
1

Relational Profiling: Enabling Thread-Level Parallelism in Virtual Machines

Timothy Heil James E. Smith
University of Wisconsin – Madison

Madison, WI 53706
{heilt, jes}@ece.wisc.edu

Abstract

Virtual machine service threads can perform many
tasks in parallel with program execution such as garbage
collection, dynamic compilation, and profile collection
and analysis. Hardware-assisted profiling is essential for
providing service threads with needed information in a
flexible and efficient way. A relational profiling architec-
ture (RPA) is proposed for meeting this goal.

The RPA selects particular instructions for profiling,
and communicates collected information to service
threads through shared memory message queues. The
RPA’s capabilities lead to new profiling applications,
such as concurrent garbage collection.

Simulations indicate that a low-cost implementation of
the RPA should be able to profile four in-flight instruc-
tions simultaneously, and provide storage for eight profile
records. Profiling overhead is less than 0.5% for concur-
rent garbage collection and edge profiling.

1 Introduction

Two important trends are shaping the processing para-
digm of the future. First, technology and the demand for
higher performance are leading to on-chip multithreading,
both within a large single processor and across multiple
on-chip processors. Second, the emergence of binary
translation, dynamic optimization, and virtual machine
(VM) technologies is leading to a re-definition of the tra-
ditional hardware/software interface.

Our research is targeted at this future environment and
is centered on the development and application of co-
designed virtual machines. Co-designed VMs combine
hardware and software to implement a virtual instruction
set architecture on hardware directly supporting an im-
plementation-specific instruction set architecture [10, 11,
12, 18, 20]. Co-designed virtual machines and on-chip
multithreading complement each other very well. In par-
ticular, the co-designed VM paradigm naturally leads to a
form of thread-level parallelism (TLP) where service
threads perform tasks such as dynamic profile collection
and processing, dynamic re-compilation, and garbage
collection in parallel with program execution (which may
also be multithreaded).

Efficient hardware-assisted profiling is central to the
dynamic optimization paradigm. We have taken a top-
down approach to hardware-assisted profiling. The goal is
to develop profiling mechanisms flexible enough to sat-
isfy not only known applications, but also future applica-
tions that will develop as the VM paradigm evolves. At
the top level, the relational profiling architecture (RPA)
summarizes and passes profile information to service
threads in a flexible and efficient way, enabling them to
perform their tasks.

We propose a relational profiling model, which pro-
vides the framework for designing the RPA. The rela-
tional profiling model allows software to form general
queries regarding program behavior. These queries may
request information regarding instruction types, hardware
events, specific instructions, or ranges of instructions, as
well as various combinations. A hardware implementation
processes the queries, collects the requested information,
and passes it back to software in the form of standard
format messages. Service threads read these messages to
perform optimizations and other tasks to support the main
computation thread(s).

The relational profiling model is discussed in Section
2. Section 3 describes the RPA using examples. Section 4
discusses an implementation of the RPA and analyzes
hardware costs at the microarchitectural level. Sections 5
and 6 evaluate the utility and performance of the RPA
using one traditional profiling application, edge profiling,
and one new application, concurrent garbage collection.
Related work is described in Section 7, and Section 8
concludes the paper.

2 The Relational Profiling Model

The relational profiling model can uniformly specify
the collection of a wide range of information. Conceptu-
ally, the relational profiling model is similar to a table in a
relational database. See Figure 1. Each column represents
a dynamic instruction; each row represents a possible
event. This model leads to two basic forms of queries.

1) Instruction-based queries. "For certain instructions,
what events occurred?" These queries select columns
from the table. To collect this information, the profile
mechanism essentially follows the instruction as it flows

2

through the pipeline, collecting event information regard-
ing its behavior. This is similar to ProfileMe [9].

2) Event-based queries. "For some events, what in-
structions were involved?" These queries select rows from
the table. To collect this information, the profile mecha-
nism essentially sits at some point(s) in the pipeline, re-
cording information about instructions that flow past. This
is similar to the counter profiling mechanisms common in
processors today. In contrast to counter-based methods,
however, the relational model can provide detailed infor-
mation about specific dynamic instructions. Nevertheless,
hardware counters may sometimes be useful as an effi-
cient summarizing mechanism.

Hybrids queries are also possible. For instance, the
definition of, “some instructions,” in instruction-based
queries may contain event-related conditions (i.e. “For all
load instructions that miss in the cache...”).

3 The Relational Profiling Architecture

Given the relational model, the goal was to produce a
profile architecture that allows queries to be conveniently
expressed, and that leads to an efficient implementation.
This pursuit led to the development of the relational pro-
filing architecture (RPA).

3.1 RPA Assembly Language

Profile queries are most easily expressed via an assem-
bly language. An RPA assembly language program or
query 1) describes records of information to be collected,
2) specifies a rate at which the information should be col-
lected, 3) describes selection criteria for which a record
should be checked, and 4) indicates actions to be taken for
the selected records.

