
An Instruction Set and Microarchitecture for
Instruction Level Distributed Processing

Ho-Seop Kim and James E. Smith
Department of Electrical and Computer Engineering

University of Wisconsin—Madison
{hskim,jes}@ece.wisc.edu

Abstract

An instruction set architecture (ISA) suitable for future
microprocessor design constraints is proposed. The ISA
has hierarchical register files with a small number of ac-
cumulators at the top. The instruction stream is divided
into chains of dependent instructions (strands) where in-
tra-strand dependences are passed through the accumula-
tor. The general-purpose register file is used for commu-
nication between strands and for holding global values
that have many consumers.

A microarchitecture to support the proposed ISA is
proposed and evaluated. The microarchitecture consists
of multiple, distributed processing elements. Each PE
contains an instruction issue FIFO, a local register (ac-
cumulator) and local copy of register file. The overall
simplicity, hierarchical value communication, and dis-
tributed implementation will provide a very high clock
speed and a relatively short pipeline while maintaining a
form of superscalar out-of-order execution.

Detailed timing simulations using translated program
traces show the proposed microarchitecture is tolerant of
global wire latencies. Ignoring the significant clock fre-
quency advantages, a microarchitecture that supports a
4-wide fetch/decode pipeline, 8 serial PEs, and a two-
cycle inter-PE communication latency performs as well as
a conventional 4-way out-of-order superscalar processor.

1 Introduction

During the past two decades, researchers and processor
developers have achieved significant performance gains
by finding and exploiting instruction level parallelism
(ILP). Today, however, trends in technology, pipeline
design principles, and applications all point toward archi-
tectures that rely less on increasing ILP and more on sim-
pler, modular designs with distributed processing at the
instruction level, i.e. instruction level distributed process-
ing (ILDP) [25]. Technology trends point to increasing
emphasis on on-chip interconnects and better power effi-
ciency. Microarchitects are pushing toward pipelined de-
signs with fewer logic levels per clock cycle (exacerbat-

ing interconnect delay problems and reducing sizes of
single-cycle RAM) [1, 15]. Finally, design complexity has
become a critical issue. In the RISC heyday of the mid-
80s, the objective was a new processor design every two
years; now it takes from four to six.

To study the full potential of future ILDP architec-
tures, we are considering new instruction sets that are
suitable for highly distributed microarchitectures. The
goal is to avoid the encumbrances of instruction sets de-
signed in a different era and with different constraints.
This will enable us to study, in their simplest form, mi-
croarchitectures that are highly tolerant of interconnect
delays, use a relatively small number of fast (high power)
transistors, and support both very high clock frequencies
and short pipelines. The resulting fast, lightweight proces-
sors will be ideal for chip multiprocessors supporting high
throughput server applications [3] and for general-purpose
processor cores that can drive highly integrated systems
supporting various consumer applications.

The overall microarchitecture we propose consists of
pipelined instruction fetch, decode, and rename stages of
modest width that feed a number of distributed processing
elements, each of which performs sequential in-order in-
struction processing. The instruction set exposes instruc-
tion dependences and local value communication patterns
to the microarchitecture, which uses this information to
steer chains of dependent instructions (strands) to the
sequential processing elements. Dependent instructions
executed within the same processing element have mini-
mum communication delay as the results of one instruc-
tion are passed to the next through an accumulator. Taken
collectively, the multiple sequential processing elements
implement multi-issue out-of-order execution.

For applications where binary compatibility may not
be a major issue (e.g. in some embedded systems), a new
instruction set may be used directly in its native form.
However, for general-purpose applications, a requirement
of binary compatibility is a practical reality that must be
dealt with. For general purpose applications there are two
possibilities, both involve binary translation. One method
is to perform on-the-fly hardware translation similar to the
methods used today by Intel and AMD when they convert
x86 binaries to micro-operations. Such a translation re-

quires somewhat higher-level analysis than simple in-
struction mapping, however. Hence, the second method
relies on virtual machine software, co-designed with the
hardware and hidden from conventional software. This
software can map existing binaries to the new ILDP in-
struction set in a manner similar in concept to the method
used by the Transmeta Crusoe processor [19] and the
IBM DAISY project [10]. A very important difference is
that here the binary translation does not require the com-
plex optimizations and scheduling that are used for VLIW
implementations. Rather, the hardware we propose will be
capable of dynamic instruction scheduling, so translation
will involve a straightforward mapping of instructions.
Consequently, the emphasis during translation is on iden-
tifying instruction inter-dependences and on making reg-
ister assignments that reduce intra-processor communica-
tion. Binary translation can be performed either by a spe-
cial co-processor [6] or by the main processor, itself.

2 Instruction Set and Microarchitecture

We begin with a brief description of the ILDP instruc-
tion set we propose. Following that is a description of the
proposed microarchitecture. Then we discuss the specific
features of both.

2.1 Instruction set overview

The proposed ISA uses a hierarchical register file. It
has 64 general-purpose registers (GPRs) and 8 accumula-
tors. We refer to the GPRs as registers R0-R63, and the
accumulators as A0-A7. We focus here on the integer
instruction set. Floating point instructions would likely
use additional floating point accumulators, but would
share the GPRs.

In any instruction, a GPR is either the source or desti-
nation, but not both; this is intended to simplify the re-
naming process. In addition, when an accumulator is used
for the last time, i.e. becomes dead, this is specified in the
instruction’s opcode (possibly via a reserved opcode bit).

The instruction formats are given in Fig. 1. Instructions
may be either 16 bits (one parcel) or 32 bits (two parcels).

