the effect of larger maximum fetch bandwidth 
that would be necessary to support a rather aggressive 8-
way issue processor is shown in Fig. 12b. Here, predictor 
latencies are set at two-cycles. The results show that su-
perblock caching scales better with increased I-cache line 
size and branch prediction bandwidth. On average, relative 
IPC improvement of jtlt.ras over original is 18.8%. 

 

5. Conclusions 
 
In this paper, we studied in detail variety of code cache 

chaining techniques including several specialized architec-
ture support mechanisms. We identify the lack of accurate 
return prediction as the biggest performance limiter in code 
caching systems. We showed that the dual-address return 
address stack is a cost-effective solution to enhance the 
performance of a code caching system. The jump target-
address lookup table – a hardware cache of the dispatch 
table – also helps to further reduce the chaining overhead. 
Other aspects of chaining were also enhanced; a dynamic 
threaded code technique was applied to improve the soft-
ware-based jump prediction method. 

In summary, the techniques studied in this paper can be 
used in many code caching systems. For co-designed vir-
tual machine systems, the full set of specialized hardware 
mechanisms can be used. Other systems can judiciously 
select the most cost-effective mechanisms. Even the 
strictly software-based code cache systems can benefit 
from the dynamic threaded code technique.  

As the importance of dynamic optimization and binary 
translation grows, we believe the mechanisms studied in 
this paper will provide a high performance base framework 
to develop further optimizations. 

 
6. Acknowledgements 

 
This work is being supported by SRC grant 2001-HJ-

902, NSF grants EIA-0071924 and CCR-0311361, Intel 
and IBM. 

 
7. References 

 
[1] Erik R. Altman, Michael Gschwind, Sumedh Sathaye, S. 

Kosonocky, Arthur Bright, Jason Fritts, Paul Ledak, David 
Appenzeller, Craig Agricola, Zachary Filan, “BOA: The Ar-
chitecture of a Binary Translation Processor,”  IBM Research 
Report RC21665, Dec. 2000. 

[2] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia, “Dy-
namo: A Transparent Dynamic Optimization System,”  Conf. 
Programming Language Design and Implementation, pp. 1-
12, Jun. 2000. 

[3] Marc Berndl, Laurie Hendren, “Dynamic Profiling and 
Trace Cache Generation,”  Int. Symp. Code Generation and 
Optimization, pp. 276-285, Mar. 2003. 

[4] Derek Bruening, Evelyn Duesterwald, Saman Amarasinghe, 
“Design and Implementation of a Dynamic Optimization 
Framework for Windows,”  The 4th Workshop on Feedback-
Directed and Dynamic Optimization, Dec. 2001. 

[5] Derek Bruening, Timothy Garnett, Saman Amarasinghe, 
“An Infrastructure for Adaptive Dynamic Optimization,”  Int. 
Symp. Code Generation and Optimization, pp. 265-275, 
Mar. 2003. 

  

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

H
.m

ea
n

IP
C

original jtlt.ras

 
(a) 4-way issue, two-cycle prediction latency        

 

  

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

H
.m

ea
n

IP
C

original jtlt.ras

 
(b) 8-way issue, two-cycle prediction latency 

Figure 12. Effects of machine parameters 



[6] Douglas C. Burger, Todd M. Austin, “The SimpleScalar 
Toolset, Version 2.0”  Technical Report CS-TR-97-1342, 
University of Wisconsin—Madison, Jun. 1997. 

[7] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, David M. 
Gillies, “Mojo: A Dynamic Optimization System,”  The 3rd 
Workshop on Feedback-Directed and Dynamic Optimiza-
tion, Dec. 2000. 

[8] Dean Deaver, Rick Gorton, Norman Rubin, “Wig-
gins/Redstone: An Online Program Specializer,”  The 11th 
HotChips Symposim, Jun. 1999. 

[9] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, 
Paolo Faraboschi, Joseph A. Fisher, “DELI: A New Run-
Time Control Point,”   The 35th Int. Symp. Microarchitecture, 
pp. 257-268, Dec. 2002. 

[10] Kemal Ebcioglu, Erik R. Altman, Michael Gschwind, Sum-
edh Sathaye, “Dynamic Binary Translation and Optimiza-
tion,”  IEEE Trans. Computers, Vol. 50, No. 6, pp. 529-548, 
Jun. 2001. 

[11] M. Anton Ertl, David Gregg, “The Behavior of Efficient 
Virtual Machine Interpreters on Modern Architectures,”   Eu-
rop. Conf. Parallel Computing, pp. 403-412, Aug. 2001. 

[12] Brian Fahs, Satarupa Bose, Matthew Crum, Brian Slechta, 
Francesco Spadini, Tony Tung, Sanjay J. Patel, Steven S. 
Lumetta, “Performance Characterization of a Hardware 
Mechanism for Dynamic Optimization,”  The 34th Int. Symp. 
Microarchitecture, pp. 16-27, Dec. 2001. 

[13] Michael Gschwind, “Method and Apparatus for Determining 
Branch Addresses in Programs Generated by Binary Trans-
lation, IBM Disclosures YOR819980334, Jul. 1998. 

[14] Michael Gschwind, “Method and Apparatus for Rapid Re-
turn Address Computation in Binary Translation,”  IBM Dis-
closures YOR819980410, Sep. 1998. 

[15] Tom R. Halfhill, “Transmeta Breaks x86 Low-Power Bar-
rier,”  Microprocessor Report, Feb. 14, 2000.  