To facilitate RPA research, an assembler was devel-
oped using the ANTLR tool [16]. Unlike typical assembly
languages, RPA queries invoke a number of machine
level instructions that manage structures in the profile
hardware. These structures are described in Section 3.4.
Examples in Figure 2 describe the RPA and its usage.

An RPA program is broken into a series of queries.
Each query begins with a query header that indicates
which instructions should be profiled, what information
should be collected and how often. Instructions are di-
vided into the eight classes shown in Table 1. For exam-
ple, the statement in Figure 2a specifies that conditional

branch instructions should be profiled. Additional soft-
ware-controllable classification is made available by a
two-bit profile tag per instruction in the program binary
being profiled. This yields a total of 32 instruction
classes. Note that the VM paradigm allows instruction
fields to be added to the implementation ISA. An alterna-
tive is to add additional hardware tables to hold software-
controlled classification information. The statement in
Figure 2c indicates that only stores with a profile tag of
“1” should be profiled.

For the specified instruction classes the query header
indicates the information to be collected and a random
sampling rate. Simple random sampling reduces the rate
at which profile information is collected. The header uses
mnemonics from Table 2 to list the information collected.
Types of collected information include both architected
and implementation information. Each item in Table 2
represents one 32-bit word of information, which is col-
lected and packed into a record by the RPA. The proposed
RPA limits the information collected to seven words per
record. This limits records to a manageable size, and still
supports most profiling tasks. Example 2b collects the PC
and Result 2 (the effective address) of L2 data misses.

Following the query header, query clauses select cer-
tain records and perform actions on them. Each query
clause can perform up to two comparisons to check for
properties within the record. Comparisons operate on 8,16
or 32 bit integer values. Both the size and location of the
data within a record are encoded in the query comparison.

Dynamic Instructions
E

ve
nt

s

Figure 1. The relational profiling model organizes
instructions and events in a table.

a) for opBRANCH * every 256 collect pc misc ;
 send 1 stop;

b) for evL2DMISS * always collect pc res2 ;
 send 2 stop;

c) for opSTORE 1 always collect op1 op2 op3;
 if op1 <> 0 then send 3 stop else stop;

d) for opJMP * opBRANCH * opLOAD *
 opSTORE * opALU * opMULT *
 opFLOAT * opSYS *
 every 1024 collect pc rrate;
 send 4 stop;

Figure 2. Example RPA assembly language
queries.

Table 1 Instruction profiling classes.

Mnemonic Instructions
opJMP Unconditional jumps
opBRANCH Conditional branches
opLOAD Load instructions
opSTORE Store instructions
opALU Simple arithmetic and logical instr.
opMULT Multiply/divide instructions
opFLOAT Floating point operations
opSYS SYSCALL, BREAK, etc.

3

Each comparison may use a 16-bit immediate value. Ta-
ble 3 lists the comparison types available. All standard
relational operations are available. Other comparisons
check for set or cleared bits in the record or perform fur-
ther random sampling. The example in Figure 2c checks if
operand 1 has a nonzero value. If the comparison(s)
match, an action may be performed, or there may be a
branch to another query clause. Otherwise, execution falls
through to the next sequential query clause. Query clauses
can form if-then-else decision trees to compute arbitrary
Boolean expressions. The stop keyword within the query
clause indicates that query is completed.

Query clauses perform profile actions to communicate
collected information to VM software. The most common
action is the message action, indicated by the send key-
word in the assembly code. The message action writes a
copy of the record into a message queue where it can be
examined by a service thread. Message queues are held in
shared memory, and are accessed by service threads using
normal loads and stores. Typically a single service thread
is assigned to each queue to reduce synchronization be-
tween the service threads. The RPA can send different
messages to different queues, so service threads can be
specialized to a particular type of information. If process-
ing power beyond a single service thread is needed, the
RPA can disburse messages to multiple queues so multi-
ple service threads can consume the messages.

A counter action increments a counter embedded in
the query clause itself. This allows software to construct
custom counters for arbitrary events using the query en-
gine. When the counter is close to overflowing, the thread
being profiled is interrupted.

An interrupt action interrupts a thread directly. The in-
terrupt may be synchronous or asynchronous. For syn-
chronous interrupts, the profiled instruction retires, but
subsequent retirement stalls until the query is completed.

3.2 Examples

The four example queries shown in Figure 2 illustrate

how the RPA can specify different profiling applications.
Example a) Edge Profiling -- Edge profiles, counts of

how often conditional branches are taken and not-taken,
are one of the most useful types of profiles, enabling or
improving several important optimizations [2, 4, 26].
These profiles are also relatively easy to collect. Figure 2a
shows the RPA assembly for the query. The query header
indicates the PC and branch outcome (taken/not-taken)
result as well as a branch misprediction flag (misc) for
branch instructions should be collected. Random sam-
pling is used to select one out of 256 branches. This query
performs no comparisons. It simply sends the message to
a service thread(s) that tabulates the information.

