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Abstract 

An instruction set architecture (ISA) suitable for future 
microprocessor design constraints is proposed. The ISA 
has hierarchical register files with a small number of ac-
cumulators at the top. The instruction stream is divided 
into chains of dependent instructions (strands) where in-
tra-strand dependences are passed through the accumula-
tor. The general-purpose register file is used for commu-
nication between strands and for holding global values 
that have many consumers.  

A microarchitecture to support the proposed ISA is 
proposed and evaluated. The microarchitecture consists 
of multiple, distributed processing elements. Each PE 
contains an instruction issue FIFO, a local register (ac-
cumulator) and local copy of register file. The overall 
simplicity, hierarchical value communication, and dis-
tributed implementation will provide a very high clock 
speed and a relatively short pipeline while maintaining a 
form of superscalar out-of-order execution.  

Detailed timing simulations using translated program 
traces show the proposed microarchitecture is tolerant of 
global wire latencies. Ignoring the significant clock fre-
quency advantages, a microarchitecture that supports a 
4-wide fetch/decode pipeline, 8 serial PEs, and a two-
cycle inter-PE communication latency performs as well as 
a conventional 4-way out-of-order superscalar processor. 

 
 

1 Introduction 

During the past two decades, researchers and processor 
developers have achieved significant performance gains 
by finding and exploiting instruction level parallelism 
(ILP). Today, however, trends in technology, pipeline 
design principles, and applications all point toward archi-
tectures that rely less on increasing ILP and more on sim-
pler, modular designs with distributed processing at the 
instruction level, i.e. instruction level distributed process-
ing (ILDP) [25]. Technology trends point to increasing 
emphasis on on-chip interconnects and better power effi-
ciency. Microarchitects are pushing toward pipelined de-
signs with fewer logic levels per clock cycle (exacerbat-

ing interconnect delay problems and reducing sizes of 
single-cycle RAM) [1, 15]. Finally, design complexity has 
become a critical issue. In the RISC heyday of the mid-
80s, the objective was a new processor design every two 
years; now it takes from four to six. 

To study the full potential of future ILDP architec-
tures, we are considering new instruction sets that are 
suitable for highly distributed microarchitectures. The 
goal is to avoid the encumbrances of instruction sets de-
signed in a different era and with different constraints. 
This will enable us to study, in their simplest form, mi-
croarchitectures that are highly tolerant of interconnect 
delays, use a relatively small number of fast (high power) 
transistors, and support both very high clock frequencies 
and short pipelines. The resulting fast, lightweight proces-
sors will be ideal for chip multiprocessors supporting high 
throughput server applications [3] and for general-purpose 
processor cores that can drive highly integrated systems 
supporting various consumer applications. 

The overall microarchitecture we propose consists of 
pipelined instruction fetch, decode, and rename stages of 
modest width that feed a number of distributed processing 
elements, each of which performs sequential in-order in-
struction processing. The instruction set exposes instruc-
tion dependences and local value communication patterns 
to the microarchitecture, which uses this information to 
steer chains of dependent instructions (strands) to the 
sequential processing elements. Dependent instructions 
executed within the same processing element have mini-
mum communication delay as the results of one instruc-
tion are passed to the next through an accumulator. Taken 
collectively, the multiple sequential processing elements 
implement multi-issue out-of-order execution. 

For applications where binary compatibility may not 
be a major issue (e.g. in some embedded systems), a new 
instruction set may be used directly in its native form. 
However, for general-purpose applications, a requirement 
of binary compatibility is a practical reality that must be 
dealt with. For general purpose applications there are two 
possibilities, both involve binary translation. One method 
is to perform on-the-fly hardware translation similar to the 
methods used today by Intel and AMD when they convert 
x86 binaries to micro-operations. Such a translation re-



quires somewhat higher-level analysis than simple in-
struction mapping, however.  Hence, the second method 
relies on virtual machine software, co-designed with the 
hardware and hidden from conventional software. This 
software can map existing binaries to the new ILDP in-
struction set in a manner similar in concept to the method 
used by the Transmeta Crusoe processor [19] and the 
IBM DAISY project [10]. A very important difference is 
that here the binary translation does not require the com-
plex optimizations and scheduling that are used for VLIW 
implementations. Rather, the hardware we propose will be 
capable of dynamic instruction scheduling, so translation 
will involve a straightforward mapping of instructions. 
Consequently, the emphasis during translation is on iden-
tifying instruction inter-dependences and on making reg-
ister assignments that reduce intra-processor communica-
tion. Binary translation can be performed either by a spe-
cial co-processor [6] or by the main processor, itself. 