2.1.1 Load/Store instructions

The memory access instructions load or store an accu-
mulator value from/to memory. These instructions may
only specify one GPR and one accumulator (as with all
instructions). All load/store instructions are one parcel
and do not perform an effective address addition.

Ai <- mem(Ai)
Ai <- mem(Rj)
mem(Ai) <- Rj
mem(Rj) <- Ai

2.1.2 Register instructions
The register instructions typically perform an operation

on the accumulator and either a GPR or an immediate
value, and the result is placed back in the accumulator.
However, some instructions place the result into a GPR.
Typical register instructions follow.

Ai <- Ai op Rj
Ai <- Ai op immed
Ai <- Rj op immed
Rj <- Ai
Rj <- Ai op immed

2.1.3 Branch/Jump instructions
The conditional branch instructions compare the ac-

cumulator with zero or the contents of a GPR. All the
usual predicates (>, <, >=, <=, ==, !=) can be used.
Branch targets are program counter (P) relative. The indi-
rect jump is through either the accumulator or a GPR. For
jump and link, the return address is always stored to a
GPR.

P <- P + immed; Ai pred Rj
P <- P + immed; Ai pred 0
P <- Ai
P <- Rj
P <- Ai; Rj <- P++

2.1.4 Example
Figure 2 is a sequence of code from SPEC benchmark

164.gzip, as compiled for the Alpha ISA. It is one of the
more frequently executed parts of the program. Some
Alpha instructions map to multiple ILDP instructions.
However, the total number of bytes for instructions is
slightly reduced. The Alpha version requires 40 bytes, and
the ILDP version requires 36 bytes.

re g is te r fo rm a t

Opcode Ai

7 3

immed

6

s ho rt imm e d ia te fo rm a t

Opcode Ai

7 3

Rj

6

immed

16

lo n g im m e dia t e fo rm a t

Opcode Ai

7 3

Rj

6

Figure 1. Instruction formats. Instructions are
either 1 parcel (2 bytes) or 2 parcels (4 bytes).

2.2 Microarchitecture

The concept behind the instruction set is that the dy-
namic program dependence graph can be decomposed
into strands – chains of dependent instructions. Instruc-
tions in each strand are linked via an accumulator. The
strands communicate with each other through the GPRs.

The strand per accumulator concept is reflected in the
microarchitecture. Referring to Fig. 3a, instructions are
fetched, parceled, renamed, and steered to one of eight
processing elements. Instructions will be fetched four
words (16 bytes) at a time. However, in most cases these
four words contain more than 4 instructions. After I-fetch,
the remainder of the instruction decode/rename pipeline is
four instructions wide. Parceling is the process of identi-
fying instruction boundaries and breaking instruction
words into individual instructions. One simplification we
are considering is to have instructions start and end on a
cache line (at least 8 words) boundary. This will avoid
instruction words spanning cache line (and page) bounda-
ries – an unnecessary complication. The renaming stage
renames only GPRs. The accumulators are not renamed at
this stage; they undergo a simpler type of renaming as a
byproduct of steering to the sequential processing ele-
ments.

The steering logic directs strands of renamed instruc-
tions to one of eight issue FIFOs, depending on the accu-
mulator to be used. Each FIFO feeds a sequential process-
ing element with its own internal physical accumulator
(Fig. 3b). Any instruction that has an accumulator as an
output, but not as an input, is steered to the first empty
FIFO; consequently, the logical accumulator is renamed
to the physical accumulator. Any later instruction that

uses the same accumulator as an input is steered to the
same FIFO. Whenever all the FIFOs are non-empty and a
new accumulator is called for, the steering process either
stalls, or uses a heuristic to choose a FIFO to use next. If a
FIFO has a “dead” accumulator instruction at its tail, then
instructions from a new strand can be steered into the
FIFO. A good heuristic is to use the first such FIFO likely
to go empty (e.g. the one with the fewest instructions).

The instructions in a FIFO form a dependence chain,
and therefore will issue and execute sequentially. The
instruction at the head of the FIFO passes through the
GPR pipeline stage, reads its GPR value (if available),
and moves into the issue register (IR). If the GPR value is
not available, the instruction waits in the IR until the
value becomes available. Hence, the IR is like a single
reservation station with a single data value entry. When
its GPR value is available, the instruction issues and be-
gins execution. Fig. 3b shows an ALU and an L1 cache as
functional units; in practice there will also be a shifter,
and some other units. There is no contention/arbitration
for any of the replicated functional units. A sequential
control unit drives the processing element. Note that the
functional units can be single or multi-cycle, but do not
require pipelining. Because accumulator values stay
within the same processing element, they can be bypassed
without additional delay. However, GPR values produced
in one PE must be communicated to the others. This will
take additional clock cycles. The network for communi-
cating GPR values can be a bus, a ring, or point-to-point.
As will be shown, the bandwidth requirements are very
modest and performance is relatively insensitive to this
latency. The PE in the figure has two write ports to the
GPR file; this will avoid contention between the accumu-

if (n) do {
 c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8);
} while (--n);

a) C source code

Alpha assembly code Equivalent register transfer notation ILDP code
L1: ldbu t2, 0(a0) L1: R2 <- mem(R0) L1: A0 <- mem(R0)
 subl a1, 1, a1 R1 <- R1 – 1 A1 <- R1 – 1
 R1 <- A1
 lda a0, 1(a0) R0 <- R0 + 1 A2 <- R0 + 1
 R0 <- A2
 xor t0, t2, t2 R2 <- R2 xor R8 A0 <- A0 xor R8
 srl t0, 8, t0 R8 <- R8 << 8 A3 <- R8 << 8
 R8 <- A3
 and t2, 0xff, t2 R2 <- R2 and 0xff A0 <- A0 and 0xff
 s8addq t2, v0, t2 R2 <- 8*R2 + R9 A0 <- 8*A0 + R9
 ldq t2, 0(t2) R2 <- mem(R2) A0 <- mem(A0)
 xor t2, t0, t0 R8 <- R2 xor R8 A0 <- A0 xor R8
 R8 <- A0
 bne a1, L1 P <- L1, if (R1 != 0) P <- L1, if (A1 != 0)

b) Alpha assembly code, equivalent register transfer notation, and corresponding ILDP code