Example b) Prefetching -- It has been proposed that
data prefetching can be done by assistant threads or
nanothreads [19] which are essentially types of service
threads. An RPA query for performing this profiling is in
Figure 2b. The RPA is used to monitor L2 cache misses.
For each L2 cache miss the instruction PC and effective
address are collected. These records are sent to a service
thread that executes prefetch instructions on behalf of the
application. This is straightforward if the service thread
and application thread share the L2 cache. In other situa-
tions, a dynamic optimizer running in a service thread
could insert prefetch instructions into the binary, or the
service thread could configure an existing hardware pre-
fetch mechanism.

Example c) Garbage Collection (GC) -- Figure 2c
shows the RPA query used in a low-overhead concurrent
GC algorithm we proposed [13]. GC is the process of
automatically reclaiming memory that is no longer needed
by an application. Details of the algorithm are given in
Section 5. Briefly, to perform GC without stopping the
application, the GC thread must monitor certain applica-
tion stores. This is typically done by adding store-barrier
code around each store in the application, thereby slowing
the application. RPA solves this problem by profiling all
instructions that store references to the heap. By using the
RPA, the time overhead of GC was reduced to 0.6% on
average [13]. In Figure 2c, input operand 1, op1, contains
the value being written. If this value is not null (zero),
then the record is passed to GC service threads that exe-
cute the store barrier code.

Table 3 Comparison types
Mnemonic Comparison
< = > All unsigned integer magnitude

comparisons
BCLR True if bits under mask are clear
BSET True if bits under mask are set
FILTER
 2/4/16/256

Random filtering. Succeed once in
2/4/16/256 executions.

TRUE/FALSE Always/never succeed.

Table 2 Proposed information collectible by RPA.
Mnemonic Information
pc Instruction PC
thread Thread ID
op1, op1up, op2,
 op2up, op3

Input operand values

res1, res1u, res2 Output results
misc Exceptions and branch outcome
ftime Cycle when instruction fetched

frate, drate, irate Fetch, dispatch and issue rates
wlat Execution window latency
elat Execution latency
rtime Cycle when instruction retired
rrate Retire rate

4

Example d) Concurrency Metrics -- ProfileMe [9]
uses paired sampling to estimate concurrency metrics,
such as wasted issue slots in the vicinity of a given in-
struction. The RPA can compute similar concurrency met-
rics without using paired sampling. For instance, the
query in Figure 2 can be used to compute cycles-per-
instruction (CPI) for individual instructions and regions,
such as loops and functions. The query collects the PC
and retirement rate data for all instruction types. Retire-
ment rate data, rrate in Figure 2d and Table 2, contains
two basic pieces of information. The first is the number of
instructions, n, that retired during the same cycle as the
sampled instruction. The second is the number of preced-
ing cycles in which no instructions retired, c. These cycles
can be attributed to the sampled instruction only if it was
the head instruction during these stalled cycles. Hence, c
is zero if the sampled instruction was not the first instruc-
tion retired after the stalled cycles.

The execution cycles for one instruction sample is
computed as C = c+1/n. The total cycles spent executing
the instruction can be computed by summing all the sam-
ples, and dividing by the sample rate. The CPI for one
instruction can be computed as the arithmetic average
over all samples collected for that instruction.

The total time spent in a region of code can be com-
puted by summing the total cycles for each instruction in
the region. The CPI over a region can be computed using
an arithmetic average weighted by relative instruction
execution frequency.

To locate bottlenecks, RPA collects not only the num-
ber of retirement stall cycles (c), but categorizes stall cy-
cles by the reason for the stall. Example categories are an
empty window, the head instruction not yet issued, or the
head instruction not yet completed. Because stalls often
have multiple causes, information gained from such cate-
gorization is usually approximate. The RPA can collect
stall information at other stages in the pipeline as well.

3.3 Simplifications

In the example applications given above, the queries
are very simple -- one query clause for each, and message
passing is used exclusively. We expect this to be the
common case. Essentially, the query engine filters unnec-
essary messages, and passes only the necessary records on
to service threads for more involved processing. This re-
duces the work for the service threads. A lower-cost de-
sign could replace the query engine with a table able to do
a small fixed number of comparisons per record, followed
by a message action.

In addition, messaging may make counter actions re-
dundant. Counters can be maintained by service thread
software. While this is less efficient than the counter in-
crement operation, simple random sampling can reduce
counter increments to a reasonable rate and still maintain
good counter accuracy. Rare events use a high frequency

sampling rate, while common events require a low sam-
pling rate.

3.4 Low-Level Architecture

Figure 3 shows an implementation of the RPA. Spe-
cific queries are formed by software -- virtual machine
software, using the query language as described in the
preceding section. The assembler divides query process-
ing into two components shown in the figure. A configu-
ration for the profile control table (PCT) is derived from
the query headers. The PCT is a set of architected profile
control registers (PCRs). Software loads the PCT using a
special SET_PCR instruction, also used to configure other
parts of the RPA.