 
2 Instruction Set and Microarchitecture 

We begin with a brief description of the ILDP instruc-
tion set we propose. Following that is a description of the 
proposed microarchitecture. Then we discuss the specific 
features of both. 

 
2.1 Instruction set overview 

The proposed ISA uses a hierarchical register file. It 
has 64 general-purpose registers (GPRs) and 8 accumula-
tors. We refer to the GPRs as registers R0-R63, and the 
accumulators as A0-A7. We focus here on the integer 
instruction set. Floating point instructions would likely 
use additional floating point accumulators, but would 
share the GPRs. 

In any instruction, a GPR is either the source or desti-
nation, but not both; this is intended to simplify the re-
naming process. In addition, when an accumulator is used 
for the last time, i.e. becomes dead, this is specified in the 
instruction’s opcode (possibly via a reserved opcode bit). 

The instruction formats are given in Fig. 1. Instructions 
may be either 16 bits (one parcel) or 32 bits (two parcels).  

 
2.1.1 Load/Store instructions 

The memory access instructions load or store an accu-
mulator value from/to memory. These instructions may 
only specify one GPR and one accumulator (as with all 
instructions). All load/store instructions are one parcel 
and do not perform an effective address addition. 

 
Ai <- mem(Ai) 
Ai <- mem(Rj) 
mem(Ai) <- Rj 
mem(Rj) <- Ai   
 

2.1.2 Register instructions 
The register instructions typically perform an operation 

on the accumulator and either a GPR or an immediate 
value, and the result is placed back in the accumulator. 
However, some instructions place the result into a GPR. 
Typical register instructions follow. 

 
Ai <- Ai op Rj 
Ai <- Ai op immed 
Ai <- Rj op immed 
Rj <- Ai 
Rj <- Ai op immed 
 

2.1.3 Branch/Jump instructions 
The conditional branch instructions compare the ac-

cumulator with zero or the contents of a GPR. All the 
usual predicates (>, <, >=, <=, ==, != ) can be used. 
Branch targets are program counter (P) relative. The indi-
rect jump is through either the accumulator or a GPR. For 
jump and link, the return address is always stored to a 
GPR. 

 
P <- P + immed; Ai pred Rj 
P <- P + immed; Ai pred 0 
P <- Ai 
P <- Rj 
P <- Ai; Rj <- P++  
 

2.1.4 Example 
Figure 2 is a sequence of code from SPEC benchmark 

164.gzip, as compiled for the Alpha ISA. It is one of the 
more frequently executed parts of the program. Some 
Alpha instructions map to multiple ILDP instructions. 
However, the total number of bytes for instructions is 
slightly reduced. The Alpha version requires 40 bytes, and 
the ILDP version requires 36 bytes.  

re g is te r fo rm a t

Opcode Ai

7 3

immed

6

s ho rt  imm e d ia te  fo rm a t

Opcode Ai

7 3

Rj

6

immed

16

lo n g im m e dia t e fo rm a t

Opcode Ai

7 3

Rj

6

 
Figure 1. Instruction formats. Instructions are 
either 1 parcel (2 bytes) or 2 parcels (4 bytes). 



2.2 Microarchitecture 

The concept behind the instruction set is that the dy-
namic program dependence graph can be decomposed 
into strands – chains of dependent instructions. Instruc-
tions in each strand are linked via an accumulator. The 
strands communicate with each other through the GPRs.  

The strand per accumulator concept is reflected in the 
microarchitecture. Referring to Fig. 3a, instructions are 
fetched, parceled, renamed, and steered to one of eight 
processing elements. Instructions will be fetched four 
words (16 bytes) at a time. However, in most cases these 
four words contain more than 4 instructions. After I-fetch, 
the remainder of the instruction decode/rename pipeline is 
four instructions wide. Parceling is the process of identi-
fying instruction boundaries and breaking instruction 
words into individual instructions. One simplification we 
are considering is to have instructions start and end on a 
cache line (at least 8 words) boundary. This will avoid 
instruction words spanning cache line (and page) bounda-
ries – an unnecessary complication. The renaming stage 
renames only GPRs. The accumulators are not renamed at 
this stage; they undergo a simpler type of renaming as a 
byproduct of steering to the sequential processing ele-
ments.  