Figure 2. Example program segment from benchmark 164.gzip

lator path and the GPR interconnection network. How-
ever, an alternate design could arbitrate the two and have
a single write port. Simulation results in Section 4.3 will
explore GPR write bandwidth requirements and the im-
portance of inter-PE latency for communicating GPR val-
ues.

We plan to replicate the (small) low-latency L1 data
cache and use a replication network to keep the contents
of all the L1 caches equal (within a 2 clock period win-
dow as values are communicated). The L1 cache is fed
directly from the issue stage of the PE because the mem-
ory instructions do not perform effective address addi-

tions. Because the PEs are sequential, issue bandwidth
within a PE is not a critical resource as it is in a conven-
tional superscalar processor, so issuing two instructions
(in two cycles) for those load/stores that require address
additions does not pose a performance problem. However,
it does provide a performance advantage for those loads
where an effective address addition is not needed (statis-
tics are given in Section 4). Having the memory address
available at issue time has other advantages; for example,
store address queue checking can be done as part of the
issue function, in much the same way as the Cray-1 does
memory bank conflict checking at issue time [7]. Block-

I-Cache Parc el
G PR

Rename
Steer

PE 7

PE 6

PE 0

.

.

.

L2 Cache

P

a) Block diagram of ILDP processor

A

M

U
X

A L U

L1
C ac he

from R egis ter IC N to R eg is ter IC N

L 1 re plication
 n etw ork

to L 2 cache

B
M
U

X

M
A

M
U

X

Ins t. F IFO
im m ed ia t e

GPR s

IR control

b) Processing element (ICN stands for interconnection network)

Figure 3. The distributed processor and detail of processing element

ing on an L1 cache miss can also be done by blocking
issue of the next instruction.

Each PE has a copy of the store address queue for
memory disambiguation (not shown in the figure). Every
load instruction consults the queue for possible conflicts
with preceding store instructions. If all previous store
addresses are known and do not conflict with the load, the
load instruction is allowed to issue. Store address queue
entries are allocated prior to the steering stage. As store
addresses are computed, the address bits (or, for simplic-
ity, a subset of 8-16 bits) are communicated to the repli-
cated store queues.

Both GPRs and accumulators need to be rolled back
when there is an exception or a branch misprediction. A
conventional reorder buffer-based recovery mechanism
can be used for GPRs; the GPR rename map is restored to
the exception/misprediction point. To recover
accumulators, produced accumulator values are buffered
by a FIFO inside a PE. In effect, this is a small history
buffer. When an instruction retires, the previous older
value of the instruction’s accumulator is also retired from
the accumulator value FIFO. Should there be an excep-
tion, the oldest entries in the accumulator value FIFOs (or
architectural accumulators) are rolled back. Similar to the
GPR rename map recovery, steering information is also
rolled back from the reorder buffer. Recovery from a mis-
predicted branch is done similarly. Here accumulator
steering information can be recovered either from branch
checkpoints or by sequential roll back from the saved
information in the reorder buffer entries.

2.3 Discussion

As stated earlier, we are targeting a microarchitecture
that will be simple and provide very high performance
through a combination of a very fast clock and modest
ILP. Because the clock cycle of an aggressive design de-
pends on the details of every pipeline stage, we prefer not
to use a few gross aspects of the design (e.g. bypasses,
issue logic) to verify a quantitative clock cycle estimate.
We prefer to let the simplicity stand as self-evident and
defer clock cycle estimates until we have done some de-
tailed, gate-level design. Table 1 compares complexity of
several of the key functions with a baseline superscalar
processor (similar to the one we use in Section 4 for per-

formance comparisons). The ILDP microarchitecture
complexities are given on a per PE basis, because that is
the complexity that will ultimately determine the clock
cycle.

Variable length instructions are aimed at reducing the
instruction footprint to permit better I-cache performance,
especially if a small single-cycle L1 I-cache is used. Al-
though it may seem un-RISC-like, variable length instruc-
tions were a hallmark of the original RISCs at Control
Data and Cray Research. That a RISC should have single-
length instructions has intuitive appeal, but to some extent
it was a 1980s reaction to the very complex multi-length
instruction decoding required by the VAX. There is little
real evidence that having only one instruction size is sig-
nificantly better than having a small number of easily
decoded sizes. It is entirely possible that the advantages of
a denser instruction encoding and more efficient I-fetch
bandwidth may outweigh the disadvantage of having to
parcel a simple variable-width instruction stream [12].
This is not a key part of our research, however, but we
feel it is worth exploring, and if it appears that a single
instruction size is the better approach, we can go back to
all 32-bit instructions with relatively little effort.