Each query clause generates one query instruction to
be executed by the query engine, a simple processor ca-
pable of performing the comparisons and actions dictated
by the query. Query instructions may be stored in mem-
ory, or, to reduce implementation costs, in a special-
purpose table constructed out of PCRs.

3.4.1 The Profile Control Table (PCT). The PCT
implements two PCRs for each of the 32 instruction
classes. The first PCR sets the sampling rate and selects
information from Table 2 to be collected. The second
PCR contains the starting query PC (QPC), the address of
the initial query instruction for the query engine to exe-
cute.

The PCT also controls event-based profiling. Theoreti-
cally, event-based profiling hardware could be dispensed
with entirely by collecting instruction records and using
the query engine to select only those instructions with the
desired event. For rare events this yields very long profile
times, however. The proposed RPA specifies event-based
profiling for ITLB, DTLB and L2 cache misses. Two
PCRs are provided for each of these three events. Due to
implementation constraints, only a subset of the informa-

collect
PCT

Query
Engine

select

VM

communicate

Pipeline

RPA specify

SET_PCR

A
C

T
IO

N

Profile Network

Figure 3. The RPA contains the profile control table
(PCT) and the query engine.

5

tion in Table 2 may be collected for event-based profiling.
The processor implementation may not detect an instruc-
tion needing to be profiled until the event occurs, which is
likely to be too late to collect information from earlier
pipeline stages. At least the instruction PC, a cycle count,
and the effective address are expected to be available.

3.4.2 The Query Engine. Profile records collected at
the behest of the PCT are passed to the query engine,
which begins executing query instructions at the initial
QPC location indicated in the PCT. Query instructions
perform the comparisons, branches and actions specified
by the equivalent query clauses.

Query instructions are encoded in a 64-bit two-
comparison format shown in Figure 4. Instructions encode
two comparisons, a 16 bit immediate value, branch target
and an action. The query instruction reads two values
from the record. To reduce implementation costs, one
even word and one odd word from the profile record are
selected.

The application program continues to execute in paral-
lel with the query engine, and multiple comparisons may
be executed in parallel. To simplify the implementation
there is no guarantee of the order in which separate que-
ries are executed or completed.

To implement message actions, the query engine man-
ages message queues in memory. Each message uses
eight words of memory, and the size of the queue is con-
figurable up to 128 messages. To write a record into a
queue, the query engine writes the seven words of the
record. The eighth word is used to indicate that the record
is available. To read a record, a service thread polls the
ready word, reads the record from memory, and clears the
ready word. The service thread also informs the query
engine how many messages have been read by storing the
total messages read into the buffer read status word in
memory. The buffer read status word is examined peri-
odically by the query engine. The query engine uses the
number of messages read, along with the number written
(which it knows), to determine if space is available for
another message, reducing polling by the query engine.

4 RPA Implementation and Cost

The query engine pipeline that we simulated is shown
in Figure 5. The query engine is designed to execute up to
four queries simultaneously using a simple barrel-and-slot
design [21]. The pipeline is four stages long, and one
query instruction is executed for each active query once
every four cycles in a round-robin fashion. The barrel-
and-slot design eliminates all interlocks and dependences
in the pipeline. As the profile records fill, the processing
power of the query engine increases to one query instruc-
tion per cycle.

The first pipeline stage fetches the query instruction
from the small query instruction array. At 512 bytes, this
cache holds 64 instructions, which appears to be plenty.
Decode is performed in stage 2. The record buffers are
also accessed in this cycle. They are word-interleaved; the
query engine accesses one word from the even bank, and
one word from the odd bank each cycle. The query ALU
performs the comparison(s) in stage 3 using a masked
magnitude comparator. The fourth stage selects and drives
the next query PC back to the fetch stage. Query actions
are also initiated in the write-back stage.

An interconnection network carries profile information
from the pipeline to the profile buffer. Though a complete
design of this network is beyond the scope of this paper,
the size of the network will scale linearly with the number
of simultaneously profiled instructions [9]. The latency of
this network is not a concern; the profile buffers can be
relatively distant from the core pipeline.

A typical implementation contains a number of identi-
cal profile networks to carry information from the pipe-
line to the profile buffers. The number of networks deter-
mines how many in-flight instructions can be profiled
simultaneously. Instructions are selected for profiling
during instruction dispatch, and a profile network and
profile buffer are allocated to the instruction. Instruction
dispatch stalls if either is unavailable. Hence enough of
each should be provided to make this a rarity. When the
instruction retires the profile network is freed, but the
profile buffer remains allocated until the query completes.

The fixed costs of the RPA are the 280-byte PCT and

2236712 164 12

Compare 2 Immediate

unused ActionCompare 1
Source
Words

Branch
Target

Format

Figure 4. Query instructions contain up to two
comparisons, a branch and an action.

Query
I-Cache

Profile
Buffers

Decode

Fetch Read Record
Decode

Execute Write
back

Figure 5. The query engine four stage pipeline.