The steering logic directs strands of renamed instruc-
tions to one of eight issue FIFOs, depending on the accu-
mulator to be used. Each FIFO feeds a sequential process-
ing element with its own internal physical accumulator 
(Fig. 3b). Any instruction that has an accumulator as an 
output, but not as an input, is steered to the first empty 
FIFO; consequently, the logical accumulator is renamed 
to the physical accumulator. Any later instruction that 

uses the same accumulator as an input is steered to the 
same FIFO. Whenever all the FIFOs are non-empty and a 
new accumulator is called for, the steering process either 
stalls, or uses a heuristic to choose a FIFO to use next. If a 
FIFO has a “dead” accumulator instruction at its tail, then 
instructions from a new strand can be steered into the 
FIFO. A good heuristic is to use the first such FIFO likely 
to go empty (e.g. the one with the fewest instructions). 

The instructions in a FIFO form a dependence chain, 
and therefore will issue and execute sequentially. The 
instruction at the head of the FIFO passes through the 
GPR pipeline stage, reads its GPR value (if available), 
and moves into the issue register (IR). If the GPR value is 
not available, the instruction waits in the IR until the 
value becomes available. Hence, the IR is like a single 
reservation station with a single data value entry. When 
its GPR value is available, the instruction issues and be-
gins execution. Fig. 3b shows an ALU and an L1 cache as 
functional units; in practice there will also be a shifter, 
and some other units. There is no contention/arbitration 
for any of the replicated functional units. A sequential 
control unit drives the processing element. Note that the 
functional units can be single or multi-cycle, but do not 
require pipelining. Because accumulator values stay 
within the same processing element, they can be bypassed 
without additional delay. However, GPR values produced 
in one PE must be communicated to the others. This will 
take additional clock cycles. The network for communi-
cating GPR values can be a bus, a ring, or point-to-point. 
As will be shown, the bandwidth requirements are very 
modest and performance is relatively insensitive to this 
latency. The PE in the figure has two write ports to the 
GPR file; this will avoid contention between the accumu-

if (n) do { 
 c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8); 
} while (--n);  

a) C source code 
 

Alpha assembly code Equivalent register transfer notation ILDP code 
L1: ldbu t2, 0(a0) L1: R2 <- mem(R0) L1: A0 <- mem(R0) 
    subl a1, 1, a1     R1 <- R1 – 1     A1 <- R1 – 1 
      R1 <- A1 
    lda a0, 1(a0)     R0 <- R0 + 1     A2 <- R0 + 1 
      R0 <- A2 
    xor t0, t2, t2     R2 <- R2 xor R8     A0 <- A0 xor R8 
    srl t0, 8, t0     R8 <- R8 << 8     A3 <- R8 << 8 
      R8 <- A3 
    and t2, 0xff, t2     R2 <- R2 and 0xff     A0 <- A0 and 0xff 
    s8addq t2, v0, t2     R2 <- 8*R2 + R9     A0 <- 8*A0 + R9 
    ldq t2, 0(t2)     R2 <- mem(R2)     A0 <- mem(A0) 
    xor t2, t0, t0     R8 <- R2 xor R8     A0 <- A0 xor R8 
      R8 <- A0 
    bne a1, L1     P <- L1, if (R1 != 0)     P <- L1, if (A1 != 0) 

 
b) Alpha assembly code, equivalent register transfer notation, and corresponding ILDP code 

 
Figure 2. Example program segment from benchmark 164.gzip  



lator path and the GPR interconnection network. How-
ever, an alternate design could arbitrate the two and have 
a single write port. Simulation results in Section 4.3 will 
explore GPR write bandwidth requirements and the im-
portance of inter-PE latency for communicating GPR val-
ues. 

We plan to replicate the (small) low-latency L1 data 
cache and use a replication network to keep the contents 
of all the L1 caches equal (within a 2 clock period win-
dow as values are communicated). The L1 cache is fed 
directly from the issue stage of the PE because the mem-
ory instructions do not perform effective address addi-

tions. Because the PEs are sequential, issue bandwidth 
within a PE is not a critical resource as it is in a conven-
tional superscalar processor, so issuing two instructions 
(in two cycles) for those load/stores that require address 
additions does not pose a performance problem. However, 
it does provide a performance advantage for those loads 
where an effective address addition is not needed (statis-
tics are given in Section 4). Having the memory address 
available at issue time has other advantages; for example, 
store address queue checking can be done as part of the 
issue function, in much the same way as the Cray-1 does 
memory bank conflict checking at issue time [7]. Block-
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a) Block diagram of ILDP processor 
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b) Processing element (ICN stands for interconnection network) 

 
Figure 3. The distributed processor and detail of processing element 



ing on an L1 cache miss can also be done by blocking 
issue of the next instruction. 