3 Strand Formation

The most important aspect of strand formation is as-
signment of values to GPRs and accumulators, because, in
effect, these assignments drive strand formation itself. To
understand the basic idea of accumulator-oriented register
assignment it is helpful to consider important register
usage patterns, see Fig. 4.

We are interested in separating register values that
have a relatively long lifetime and are used many times
from those that are used only once or a small number of
times in close proximity [13]. In general, the former val-
ues should be placed in GPRs and the latter in accumula-
tors. A useful heuristic is to find register values that are
consumed multiple times by the same static instruction.
These are defined to be static global register values and
will be assigned to GPRs (Ri in the figure). All the other
register values will be considered local and will be as-
signed to accumulators, Ak and An in the figure. If a local
value is used only once, then it will never be placed in a
GPR. However, if one of these local values is used by

 ILDP microarchitecture 4-way out-of-order superscalar
Parcel stage Yes (if 2 inst. Lengths are used) No
Decode bandwidth 4 instructions per cycle 4 instructions per cycle
Rename bandwidth Total 4 read or write ports to map table Total 12 read or write ports to map table
Steering logic Simple, based on accumulator number Complex dependence-based heuristic (if clustered)
Issue logic Sequential in-order issue 4-way out-of-order issue from 128-entry RUU
Register file 2 write ports, 1 read port 4 write ports, 8 read ports
Bypasses N x 2; for N functional units in a PE M x 8; for M total functional units (M > N)

Table 1. Complexity comparison: ILDP processor vs. conventional out-of-order superscalar processor

more than one consuming instruction, then a copy will be
made to a GPR thereby communicating the value to other
strands. These are referred to as communication globals.

If binary compatibility is not required, a static com-
piler can be used to generate programs in the native ILDP
ISA. The compiler will allocate temporary register values
to accumulators while keeping the rest in the GPRs. The
compiler performs this non-conventional register alloca-
tion based on register usage and lifetime analysis.

In our research, dynamic binary translation is used to
form strands. Currently we are using Alpha instruction
binaries as the source ISA for translation. For our initial
studies, we are analyzing simulator-generated instruction
traces, but in the future we plan to use the basic method in
[10, 16, 19], where interpretation is first used to produce
profile data that is fed to a translator.

Given a code sequence and the above profile informa-
tion that identifies static global values, strand formation is
implemented via a single-pass linear scan of instructions
to be translated; currently we do not perform code re-
ordering during translation. For this discussion, we as-
sume the source instruction set is RISC-like (Alpha in
particular), with two source registers and one destination
register, and simple addressing modes. At any given point
in the scan, some register values are held in accumulators
and others are held in GPRs.

When the scan reaches an instruction that has no input
value currently assigned to an accumulator, it begins a
new strand. If an instruction has a single input value as-
signed to an accumulator, then the same accumulator is
used as the instruction’s input, and the instruction is
added to the producer’s strand. If there are two input val-
ues assigned to accumulators, then two strands are inter-
secting. At this point, one of the strands is terminated by
copying its accumulator into a GPR (to be communicated
to the other strand). The other strand continues with the
already-assigned accumulator and the just-assigned GPR

as inputs. To decide which strand to terminate, a good
heuristic is to follow the strand that is longer, up to that
point, to avoid introducing the communication latency
into the already longer strand.

If an instruction has its output assigned to a static
global register (or has no output value) the strand is ter-
minated. If the new strand requires an accumulator when
all the accumulators are live, then one of the live strands
is terminated by copying its accumulator into a GPR. We
choose the longest active strand as the victim. This tends
to balance the lengths of the strands in the FIFOs.

Example

We complete this section with a continuation of the
code example given in Section 2.1.4. Four accumulators
are used (A0 through A3), so the instructions are steered
to four different processing elements (FIFOs) as shown in
Fig. 5. The strands are relatively independent, except
where two strands converge to form inputs to the second
xor. For this short code sequence, 14 instructions are is-
sued in six clock cycles.

4 Evaluation

This section contains experimental evaluation of the
instruction set properties and microarchitecture design
decisions made in the previous sections.

4.1 Simulation methodology

To evaluate the proposed ILDP instruction set and mi-
croarchitecture, we first developed a functional simulator,
which will be referred to as the profiler to distinguish it
from the timing simulator. The profiler runs Alpha 21264
programs and profiles the dynamic register value usage. If
a load/store instruction uses a non-zero immediate field

 Issue cycle
FIFO 0:
 A0 <- mem(R0) 0
 A0 <- A0 xor R8 1
 A0 <- A0 and 0xff 2
 A0 <- 8*A0 + R9 3
 A0 <- mem(A0) 4
 A0 <- A0 xor R8 5
 R8 <- A0 6
FIFO 1:
 A1 <- R1 – 1 0
 R1 <- A1 1
 P <- L1, if (A1 != 0) 2
FIFO 2:
 A2 <- R0 + 1 0
 R0 <- A2 1
FIFO 3:
 A3 <- R8 << 8 1
 R8 <- A3 2

Figure 5. Issue timing of the example code

g loba l

com m un ica tion

lo ca l

R i

R j

Ak

A k

Ak

Ak

A n

A n

A n

A n

loca l

Figure 4. Types of values and associated
registers . Static global and communicatio n
global values are held in GPRs, and local val-
ues are held in accumulators.

(i.e. requires an address add), then the instruction is split
into two instructions for address calculation and memory
access. Alpha conditional move instructions require three
source operands and are also split into two instructions.
Note that the Alpha 21264 processor similarly splits con-
ditional moves into two microinstructions [18]. Static
global registers are first identified using the heuristic of
selecting all registers that are consumed multiple times by
the same static instruction. Strands are then identified and
accumulators and communication globals are assigned
using the method described in the previous section.