6

the query engine with its 512B I-cache. Two remaining
important cost variables are the number of profile net-
works and the number of 32-byte profile buffers. These
are evaluated in the following sections.

5 Simulated Applications of the RPA

To determine how many profile networks and buffers
are needed for low-overhead profiling, we simulated two
example applications. These are the edge profiling and the
concurrent GC applications shown in Figure 2.

The concurrent GC algorithm is described in detail in
[13]. A short overview is provided here. Object-oriented
languages such as Java organize memory into objects that
contain references to other objects. This forms a graph
with objects as nodes and references as directed arcs be-
tween the nodes. Tracing GC finds all objects reachable,
directly or indirectly, from a set of root references --
object references in global or local variables. This reach-
ability analysis involves marking objects directly reach-
able from the roots, and then iteratively marking all ob-
jects reachable (via references) from previously marked
objects. This iterative processes terminates when no more
unmarked objects can be reached from marked objects. At
this point all unmarked objects are unreachable by the
application and can be collected, freeing the storage space
for future objects.

Concurrent GC algorithms must handle modifications
to the object graph performed concurrently by the applica-
tion to avoid erroneously collecting reachable objects.
The RPA supports this function by profiling store instruc-
tion addresses and values. This information is sent to
store barrier service threads that perform simple book
keeping operations for the garbage collector, running on
another service thread. Storing a reference to an object
causes a store barrier thread to mark the object live so it
will not be collected. This is called an incremental update
mechanism in Wilson’s survey of GC algorithms [24].

Only instructions that store object references need to
be profiled. The VM distinguishes these stores from oth-
ers using the profile tag described in Section 3.1. In addi-
tion, if a null reference store is performed, no profiling is
needed. Hence, the query discards profile records in
which the stored value is null (zero). Because the GC al-
gorithm relies on observing every non-null reference
store, random sampling is not appropriate.

The result is an extremely efficient garbage collector.
Using the RPA, GC overhead is reduced to 0.6% of the
total runtime [13].

5.1 Simulation Methodology

Simulation experiments are based on the Strata VM re-
search infrastructure and the SimpleMP simulator [17].
SimpleMP is a version of the SimpleScalar [3] execution-
driven timing simulator that was extended to simulate

multiple processors. We extended it further to simulate
multithreaded processors and the RPA. The Strata VM
contains a static compiler from Java bytecodes to Sim-
pleScalar PISA assembly code. The Strata compiler is
itself written in Java and forms one of our benchmarks.

5.2 The Strata Compiler

The Strata compiler performs typical optimizations
such as global register allocation, constant propagation,
local common sub-expression elimination and global copy
propagation. It also performs Java specific optimizations
aimed at eliminating null-pointer checks, type checks and
array bounds checks.

The runtime system, which contains the GC algorithm,
is written in C. Running a Java application involves com-
piling the bytecodes using the Strata compiler, and then
linking the resulting assembly with the runtime system.

5.3 Benchmarks

Six benchmarks shown in Table 4 are simulated. The
first is the Strata compiler. The other five are taken from
the SPECjvm98 suite. They are jess, an expert system,
raytrace, a 3-D rendering tool, db, a simple relational
database, javac, the Java compiler, and jack, a parser gen-
erator. Simulations began at about 10 million instructions
before the first GC, until completion, except for javac,
which was terminated at 200M cycles.

5.4 Processor models

Ways to exploit thread-level parallelism include chip
multiprocessing (CMP) [15] and multithreading. The par-
ticular design explored in this paper, Figure 6, uses fine-
grain multithreading (FGMT) [1] and CMP. On one chip,
there is a large high-ILP processor supplemented by three
service processors. The computation of greatest concern,
the application, runs on the high-ILP processor. Lower
priority VM tasks run on three service processors concur-
rently with application execution. One service processor
consumes the edge profile information. A second proces-
sor consumes the store-barrier records for the garbage
collector. A third service processor executes the garbage
collector.

Parameters for the processor models are shown in Ta-

Table 4 Benchmark characteristics.
Duration Inputs

Instr.
(M)

Cycles
(M)

strata Database 517 222
db input/db2 input/src3 206 79
jack 10 648 234
javac -verbose JavaLex.java 432 190
jess zebra.clp wordgame.clp 596 220
raytrace 50 500 time-test.model 246 84

7

ble 5. The ILP processor is an 8-way super-scalar, out-of-
order processor, running only one thread. The service
processors are designed to maximize throughput per unit
area, rather than single-thread performance. Each service
processor is a six stage scalar pipeline capable of running
three threads using FGMT. To keep these processors
small and simple, they have small L1 caches and predict-
not-taken branch prediction. All three processors connect
to a perfect L2 with a 12 cycle round-trip access time.

6 Results

This section uses simulations to determine the number
of profile buffers and networks needed by the profiling
hardware. Further simulations examine the performance
overhead of profiling and the sampling rates that the RPA
implementation can support.