Each PE has a copy of the store address queue for 
memory disambiguation (not shown in the figure). Every 
load instruction consults the queue for possible conflicts 
with preceding store instructions. If all previous store 
addresses are known and do not conflict with the load, the 
load instruction is allowed to issue. Store address queue 
entries are allocated prior to the steering stage.  As store 
addresses are computed, the address bits (or, for simplic-
ity, a subset of 8-16 bits) are communicated to the repli-
cated store queues. 

Both GPRs and accumulators need to be rolled back 
when there is an exception or a branch misprediction. A 
conventional reorder buffer-based recovery mechanism 
can be used for GPRs; the GPR rename map is restored to 
the exception/misprediction point. To recover 
accumulators, produced accumulator values are buffered 
by a FIFO inside a PE.  In effect, this is a small history 
buffer. When an instruction retires, the previous older 
value of the instruction’s accumulator is also retired from 
the accumulator value FIFO. Should there be an excep-
tion, the oldest entries in the accumulator value FIFOs (or 
architectural accumulators) are rolled back. Similar to the 
GPR rename map recovery, steering information is also 
rolled back from the reorder buffer. Recovery from a mis-
predicted branch is done similarly. Here accumulator 
steering information can be recovered either from branch 
checkpoints or by sequential roll back from the saved 
information in the reorder buffer entries. 

 
2.3 Discussion 

As stated earlier, we are targeting a microarchitecture 
that will be simple and provide very high performance 
through a combination of a very fast clock and modest 
ILP. Because the clock cycle of an aggressive design de-
pends on the details of every pipeline stage, we prefer not 
to use a few gross aspects of the design (e.g. bypasses, 
issue logic) to verify a quantitative clock cycle estimate.  
We prefer to let the simplicity stand as self-evident and 
defer clock cycle estimates until we have done some de-
tailed, gate-level design. Table 1 compares complexity of 
several of the key functions with a baseline superscalar 
processor (similar to the one we use in Section 4 for per-

formance comparisons). The ILDP microarchitecture 
complexities are given on a per PE basis, because that is 
the complexity that will ultimately determine the clock 
cycle.  

Variable length instructions are aimed at reducing the 
instruction footprint to permit better I-cache performance, 
especially if a small single-cycle L1 I-cache is used. Al-
though it may seem un-RISC-like, variable length instruc-
tions were a hallmark of the original RISCs at Control 
Data and Cray Research. That a RISC should have single-
length instructions has intuitive appeal, but to some extent 
it was a 1980s reaction to the very complex multi-length 
instruction decoding required by the VAX. There is little 
real evidence that having only one instruction size is sig-
nificantly better than having a small number of easily 
decoded sizes. It is entirely possible that the advantages of 
a denser instruction encoding and more efficient I-fetch 
bandwidth may outweigh the disadvantage of having to 
parcel a simple variable-width instruction stream [12]. 
This is not a key part of our research, however, but we 
feel it is worth exploring, and if it appears that a single 
instruction size is the better approach, we can go back to 
all 32-bit instructions with relatively little effort.  

 
3 Strand Formation 

The most important aspect of strand formation is as-
signment of values to GPRs and accumulators, because, in 
effect, these assignments drive strand formation itself. To 
understand the basic idea of accumulator-oriented register 
assignment it is helpful to consider important register 
usage patterns, see Fig. 4.  

We are interested in separating register values that 
have a relatively long lifetime and are used many times 
from those that are used only once or a small number of 
times in close proximity [13]. In general, the former val-
ues should be placed in GPRs and the latter in accumula-
tors. A useful heuristic is to find register values that are 
consumed multiple times by the same static instruction. 
These are defined to be static global register values and 
will be assigned to GPRs (Ri in the figure). All the other 
register values will be considered local and will be as-
signed to accumulators, Ak and An in the figure. If a local 
value is used only once, then it will never be placed in a 
GPR. However, if one of these local values is used by 

 ILDP microarchitecture 4-way out-of-order superscalar 
Parcel stage Yes  (if 2 inst. Lengths are used) No 
Decode bandwidth 4 instructions per cycle 4 instructions per cycle 
Rename bandwidth Total 4 read or write ports to map table Total 12 read or write ports to map table 
Steering logic Simple, based on accumulator number Complex dependence-based heuristic (if clustered) 
Issue logic Sequential in-order issue 4-way out-of-order issue from 128-entry RUU 
Register file 2 write ports, 1 read port 4 write ports, 8 read ports 
Bypasses N x 2; for N functional units in a PE M x 8; for M total functional units (M > N) 

 
Table 1. Complexity comparison: ILDP processor vs. conventional out-of-order superscalar processor 



more than one consuming instruction, then a copy will be 
made to a GPR thereby communicating the value to other 
strands. These are referred to as communication globals. 