Simulation tools were built on top of the SimpleScalar
toolset 3.0B [4]. The profiler maps the strand-identified
Alpha traces into ILDP traces and feeds the timing simu-
lator. The timing simulator models the proposed microar-
chitecture and executes translated traces of ILDP instruc-
tions.

We selected nine programs from the SPEC 2000 inte-
ger benchmarks compiled at the base optimization level
(–arch ev6 –non_shared –fast). The compiler
flags are same as those reported for Compaq AlphaServer
ES40 SPEC 2000 benchmark results. DEC C++ V.6.1-
027 (for 252.eon) and C V.5.9-005 (for the rest) compilers
were used on Digital UNIX 4.0-1229. The test input set
was used and all programs were run to completion.

4.2 Strand Characteristics

Table 2 contains some general statistics from the Al-
pha traces. More than half of the dynamic instructions
have zero or one input register operand. Loads, condi-
tional branches, and integer instructions with an immedi-
ate operand belong to this category. This statistic implies
the data dependence graphs are rather “thin”, with rela-
tively little inter-strand communication. We also note
there are substantial numbers of load and store instruc-
tions that do not require address calculation. With the
proposed ILDP instruction set, these instructions can by-
pass the address addition and be sent to the data cache
directly.

 We also collected data regarding types of register val-
ues: static global, communication global, and local. Fig. 6
shows the fraction of values for each of the three classes
(and those that have no consumers). Most values pro-
duced are locals (about 70%). Since these values are used
only once, they do not have to leave their processing ele-
ment and do not consume GPR bandwidth. Only about
20% of the values have to be placed in global registers
(which suggests relatively low global register write
bandwidth). Finally, 10% of produced values are never
used. Some of these come from high-level program se-
mantics; for example, a function’s return value or some of
its input arguments might not be used, depending on the
program control flow. Also aggressive compiler optimiza-
tions, e.g. hoisting instructions above branches, some-
times result in unused values.

Fig. 7 shows the lengths of strands measured in both
Alpha and ILDP instructions. Average strand size is 3.85
in ILDP instructions or 2.54 Alpha instructions. There are
many single-instruction strands (SIS in the figure) that do
not contribute much to the total number of instructions
but affect the average strand size significantly. These sin-
gle-instruction strands include unconditional branch and
jump instructions, and instructions whose produced value
is not used. An important characteristic of the single-
instruction strands is that they can be steered to any FIFO;
no other instruction depends on them. If the single-
instruction strands are ignored, the average size of strands
is 4.62 in ILDP instructions and 3.04 in Alpha instruc-
tions.

0

1

2

3

4

5

6

164.g
z ip

175.v
pr

176.g
cc

181.m
c f

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olf

A
ve

ra
g

e
 s

tr
a

n
d

 l
e

n
g

th

A lpha ins truc tions

A lpha ins truc tions

exc luding SIS

ILDP ins truc tions

ILDP ins truc tions

exc luding SIS

Figure 7. Average strand lengths

0%

20%

40%

60%

80%

100%

164.g
z ip

175.v
pr

176.g
cc

181.m
cf

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olf

T
y

p
e

s
 o

f
p

ro
d

u
c

e
d

 r
e

g
is

te
r

v
a

lu
e

s
 (

%
)

No user

Static global

Communication

global

Local

Figure 6. Types of register values

Bench-
mark

Alpha
instruc-
tion
count

% of in-
structions
w/ zero or
one input
register
operand

% of
loads
w/o
imme-
diate

% of
stores
w/o im-
mediate

164.gzip 3.50 bil. 55.09 43.6 50.6
175.vpr 1.54 bil. 51.16 34.9 29.1
176.gcc 1.89 bil. 62.38 34.8 15.8
181.mcf 260 mil. 57.74 30.4 11.9
186.crafty 4.18 bil. 54.34 27.0 13.4
197.parser 4.07 bil. 57.68 44.8 22.2
252.eon 95 mil. 55.83 15.7 15.4
254.gap 1.20 bil. 61.60 44.9 27.1
300.twolf 253 mil. 50.48 41.5 31.2

Table 2 Benchmark program properties

It is also interesting to see how strands end (Figure 8).
About 35 to 70% of the strands have a “natural” ending –
dependence chains leading to conditional branch resolu-
tion and store address/value calculation. About 20 to 45%
produce communicated globals.

Finally we look at the impact of using two instruction
sizes in translated ILDP ISA traces. Fig. 9 shows that on a
dynamic basis, single parcel instructions account for 73 to
85% of total ILDP instructions, resulting in an average of
2.39 bytes per instruction.

4.3 Performance Results

Timing simulations are trace-driven. Because of dif-
ferent instruction sizes, it was easiest to simply assume an
ideal I-cache for both the baseline superscalar and the
ILDP microarchitecture. (All nine Alpha benchmark pro-
grams with the test input set have an L1 I-cache miss
rate less than 0.7% with a 2-way set-associative, 32KB,
64-byte line size I-cache; less than 3.8% for an 8KB I-
cache). We also believe the performance results from the

trace-driven simulations will closely track those of a true
dynamically translated system because program execution
is dominated by small number of repeating strands in
most cases. Fig. 10 shows more than 95% of total exe-
cuted instructions belong to the strands that repeat more
than 1000 times.

Simulator configurations are summarized in Table 3.