6.1 Resource Usage

 Figure 7 shows results from simulating the edge pro-
filing and GC queries from Figure 2. One out of 256
branches are sampled. Profile resources were essentially
unrestricted with 32 profile buffers and 32 profile net-
works. The histograms on the left show the percentage of
cycles (y-axis) in which at least x profile buffers were in
use (x-axis).

The benchmarks raytrace, db and jess stress the RPA
very little, rarely using more than a single profile buffer.
Hence we omitted these plots. The three benchmarks
strata, javac and jack load the RPA more heavily. We
observe that eight profile buffers, 256 bytes of storage,
appear to be sufficient. Only jack can utilize more than
eight buffers, although eight are nearly enough.

 The right histograms show the number of profiled in-
structions simultaneously in flight. The histograms show
the percentage of cycles (y-axis) in which at least x pro-
filed instructions were in flight (x-axis). This includes
profiled instructions between the dispatch and retire
stages. Under the interconnect model described in Section
4, one profile network is need for each in-flight instruc-
tion. The histograms are very similar to the left histo-

grams, though they are slightly lower because profile
buffers remain allocated longer than the flight time of an
instruction. The benchmarks strata and javac should run
well with four profile networks. The jack benchmark ap-
pears to need as many as eight. Direct measurement of
profiling overhead in the next section shows far fewer
networks are actually needed.

6.2 Profiling Performance Overhead

Based on the previous results, the number of profile
buffers was reduced to eight, and the number of profile
networks was varied from one to four. Figure 8a plots the
percentage of cycles for which dispatch was stalled due to
limited RPA resources. Only jack and strata are plotted in
Figure 8; javac generally shows about half the stalls of
strata, and the other benchmarks show very few or no
stalls. Other simulation results not presented here indicate
that limited profile networks cause these stalls. Strata
stalls vary from 3.8% with one profile network, to 0.5%
with four networks. Jack stalled dispatch 12.4% of the
time with a single profile network. Despite the results in
Figure 7, however, stalling was reduced to only 1.7% with
four networks.

Figure 8b plots the percent slow-down resulting from
these stalls, as compared to the unrestricted results in Sec-
tion 6.1. Note that the y-axis scale changes between Fig-
ures 7 and 8; generally about half of the dispatch stalls are
covered by the out-of-order execution window. Three
profile networks reduce profiling overhead below 0.5%
for all benchmarks. Four networks make it effectively
zero. In fact, jack shows a slight speedup (negative slow-
down), likely resulting from system-level interactions
with the garbage collector.

To understand how profiling overhead varies with the
sample rate, four sampling rates for edge profiling were
simulated; rates simulated were one in 32, 64, 128 and
256 branches. Note that the GC query is still included.
Figure 8c plots the slow-downs for these rates. Strata and
jack show a mild increase in profiling overhead as the
profiling rate is increased. This suggests that the RPA

Table 5 Processor model parameters
Parameter High-ILP

Proc.
Service
Proc.

Units

Number 1 3 Proc.
Threads 1 3 Threads
Width 8 1 Instr.
Instr. Win. 128 (in-order) Instr.
Br. Pred. 4KB gshare Not-taken
Min. penalty 8 4 Cycles
I-Cache 32KB 2-way 1KB 4-way
D-Cache 64KB 4-way 2KB 4-way
Unified L2 Perfect

Application
(1 thread)
High-ILP

Processor
(8-way
O-O-O)

Unified L2

GC algorithm
(1 thread)

Store
barrier

(3 threads)

Edge
profiling

(1 thread)

RPA Branch recordsStore records

Service
Processors

Figure 6. The system on a chip

8

Figure 7. Resources used by the RPA for strata,
jack and javac.

should monitor its own behavior. Sample rates can be
throttled back if dispatch stalls increase.

Table 6 shows the load that these rates place on the
profile mechanism. Table 6 contains the instructions exe-
cuted per profiled instruction, and the cycles per profiled
instruction. The instructions executed per cycle (IPCs) are
generally a little above two for these benchmarks and this
CPU model, so instructions-per-sample is about twice the
cycles-per-sample.

Comparing Table 6 to Figure 8 shows jack can profile
about one in 41 instructions, or one sample every 15 cy-
cles. At higher rates, profiling begins to stall the proces-
sor. Strata also has measurable stalls for higher sampling
rates, though Table 6 shows many fewer instructions are
profiled than jack due to variation within the benchmark.
Stalls in strata occur during bursts of profiling for the GC
application.

6.3 Reducing Profile Stalls

The above results are based on a network model that
collects information throughout the pipeline. However,
information available at instruction retirement may often
be sufficient. Such information could include the instruc-
tion PCs, branch targets and directions, and effective ad-

dresses. If a profile record only contains retire-time in-
formation, it is wasteful to allocate a profile network for
the entire lifetime of the instruction.