If binary compatibility is not required, a static com-
piler can be used to generate programs in the native ILDP 
ISA. The compiler will allocate temporary register values 
to accumulators while keeping the rest in the GPRs. The 
compiler performs this non-conventional register alloca-
tion based on register usage and lifetime analysis. 

In our research, dynamic binary translation is used to 
form strands. Currently we are using Alpha instruction 
binaries as the source ISA for translation. For our initial 
studies, we are analyzing simulator-generated instruction 
traces, but in the future we plan to use the basic method in 
[10, 16, 19], where interpretation is first used to produce 
profile data that is fed to a translator.  

Given a code sequence and the above profile informa-
tion that identifies static global values, strand formation is 
implemented via a single-pass linear scan of instructions 
to be translated; currently we do not perform code re-
ordering during translation. For this discussion, we as-
sume the source instruction set is RISC-like (Alpha in 
particular), with two source registers and one destination 
register, and simple addressing modes. At any given point 
in the scan, some register values are held in accumulators 
and others are held in GPRs. 

When the scan reaches an instruction that has no input 
value currently assigned to an accumulator, it begins a 
new strand. If an instruction has a single input value as-
signed to an accumulator, then the same accumulator is 
used as the instruction’s input, and the instruction is 
added to the producer’s strand. If there are two input val-
ues assigned to accumulators, then two strands are inter-
secting. At this point, one of the strands is terminated by 
copying its accumulator into a GPR (to be communicated 
to the other strand). The other strand continues with the 
already-assigned accumulator and the just-assigned GPR 

as inputs. To decide which strand to terminate, a good 
heuristic is to follow the strand that is longer, up to that 
point, to avoid introducing the communication latency 
into the already longer strand. 

If an instruction has its output assigned to a static 
global register (or has no output value) the strand is ter-
minated. If the new strand requires an accumulator when 
all the accumulators are live, then one of the live strands 
is terminated by copying its accumulator into a GPR. We 
choose the longest active strand as the victim. This tends 
to balance the lengths of the strands in the FIFOs. 
 
Example 

We complete this section with a continuation of the 
code example given in Section 2.1.4. Four accumulators 
are used (A0 through A3), so the instructions are steered 
to four different processing elements (FIFOs) as shown in 
Fig. 5. The strands are relatively independent, except 
where two strands converge to form inputs to the second 
xor. For this short code sequence, 14 instructions are is-
sued in six clock cycles.  

 
4 Evaluation 

This section contains experimental evaluation of the 
instruction set properties and microarchitecture design 
decisions made in the previous sections.  

 
4.1 Simulation methodology  

To evaluate the proposed ILDP instruction set and mi-
croarchitecture, we first developed a functional simulator, 
which will be referred to as the profiler to distinguish it 
from the timing simulator. The profiler runs Alpha 21264 
programs and profiles the dynamic register value usage. If 
a load/store instruction uses a non-zero immediate field 

  Issue cycle 
FIFO 0:   
 A0 <- mem(R0) 0 
 A0 <- A0 xor R8 1 
 A0 <- A0 and 0xff 2 
 A0 <- 8*A0 + R9 3 
 A0 <- mem(A0) 4 
 A0 <- A0 xor R8 5 
 R8 <- A0 6 
FIFO 1:   
 A1 <- R1 – 1 0 
 R1 <- A1 1 
 P <- L1, if (A1 != 0) 2 
FIFO 2:   
 A2 <- R0 + 1 0 
 R0 <- A2 1 
FIFO 3:   
 A3 <- R8 << 8 1 
 R8 <- A3 2 

 
Figure 5. Issue timing of the example code 
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Figure 4. Types of values and associated 
registers . Static global  and communicatio n 
global  values are held in GPRs, and local  val-
ues are held in accumulators. 



(i.e. requires an address add), then the instruction is split 
into two instructions for address calculation and memory 
access.  Alpha conditional move instructions require three 
source operands and are also split into two instructions. 
Note that the Alpha 21264 processor similarly splits con-
ditional moves into two microinstructions [18]. Static 
global registers are first identified using the heuristic of 
selecting all registers that are consumed multiple times by 
the same static instruction. Strands are then identified and 
accumulators and communication globals are assigned 
using the method described in the previous section.  