0

20

40

60

80

100

120

>100k >10k >1k >100 >10 >0

Nu m b e r o f s tr an d r e -u s e s

(cu m u lat ive)

%
 o

f
to

ta
l

d
yn

a
m

ic
 in

s
tr

u
ct

io
n

s

164.gz ip

175.vpr

176.gcc

181.mcf

186.c raf ty

197.parser

252.eon

254.gap

300.tw olf

Figure 10. Cumulative strand re-use

 ILDP microarchitecture Out-of-order superscalar processor

Branch prediction 16K entry, 12-bit global history Gshare predictor
3-cycle fetch redirection latencies for both misfetch and misprediction

I-cache, I-TLB Ideal

L1: 2-way set-assoc., 8KB size, 64-byte line
size, 1-cycle latency, random replacement

L1: 4-way set-assoc., 32KB size, 64-byte line
size, 2-cycle latency, random replacement

D-cache, D-TLB
L2: 2-way set-assoc., 256KB size, 128-byte lines, 8-cycle latency, random replacement
TLB: 4-way set-associative, 32-entry, 4KB page size, LRU replacement

Memory 72-cycle latency, 64-bit wide, 4-cycle burst

Reorder buffer size 128 ILDP instructions 128 Alpha instructions

Fetch/decode/retire band-
width

4 ILDP instructions 4 Alpha instructions

Issue window size 8 (FIFO heads) 128 (same as the ROB)

Issue bandwidth 8 4 or 8

Execution resources 8 fully symmetric functional units 4 or 8 fully symmetric functional units

Misc. 2 or 0 cycle global communication latency No communication latency, oldest-first issue

Table 3. Simulator configurations

0%

20%

40%

60%

80%

100%

164.g
z ip

175.v
pr

176.g
cc

181.m
c f

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olf

S
tr

a
n

d
 e

n
d

 (
%

)

communication

global
s tatic global

no user

no output (inc l.

jumps)
s tore

conditional

branch

Figure 8. Strand end

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

164.g
z ip

175.v
pr

176.g
cc

181.m
c f

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olf

In
s

tr
u

c
tio

n
 s

iz
e

 (
%

)

tw o-parcel

ins truc tions

one-parcel

ins truc tions

Figure 9. Instruction size

Note that in keeping with the philosophy of smaller/faster
memory structures, the L1 caches in the proposed mi-
croarchitecture are one quarter the size of the superscalar
counterpart. The latency difference of one cycle results
from the ILDP microarchitecture not having an address
addition in the load path (as described previously); for
those loads that require an add, the latencies are effec-
tively the same.

Because the two microarchitectures being simulated
have different ISAs, Instructions Per Cycle (IPC) is not a
good metric for comparing performance. Instead the total
number of cycles is used.

The results show that the proposed microarchitecture
performs approximately as well as a conventional 4-way
out-of-order superscalar processor ignoring any clock
frequency advantage, which, based on Table 1 and the
smaller data cache should be considerable.

More importantly, the proposed microarchitecture is
tolerant of global communication latency. There is only a
2 to 7 percent performance degradation as communication
latency increases from 0-cycles to 2-cycles. In most cases
global communication latency is not imposed on the criti-
cal path by the dependence-based strand formation algo-
rithm.

For 164.gzip and 186.crafty, the proposed microarchi-
tecture with 0-cycle communication latency outperforms
an 8-way out-of-order superscalar processor despite the
reduced issue freedom of the proposed microarchitecture.
This comes primarily from the reduced load latency for as
many as 43.6% of loads where there is no need for an
effective address addition.

To further understand implementation complexity is-
sues, we collected statistics related to rename, steering,
and global register bandwidths. Fig. 12, 13 show the
global register rename bandwidths per cycle. With a four-
wide pipeline, over 95% of the time three or fewer global
register mappings are read, and over 90% of the time only
zero or one register mapping is updated. This suggests
that three read ports and one write port in the mapping
table will likely be sufficient if we want to add the com-
plexity of adding stall logic.

A significant complexity issue is the number of write
ports to the GPR file. Using accumulators for local values
greatly reduces the required GPR bandwidth. Collected
GPR write bandwidth statistic closely follows Fig. 13; it
shows one register write port is enough more than 95% of
time. Hence, if we are willing to add arbitration for a sin-
gle write port, then the GPR can be reduced to a single

0

0.2

0.4

0.6

0.8

1

1.2

164.g
z ip

175.v
pr

176.g
cc

181.m
c f

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olfN

o
rm

a
liz

e
d

 n
u

m
b

e
r

o
f

cy
cl

e
s

conventional 8-w ay o-o-o

superscalar processor

conventional 4-w ay o-o-o

superscalar processor

ILDP processor, 0-cyc le

communication latency

ILDP processor, 2-cyc le

communication latency

Figure 11. Normalized number of cycles with the 4-way with superscalar processor as the baseline

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

164.g
z ip

175.v
pr

176.g
cc

181.m
c f

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olf

N
u

m
b

e
r

o
f

in
s

tr
u

ct
io

n
s

 i
n

 r
e

n
a

m
e

 s
ta

g
e

w
it

h
 a

 s
o

u
rc

e
 G

P
R

 (
%

) 4 insns

3 insns

2 insns

1 insns

0 insns

Figure 12. Global register rename map read
bandwidth

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

164.g
z ip

175.v
pr

176.g
cc

181.m
c f

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olf

N
u

m
b

e
r

o
f

in
s

tr
u

c
tio

n
s

 in
 r

e
n

a
m

e
 s

ta
g

e

w
ith

 a
 d

e
s

tin
a

tio
n

 G
P

R
 (

%
)

4 insns

3 insns

2 insns

1 insns

0 insns

Figure 13. Global register rename map write

bandwidth

read port and a single write port with little performance
impact.