This leads to a model that supports both cheap and ex-
pensive profiles. A cheap profile only contains informa-
tion available during retirement. Instructions profiled this
way must allocate profile buffers, but need not allocate a
profile network. An expensive profile includes informa-
tion not available during retirement and must allocate a
profile network, as assumed in the above results. Mecha-
nisms that collect all information for all instructions, like
ProfileMe, cannot take advantage of this optimization.

a)

b)

c)

Figure 8. Profiling overhead for the strata and
jack benchmarks. a) Percentage of cycles that the
RPA stalled dispatch. b) Slow-down resulting from
profiling. c) Variation in the slow-down with the
sampling rate.

Table 6 Profiling rates for different branch
sampling rates.

Instr. per sample Cycles per sample
1/32 1/64 1/128 1/256 1/32 1/64 1/128 1/256

strata 110 149 182 205 47 64 78 88
db 113 173 237 290 44 67 91 112
jack 35 38 41 42 13 14 15 15
javac 128 212 317 420 57 94 139 184
jess 166 299 499 750 62 111 185 277
ray 289 468 676 869 99 160 230 296

9

7 Related work

Special-purpose mechanisms have been proposed for
many of the profiling operations discussed above. These
require special hardware, software, or both.

Conte et al. propose two hardware methods [6, 7] for
edge profiling. The first samples the values of the branch-
target-buffer and branch prediction array to derive esti-
mates of the edge profile. The second method improves
the accuracy using a small special-purpose array, the Pro-
file Buffer, to count taken and not-taken branches indexed
by PC. In both methods the tables are periodically read by
software using interrupts.

Merten et al. [14] develop a scheme for identifying hot
spots in programs. Their scheme works by collecting
branch taken/not-taken counts in the Branch Behavior
Buffer (BBB), a structure similar to the Profile Buffer,
though much larger. The BBB also identifies frequently
seen branches and uses this information to identify hot
spots. A separate structure, the Monitor Table prevents
hot spot re-detection.

As noted earlier, Song and Dubois [19] investigate
data prefetching with assisted execution, a service thread-
like paradigm. Both sequential and stride prefetching are
implemented with assisted execution. Simultaneous Sub-
ordinate Microthreads (SSMT) [5] is another paradigm
similar to service threads. SSMT executes multiple micro-
threads in parallel with the application using simultane-
ous multithreading [8, 21, 25].

Several elements of the ProfileMe mechanism [9] also
appear in the RPA. ProfileMe provides a simplified form
of instruction-based profiling. The hardware picks one
instruction from the stream, using a software settable
decrementing counter. Simple random sampling is per-
formed by resetting the counter to randomized values.
ProfileMe allows information to be collected for both
retiring and squashed instructions.

To keep costs low, ProfileMe keeps sampling rates
low, e.g. one sample every 103 to 105 instructions, much
lower than the one in forty instructions sampled by the
RPA. Although more research is needed to determine
whether higher sampling rates will benefit dynamic opti-
mization, some non-traditional applications, such as con-
current GC, will require a much higher sampling rate.

ProfileMe also supports paired sampling, a simple and
powerful form of clustered sampling. Paired sampling
collects two instruction samples close to each other using
a major and minor sampling interval. Paired sampling is
useful for measuring interactions between instructions.

RPA is not incompatible with paired sampling, and fu-
ture research will consider adding paired sampling to the
RPA. Paired sampling does have some drawbacks. First,
it will likely increase the number of in-flight instructions
that must be tracked. Second, paired sampling can further
increase the profiling latency if representative samples

must be gathered for all nearby pairs of instructions. Fur-
thermore, the RPA can gather some of the same informa-
tion as paired sampling by collecting the proper per-
instruction data, as illustrated by the concurrency metric
example in Section 3.1.

A method described in a patent by Westcott and White
[23] is also very similar to both RPA and ProfileMe. The
processor uses a counter to randomly select instructions
for profiling. Like ProfileMe, a standard profile record is
collected. Like RPA’s query engine, triggers can be used
to scan for records of interest. Also like RPA, the records
are stored to a buffer in memory. However, the buffer is
read following an interrupt when the buffer fills.

Contemporaneous with this work, Zilles and Sohi de-
veloped a profiling mechanism with many similarities to
the RPA [27]. It selects instructions for profiling based on
their opcode class and the low-order bits of the instruction
PC using a hardware filter similar to the PCT. Collected
information is held in a sample buffer (like RPA’s profile
buffers), until examined by a programmable profile co-
processor. This co-processor summarizes information
before it is relayed to software via an interrupt. The co-
processor is a more complete processor than the query
engine, having registers, a private data memory and an
associative array for hash tables. The RPA off-loads much
of this computation to service threads.

The RPA has some additional capabilities. Working in
the context of service threads leads RPA to focus on
communicating profiled information through shared
memory. All previous profile mechanisms use interrupts
to record or sample profiled information. More impor-
tantly, the RPA can guarantee some instructions are al-
ways profiled. This allows the profiler to be used for new
applications that require correctness.