Simulation tools were built on top of the SimpleScalar 
toolset 3.0B [4]. The profiler maps the strand-identified 
Alpha traces into ILDP traces and feeds the timing simu-
lator. The timing simulator models the proposed microar-
chitecture and executes translated traces of ILDP instruc-
tions.  

We selected nine programs from the SPEC 2000 inte-
ger benchmarks compiled at the base optimization level 
(–arch ev6 –non_shared –fast ). The compiler 
flags are same as those reported for Compaq AlphaServer 
ES40 SPEC 2000 benchmark results. DEC C++ V.6.1-
027 (for 252.eon) and C V.5.9-005 (for the rest) compilers 
were used on Digital UNIX 4.0-1229. The test  input set 
was used and all programs were run to completion. 

 
4.2 Strand Characteristics 

Table 2 contains some general statistics from the Al-
pha traces. More than half of the dynamic instructions 
have zero or one input register operand. Loads, condi-
tional branches, and integer instructions with an immedi-
ate operand belong to this category. This statistic implies 
the data dependence graphs are rather “thin”, with rela-
tively little inter-strand communication. We also note 
there are substantial numbers of load and store instruc-
tions that do not require address calculation. With the 
proposed ILDP instruction set, these instructions can by-
pass the address addition and be sent to the data cache 
directly.  

 We also collected data regarding types of register val-
ues: static global, communication global, and local. Fig. 6 
shows the fraction of values for each of the three classes 
(and those that have no consumers). Most values pro-
duced are locals (about 70%). Since these values are used 
only once, they do not have to leave their processing ele-
ment and do not consume GPR bandwidth. Only about 
20% of the values have to be placed in global registers 
(which suggests relatively low global register write 
bandwidth). Finally, 10% of produced values are never 
used. Some of these come from high-level program se-
mantics; for example, a function’s return value or some of 
its input arguments might not be used, depending on the 
program control flow. Also aggressive compiler optimiza-
tions, e.g. hoisting instructions above branches, some-
times result in unused values.  

Fig. 7 shows the lengths of strands measured in both 
Alpha and ILDP instructions. Average strand size is 3.85 
in ILDP instructions or 2.54 Alpha instructions. There are 
many single-instruction strands (SIS in the figure) that do 
not contribute much to the total number of instructions 
but affect the average strand size significantly. These sin-
gle-instruction strands include unconditional branch and 
jump instructions, and instructions whose produced value 
is not used. An important characteristic of the single-
instruction strands is that they can be steered to any FIFO; 
no other instruction depends on them. If the single-
instruction strands are ignored, the average size of strands 
is 4.62 in ILDP instructions and 3.04 in Alpha instruc-
tions. 
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Figure 7. Average strand lengths 
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Figure 6. Types of register values 

Bench- 
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structions 
w/ zero or 
one input 
register 
operand 

% of 
loads 
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imme-
diate 

% of 
stores 
w/o im-
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164.gzip 3.50 bil. 55.09 43.6 50.6 
175.vpr 1.54 bil. 51.16 34.9 29.1 
176.gcc 1.89 bil. 62.38 34.8 15.8 
181.mcf 260 mil. 57.74 30.4 11.9 
186.crafty 4.18 bil. 54.34 27.0 13.4 
197.parser 4.07 bil. 57.68 44.8 22.2 
252.eon 95 mil. 55.83 15.7 15.4 
254.gap 1.20 bil. 61.60 44.9 27.1 
300.twolf 253 mil. 50.48 41.5 31.2 

 
Table 2 Benchmark program properties 



It is also interesting to see how strands end (Figure 8). 
About 35 to 70% of the strands have a “natural” ending – 
dependence chains leading to conditional branch resolu-
tion and store address/value calculation. About 20 to 45% 
produce communicated globals. 

Finally we look at the impact of using two instruction 
sizes in translated ILDP ISA traces. Fig. 9 shows that on a 
dynamic basis, single parcel instructions account for 73 to 
85% of total ILDP instructions, resulting in an average of 
2.39 bytes per instruction.  

 
4.3 Performance Results 

Timing simulations are trace-driven. Because of dif-
ferent instruction sizes, it was easiest to simply assume an 
ideal I-cache for both the baseline superscalar and the 
ILDP microarchitecture. (All nine Alpha benchmark pro-
grams with the test  input set have an L1 I-cache miss 
rate less than 0.7% with a 2-way set-associative, 32KB, 
64-byte line size I-cache; less than 3.8% for an 8KB I-
cache). We also believe the performance results from the 

trace-driven simulations will closely track those of a true 
dynamically translated system because program execution 
is dominated by small number of repeating strands in 
most cases. Fig. 10 shows more than 95% of total exe-
cuted instructions belong to the strands that repeat more 
than 1000 times. 