[16] Hewlett Packard Co., “PA-RISC 8x00 Family of Microproc-
essors with Focus on PA-8700,” 
www.cpus.hp.com/technical_references/PA-8700wp.pdf. 

[17] Glenn Hinton, Dave Sager, Mike Upton, Darrel Boggs, 
Doug Carmean, Alan Kyker, Patrice Roussel, “The Microar-
chitecture of the Pentium 4 Processor,”  Intel Technology 
Journal Q1, 2001. 

[18] Raymond J. Hookway, Mark A. Herdeg, “Digital FX!32: 
Combining Emulation and Binary Translation,”  Digital 
Technical Journal, Vol. 9, No. 1, pp. 3-12, Jan. 1997. 

[19] Wen-mei W. Hwu, Scott A. Mahlke, William Y. Chen, Po-
hua P. Chang, Nancy J. Warter, Roger A. Bringmann, Ro-
land G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant 
E. Haab, John G. Holm, Daniel M. Lavery, “The Super-
block: An Effective Technique for VLIW and Superscalar 
Compilation,”  The Journal of Supercomputing, Kluwer 
Academic Publishing, pp. 229-248, 1993. 

[20] Daniel A. Jimenez, Stephen W. Keckler, Calvin Lin, “The 
Impact of Delay on the Design of Branch Predictors,”   The 
33rd Int. Symp. Microarchitecture, pp. 67-76, Dec. 2000. 

[21] David Kaeli, P. G. Emma, “Branch History Table Prediction 
of Moving Target Branches Due to Subroutine Returns,”   
The 18th Int. Symp. Computer Architecture, pp. 34-42, Jun. 
1991. 

[22] Edmund J. Kelly, Robert F. Cmelik, Malcolm J. Wing, 
“Memory Controller for a Microprocessor for Detecting a 

Failure of Speculation on the Physical Nature of a Compo-
nent Being Addressed,”  US Patent 5,832,205, Nov. 1998. 

[23] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, 
Pat Conway, “The AMD Opteron Processor for Multiproc-
essor Servers,”  IEEE Micro, Vol. 23, No. 2, pp. 66-76, 
Mar/Apr 2003. 

[24] Ho-Seop Kim, James E. Smith, “Dynamic Binary Transla-
tion for Accumulator-Oriented Architectures,”   Int. Symp. 
Code Generation and Optimization, pp. 25-35, Mar. 2003. 

[25] Bich C. Le, “An Out-of-Order Execution Technique for 
Runtime Binary Translators,”   The 8th Int. Conf. Architec-
tural Support for Programming Languages and Operating 
Systems, pp. 151-158, Oct. 1998. 

[26] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. 
Karzes, W. D. Lichtenstein, Robert P. Nix, John S. 
O’Donnell, John C. Ruttenberg, “The Multiflow Trace 
Scheduling Compiler,”  The Journal of Supercomputing, 
Kluwer Academic Publishing, pp.51-142, 1993. 

[27] Matthew C. Merten, Andrew R. Trick, Erik M. Nystrom, 
Ronald D. Barnes, Wen-mei W. Hwu, “A Hardware Mecha-
nism for Dynamic Extraction and Relayout of Program Hot-
spots,”   The 27th Int. Symp. Computer Architecture, pp. 59-
70, Jun. 2000. 

[28] Alex Ramirez, Josep L. Larriba-Pey, Matero Valero, “The 
Effect of Code Reordering on Branch Prediction,”   The 9th 
Int. Conf. Parallel Architectures and Compilation Tech-
niques, pp. 189-198, Oct. 2000. 

[29] Eric Rotenberg, Steve Bennett, James E. Smith, “Trace 
Cache: A Low Latency Approach to High Bandwidth In-
struction Fetching,”   The 29th Int. Symp. Microarchitecture, 
pp.24-34, Dec 1996. 

[30] Kevin Scott, N. Kumar, S. Velusamy, B. Childers, J. W. 
Davidson, M L. Soffa,  Int. Symp. Code Generation and Op-
timization, “Retargetable and Reconfigurable Software Dy-
namic Translation,”  pp. 36-47, Mar. 2003. 

[31] Gabriel M. Silberman, Kemal Ebcioglu, “An Architectural 
Framework for Supporting Heterogeneous Instruction-Set 
Architectures,”  IEEE Computer, Vol. 26, No. 6, pp. 39-56, 
1993. 

[32] Sun Microsystems, “UltraSPARC IIIi Processor,”  
www.sun.com/processors/UltraSPARC-
IIIi/us3i_datasheet.pdf, 2003. 

[33] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, 
Balaram Sinharoy, “POWER4 System Microarchitecture,”  
IBM Journal of Research and Development, Vol. 46, No. 1, 
pp. 5-26, Jan. 2002. 

[34] David Ung, Cristina Cifuentes, “Optimizing Hot Paths in a 
Dynamic Binary Translator,”   The 2nd Workshop on Binary 
Translation, Oct. 2000. 

[35] John Whaley, “Partial Method Compilation using Dynamic 
Profile Information,”   Int. Conf. Object-Oriented Program-
ming, Systems, Languages & Applications, pp.166-179, 
2001. 

[36] Emmett Witchel, Mendel Rosenblum, “Embra: Fast and 
Flexible Machine Simulation,”   The Conf. Measurement and 
Modeling of Computer Systems, pp. 68-78, May 1996. 

[37] Cindy Zheng, Carol Thompson, “PA-RISC to IA-64: Trans-
parent Execution, No Recompilation,”  IEEE Computer, Vol. 
33, No. 3, pp. 47-53, Mar. 2000. 