Although the steering logic is simplified by only con-
sidering accumulator names in making steering decisions,
the number of instructions steered to any one FIFO can
also affect complexity. We measured the number of ILDP
instructions steered to the same FIFO during the same
cycle. The results in Fig. 14 show that two or fewer in-
structions are steered to the same FIFO over 82% of the
time.

5 Related Work

The instruction set is very much inspired by the S.
Cray scalar ISAs (just as the 1980s microprocessor RISCs
were). However, in a sense, we follow the Cray ISAs
more closely than the microprocessor-based RISCs. In
particular, we use hierarchical register files with a very
small file at the top of the hierarchy, variable length in-
structions, and in-order instruction issue (albeit within
individual processing elements). Even though the tech-
nology was quite different when Cray’s designs were un-
dertaken, the issues of interconnect delays, power con-
sumption, and design complexity were of critical impor-
tance, just as they are today, and will be in the future. In
effect, the proposed ILDP ISA is a cross product of two
Cray-2 designs. One is an abandoned Cray-2 design [8]
that had a single re-named accumulator and a general reg-
ister file of 512 elements. The completed Cray-2 design
[9] had 8 integer registers, 64 lower level registers, and
used conventional 3 operand instructions.

The ZS-1 [24] was an early superscalar design with in-
structions issuing simultaneously from two FIFOs, moti-
vated by issue logic simplicity. The RS/6000 [2] used a
similar design. In [22] a dependence-based microarchitec-
ture that issues instructions from multiple FIFOs was pro-
posed. That work, and others [5, 11] proposed clustered
microarchitectures to localize register communication.
Trace processors [23, 27] are another form of distributed
microarchitecture, with each processing element being a

simple superscalar processor. Trace processors also sup-
port a hierarchy of register files for local and global
communication. Similarly, the multiscalar paradigm [14,
26] was designed with a goal of processor scalability and
used a number of innovative distributed processing fea-
tures. The PEWS mechanism [17] also uses dependence-
based instruction steering but uses versioning for both
registers and memory.

RAW architecture [20] and Grid Processor Architec-
ture [21] propose network-connected tiles of distributed
processing elements running programs compiled for new
ISAs that expose underlying parallel hardware organiza-
tion. Both architectures are targeted to achieve high ILP
on scalable hardware. As such, both are sensitive to
communication latency and depend heavily on the com-
piler. In contrast, our aim is to achieve high performance
in general purpose applications with a combination of a
very high clock frequency, moderate ILP and a relatively
conventional compiler target.

IBM DAISY [10] and Transmeta Crusoe [19] use dy-
namic binary translation to run legacy software on the
hardware that executes different instruction set. Ebcioglu
et al. [10] showed the translation overhead is negligible.
Both use VLIW as underlying implementation; as a result,
the run-time software performs extensive instruction re-
scheduling to achieve desirable ILP on in-order VLIW
implementation.

6 Conclusions and Future Research

For future processors, we propose an instruction set
that exposes inter-instruction communication and is tar-
geted at a distributed microarchitecture with both short
pipelines and high frequency clocks. A primary goal is
high performance by using a small number of logic tran-
sistors. This is counter to the conventional trend that uses
instruction sets that expose instruction independence; use
very long (deep) pipelines, and high logic transistor
counts. The major challenge is not to think of
enhancements that consume transistors and yield small
incremental performance gains, but to develop an overall
paradigm that achieves high performance through sim-
plicity.

The overall microarchitecture we propose consists of a
number of distributed processing elements, each of which
is a simple in-order pipeline. By using an accumulator-
based instruction set, the hardware implementation can
steer chains of dependent instructions, “strands”, to the
simple in-order issue processing elements. In aggregate,
the multiple in-order processing elements enable super-
scalar out-of-order execution as each of the processing
elements adapts to the delays it encounters.

In this paper we have demonstrated that a distributed
microarchitecture is capable of IPC performance levels
that are roughly equivalent to a homogeneous 4-to-8-way
superscalar processor. Most of the processing stages –
renaming, register access, issuing, bypassing, data cache –

0%

20%

40%

60%

80%

100%

164.g
z ip

175.v
pr

176.g
cc

181.m
c f

186.c
ra

f ty

197.p
ars

er

252.e
on

254.g
ap

300.tw
olf

N
u

m
b

e
r

o
f

in
s

tr
u

ct
io

n
s

 s
te

e
re

d
 t

o
 t

h
e

s
a

m
e

 F
IF

O
 (

%
) 4 insns

3 insns

2 insns

1 insns

Figure 14. Number of instructions steered to

the same FIFO at the same cycle

are much simpler than in a conventional superscalar proc-
essor, however, and the prospects for a much faster clock
frequency are very good.

The distributed microarchitecture has other advantages
that have not been discussed thus far. First, it will be
amenable to multiple clock domains, which may be asyn-
chronous with respect to one another. This is a very im-
portant feature for an aggressively clocked implementa-
tion where clock skew is critical. Second, it is also ame-
nable to microarchitecture-level clock- and power-gating.
Some of the processing elements can be gated off when
not needed to save power.