Simulator configurations are summarized in Table 3. 
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Figure 10. Cumulative strand re-use 

 ILDP microarchitecture Out-of-order superscalar processor 

Branch prediction 16K entry, 12-bit global history Gshare predictor 
3-cycle fetch redirection latencies for both misfetch and misprediction 

I-cache, I-TLB Ideal 

L1: 2-way set-assoc., 8KB size, 64-byte line 
size, 1-cycle latency, random replacement 

L1: 4-way set-assoc., 32KB size, 64-byte line 
size, 2-cycle latency, random replacement 

D-cache, D-TLB 
L2: 2-way set-assoc., 256KB size, 128-byte lines, 8-cycle latency, random replacement 
TLB: 4-way set-associative, 32-entry, 4KB page size, LRU replacement 

Memory 72-cycle latency, 64-bit wide, 4-cycle burst 

Reorder buffer size 128 ILDP instructions 128 Alpha instructions 

Fetch/decode/retire band-
width 

4 ILDP instructions 4 Alpha instructions 

Issue window size 8 (FIFO heads) 128 (same as the ROB) 

Issue bandwidth 8 4 or 8 

Execution resources 8 fully symmetric functional units 4 or 8 fully symmetric functional units 

Misc. 2 or 0 cycle global communication latency No communication latency, oldest-first issue 

 
Table 3. Simulator configurations 
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Figure 9. Instruction size 



Note that in keeping with the philosophy of smaller/faster 
memory structures, the L1 caches in the proposed mi-
croarchitecture are one quarter the size of the superscalar 
counterpart. The latency difference of one cycle results 
from the ILDP microarchitecture not having an address 
addition in the load path (as described previously); for 
those loads that require an add, the latencies are effec-
tively the same.  

Because the two microarchitectures being simulated 
have different ISAs, Instructions Per Cycle (IPC) is not a 
good metric for comparing performance. Instead the total 
number of cycles is used.  

The results show that the proposed microarchitecture 
performs approximately as well as a conventional 4-way 
out-of-order superscalar processor ignoring any clock 
frequency advantage, which, based on Table 1 and the 
smaller data cache should be considerable.  

More importantly, the proposed microarchitecture is 
tolerant of global communication latency. There is only a 
2 to 7 percent performance degradation as communication 
latency increases from 0-cycles to 2-cycles. In most cases 
global communication latency is not imposed on the criti-
cal path by the dependence-based strand formation algo-
rithm.  

For 164.gzip and 186.crafty, the proposed microarchi-
tecture with 0-cycle communication latency outperforms 
an 8-way out-of-order superscalar processor despite the 
reduced issue freedom of the proposed microarchitecture. 
This comes primarily from the reduced load latency for as 
many as 43.6% of loads where there is no need for an 
effective address addition. 

To further understand implementation complexity is-
sues, we collected statistics related to rename, steering, 
and global register bandwidths. Fig. 12, 13 show the 
global register rename bandwidths per cycle. With a four-
wide pipeline, over 95% of the time three or fewer global 
register mappings are read, and over 90% of the time only 
zero or one register mapping is updated. This suggests 
that three read ports and one write port in the mapping 
table will likely be sufficient if we want to add the com-
plexity of adding stall logic.  

A significant complexity issue is the number of write 
ports to the GPR file. Using accumulators for local values 
greatly reduces the required GPR bandwidth. Collected 
GPR write bandwidth statistic closely follows Fig. 13; it 
shows one register write port is enough more than 95% of 
time. Hence, if we are willing to add arbitration for a sin-
gle write port, then the GPR can be reduced to a single 
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Figure 11. Normalized number of cycles with the 4-way with superscalar processor as the baseline  
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read port and a single write port with little performance 
impact. 

Although the steering logic is simplified by only con-
sidering accumulator names in making steering decisions, 
the number of instructions steered to any one FIFO can 
also affect complexity. We measured the number of ILDP 
instructions steered to the same FIFO during the same 
cycle. The results in Fig. 14 show that two or fewer in-
structions are steered to the same FIFO over 82% of the 
time.  
 