In the future we plan to explore the proposed ISA and
microarchitecture greater detail. First, we plan to perform
a gate level design of the integer proportion of the pro-
posed processor. This will validate claims of simplicity.
Second, we plan to implement a binary translation infra-
structure to allow on-the-fly translation of existing pro-
gram binaries. Then, we will be able to provide accurate
overall performance estimates that will demonstrate the
feasibility of this overall approach.

7 Acknowledgements

We would like to thank Timothy H. Heil and Martin J.
Licht for discussions and S. Subramanya Sastry for help
on the initial version of the profiling simulator. This
work is being supported by SRC grants 2000-HJ-782 and
2001-HJ-902, NSF grants EIA-0071924 and CCR-
9900610, Intel and IBM.

8 References

[1] V. Agrawal et al., “Clock Rate vs. IPC: The End of the Road
for Conventional Microarchitectures”, 27th Int. Symp. on
Computer Architecture, pp. 248-259, Jun 2000.
[2] H. Bakoglu et al., “The IBM RISC System/6000 Processor:
Hardware Overview”, IBM Journal of Research and Develop-
ment, pp. 12-23, Jan 1990.
[3] L. Barroso et al., “Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing”, 27th Int. Symp. on Computer
Architecture, pp. 282-293, Jun 2000.
[4] D. Burger et al., “Evaluating Future Microprocessors: The
SimpleScalar Toolset”, Tech. Report CS-TR-96-1308, Univ. of
Wisconsin—Madison, 1996.
[5] R. Canal et al., “A Cost-Effective Clustered Architecture”,
Int. Conf. On Parallel Architectures and Compilation Tech-
niques (PACT99), pp. 160-168, Oct 1999.
[6] Yuan Chou and J. Shen, "Instruction Path Coprocessors",
27th Int. Symp. on Computer Architecture, pp. 270-279, Jun
2000.
[7] CRAY-1 S Series, Hardware Reference Manual, Cray Re-
search, Inc., Publication HR-808, Chippewa Falls, WI, 1980.
[8] CRAY-2 Central Processor, unpublished document, circa
1979. http://www.ece.wisc.edu/~jes/papers/cray2a.pdf.
[9] CRAY-2 Hardware Reference Manual, Cray Research, Inc.,
Publication HR-2000, Mendota Heights, MN, 1985.

[10] K. Ebcioglu et al., “Dynamic Binary Translation and Opti-
mization”, IEEE Trans. on Computers, Vol. 50, No. 6, pp. 529-
548, Jun 2001.
[11] K. Farkas et al., “The Multicluster Architecture: Reducing
Cycle Time Through Partitioning”, 30th Int. Symp. on Microar-
chitecture, pp. 149-159, Dec 1997.
[12] M. Flynn, Computer Architecture: Pipelined and Parallel
Processor Design, Jones and Bartlett Publishers, pp. 109-132,
1995.
[13] M. Franklin and G. Sohi, “Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-Grain
Parallel Processors”, 25th Int. Symp. on Microarchitecture, pp.
236-245, Dec 1992.
[14] M. Franklin and G. Sohi, “The Expandable Split Window
Paradigm for Exploiting Fine-Grain Parallelism”, 19th Int. Symp.
on Computer Architecture, pp. 58-67, Dec 1992.
[15] R. Ho et al., “The Future of Wires”, Proceedings of the
IEEE, Vol. 89, No. 4, pp. 490-504, Apr 2001.
[16] R. Hookway and M. Herdeg, “DIGITAL FX!32: Combin-
ing Emulation and Binary Translation”, Digital Technical Jour-
nal, Vol. 9, No. 1, pp. 3-12, 1997.
[17] G. Kemp and M. Franklin, “PEWs: A Decentralized Dy-
namic Scheduler for ILP Processing”, Int. Conf. On Parallel
Processing, pp. 239-246, Aug 1996.
[18] R. E. Kessler, “The Alpha 21264 Microprocessor”, IEEE
Micro, Vol. 19, No. 2, pp. 24-36, Mar/Apr 1999.
[19] A. Klaiber, "The Technology Behind Crusoe Processors,"
Transmeta Technical Brief, 2000.
[20] W. Lee et al., “Space-Time Scheduling of Instruction-Level
Parallelism on a Raw Machine”, 8th Int. Conf. Architectural Sup-
port for Programming Languages and Operating Systems, pp.
46-57, Oct 1998.
[21] R. Nagarajan et al., “A Design Space Evaluation of Grid
Processor Architectures”, 34th Int. Symp. on Microarchitecture,
pp. 40-51, Dec 2001.
[22] S. Palacharla et al., "Complexity-Effective Superscalar
Processors," 24th Int. Symp. on Computer Architecture, pp. 206-
218, Jun 1997.
[23] E. Rotenberg, et al., “Trace Processors”, 30th Int. Symp. on
Microarchitecture, pp. 138-148, Dec 1997.
[24] J. E. Smith et al., “Astronautics ZS-1 Processor”, 2nd Int.
Conf. Architectural Support for Programming Languages and
Operating Systems, pp. 199-204, Oct 1987.
[25] J. E. Smith, “Instruction-Level Distributed Processing”,
IEEE Computer, Vol. 34, No. 4, pp. 59-65, Apr 2001.
[26] G. Sohi et al., “Multiscalar Processors”, 22nd Int. Symp. on
Computer Architecture, pp. 414-415, Jun 1995.
[27] S. Vajapeyam and T. Mitra, “Improving Superscalar In-
struction Dispatch and Issue by Exploiting Dynamic Code Se-
quences”, 24th Int. Symp. on Computer Architecture, pp. 1-12,
Jun 1997.