5 Related Work 

The instruction set is very much inspired by the S. 
Cray scalar ISAs (just as the 1980s microprocessor RISCs 
were). However, in a sense, we follow the Cray ISAs 
more closely than the microprocessor-based RISCs. In 
particular, we use hierarchical register files with a very 
small file at the top of the hierarchy, variable length in-
structions, and in-order instruction issue (albeit within 
individual processing elements). Even though the tech-
nology was quite different when Cray’s designs were un-
dertaken, the issues of interconnect delays, power con-
sumption, and design complexity were of critical impor-
tance, just as they are today, and will be in the future. In 
effect, the proposed ILDP ISA is a cross product of two 
Cray-2 designs. One is an abandoned Cray-2 design [8] 
that had a single re-named accumulator and a general reg-
ister file of 512 elements. The completed Cray-2 design 
[9] had 8 integer registers, 64 lower level registers, and 
used conventional 3 operand instructions. 

The ZS-1 [24] was an early superscalar design with in-
structions issuing simultaneously from two FIFOs, moti-
vated by issue logic simplicity. The RS/6000 [2] used a 
similar design. In [22] a dependence-based microarchitec-
ture that issues instructions from multiple FIFOs was pro-
posed. That work, and others [5, 11] proposed clustered 
microarchitectures to localize register communication. 
Trace processors [23, 27] are another form of distributed 
microarchitecture, with each processing element being a 

simple superscalar processor. Trace processors also sup-
port a hierarchy of register files for local and global 
communication. Similarly, the multiscalar paradigm [14, 
26] was designed with a goal of processor scalability and 
used a number of innovative distributed processing fea-
tures. The PEWS mechanism [17] also uses dependence-
based instruction steering but uses versioning for both 
registers and memory. 

RAW architecture [20] and Grid Processor Architec-
ture [21] propose network-connected tiles of distributed 
processing elements running programs compiled for new 
ISAs that expose underlying parallel hardware organiza-
tion. Both architectures are targeted to achieve high ILP 
on scalable hardware. As such, both are sensitive to 
communication latency and depend heavily on the com-
piler. In contrast, our aim is to achieve high performance 
in general purpose applications with a combination of a 
very high clock frequency, moderate ILP and a relatively 
conventional compiler target. 

IBM DAISY [10] and Transmeta Crusoe [19] use dy-
namic binary translation to run legacy software on the 
hardware that executes different instruction set. Ebcioglu 
et al. [10] showed the translation overhead is negligible. 
Both use VLIW as underlying implementation; as a result, 
the run-time software performs extensive instruction re-
scheduling to achieve desirable ILP on in-order VLIW 
implementation. 

 
6 Conclusions and Future Research 

For future processors, we propose an instruction set 
that exposes inter-instruction communication and is tar-
geted at a distributed microarchitecture with both short 
pipelines and high frequency clocks. A primary goal is 
high performance by using a small number of logic tran-
sistors. This is counter to the conventional trend that uses 
instruction sets that expose instruction independence; use 
very long (deep) pipelines, and high logic transistor 
counts. The major challenge is not to think of 
enhancements that consume transistors and yield small 
incremental performance gains, but to develop an overall 
paradigm that achieves high performance through sim-
plicity. 

The overall microarchitecture we propose consists of a 
number of distributed processing elements, each of which 
is a simple in-order pipeline. By using an accumulator-
based instruction set, the hardware implementation can 
steer chains of dependent instructions, “strands”, to the 
simple in-order issue processing elements. In aggregate, 
the multiple in-order processing elements enable super-
scalar out-of-order execution as each of the processing 
elements adapts to the delays it encounters. 

In this paper we have demonstrated that a distributed 
microarchitecture is capable of IPC performance levels 
that are roughly equivalent to a homogeneous 4-to-8-way 
superscalar processor. Most of the processing stages – 
renaming, register access, issuing, bypassing, data cache – 
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Figure 14. Number of instructions steered to 

the same FIFO at the same cycle 



are much simpler than in a conventional superscalar proc-
essor, however, and the prospects for a much faster clock 
frequency are very good. 

The distributed microarchitecture has other advantages 
that have not been discussed thus far. First, it will be 
amenable to multiple clock domains, which may be asyn-
chronous with respect to one another. This is a very im-
portant feature for an aggressively clocked implementa-
tion where clock skew is critical. Second, it is also ame-
nable to microarchitecture-level clock- and power-gating. 
Some of the processing elements can be gated off when 
not needed to save power.  

In the future we plan to explore the proposed ISA and 
microarchitecture greater detail. First, we plan to perform 
a gate level design of the integer proportion of the pro-
posed processor.  This will validate claims of simplicity. 
Second, we plan to implement a binary translation infra-
structure to allow on-the-fly translation of existing pro-
gram binaries. Then, we will be able to provide accurate 
overall performance estimates that will demonstrate the 
feasibility of this overall approach. 
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