8 Conclusions

The relational profiling architecture (RPA) provides a
powerful and flexible profiling mechanism. It can enable
the same optimizations as several previous mechanisms,
and has additional capabilities. Since the RPA can
guarantee that certain instructions are always profiled it is
useful when the information is required for correctness.
Working in the context of service threads leads to mes-
sages communicating profile information, which increases
the sampling rate and lowers profiling overhead, com-
pared to previous interrupt-driven approaches. This leads
to new applications for hardware-assisted profilers such
as concurrent garbage collection.

Simulation results shed light on the implementation
requirements and profiling overhead of the RPA. Profiling
four simultaneous in-flight instructions and storing eight
profile records is sufficient to make losses negligible.
Eight profile records require only 256 bytes of storage.
The profile interconnection network, which scales linearly
with the number of simultaneously profiled instructions,

10

appears to be the greatest cost of profiling. The PCT re-
duces this cost by selectively profiling only the particular
data that is needed. This reduces the size of the profile
records, and could also be used to intelligently allocate
profile resources.

The PCT allows the sampling rate to be tuned to match
the frequency with which the profiled event occurs. For
common events, low sampling rates reduce the bandwidth
required. For rare events, high sampling rates reduce the
time required to obtain a representative sample. In addi-
tion, different benchmarks stress the profiling mechanism
to different degrees. This suggests that the RPA should
monitor its own behavior to adapt the sampling rate to the
application.

The query engine is a powerful and relatively low-cost
mechanism for selecting and communicating collected
profile information. Queries are generally simple and re-
sult in sending the profile record to a service thread. In
fact, a simple table-driven engine which can do a small
fixed number of comparisons, conditionally followed by
sending the record to a service thread may be sufficient.
The RPA effectively enables a virtual machine to exploit
the abundant thread-level parallelism expected to be
available on-chip in the future. This configuration will
reduce the overheads of VM technology by running VM
tasks such as dynamic compilation and garbage collection
concurrently.

Acknowledgements

This work was supported by NSF Grant CCR-
9900610, by Sun Microsystems, by an IBM Partnership
Award, and by Intel Corporation.

References

[1] R. Alverson et al., “The Tera Computer System,” 1990 Intl.
Conf. on Supercomputing, pp. 1-6, 1990.

[2] R. Bodik, R. Gupta, M. L. Soffa, “Complete Removal of
Redundant Expressions,” 1998 Conf. on Programming
Language Design and Implementation, pp.1-14, June 1998.

[3] D. C. Burger, T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Univ. of Wisconsin - Madison Comp. Sci.
Tech. Rep. #1342, June 1997.

[4] P. P. Chang, S. A. Mahlke, W. W. Hwu, “Using Profile
Information to Assist Classic Code Optimizations,”
Software-Practice and Experience, vol. 21, pp. 1301-1321,
Dec. 1991.

[5] R. S. Chappel et al., “Simultaneous Subordinate
Microthreading (SSMT),” 26th Intl. Symp. on Computer
Architecture, pp. 186-195, May 1999.

[6] T. M. Conte, B. A. Patel, J. S. Cox, “Using Branch
Handling Hardware to Support Profile-Driven
Optimization,” 27th Intl. Symp. on Microarchitecture, pp.
12-21, Nov. 1994.

[7] T. M. Conte, K. N. Menezes, M. A. Hirsch, “Accurate and
Practical Profile-Driven Compilation Using the Profile
Buffer,” 29th Intl. Symp. on Microarchitecture, pp. 36-45,
Dec. 1996.

[8] G. E. Daddis, Jr., H. C. Torng, “The Concurrent Execution
of Multiple Instruction Streams on Superscalar Processors,”
Intl. Conf. on Parallel Processing, pp. I:76-83, Aug. 1991.

[9] J. Dean et al., “ProfileMe: Hardware Support for
Instruction-Level Profiling on Out-of-Order Processors,”
30th Intl. Symp. on Microarchitecture, pp. 292-302, Dec.
1997.

[10] K. Ebcioglu, E. R. Altman, “DAISY: Dynamic
Compilation for 100% Architectural Compatibility,” IBM
Research Rep. RC 20538, Aug. 1996.

[11] M. Gschwind et al., “Dynamic and Transparent Binary
Translation,” Computer, 33(3):54-59, Mar. 2000.

[12] A. Klaiber, “The Technology Behind Crusoe Processors,” a
Transmeta technical brief, 2000.

[13] T. Heil, J. E. Smith, “Concurrent Garbage Collection Using
Hardware Assisted Profiling,” to appear Intl. Symp. on
Memory Management, Oct. 2000.

[14] M. C. Merten et al., “A Hardware-Driven Profiling Scheme
for Identifying Program Hot Spots to Support Runtime
Optimization,” 26th Intl. Symp. on Computer Architecture,
pp. 136-147, May 1999.

[15] K. Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” 7th Intl. Symp. on Architectural Support
for Programming Languages and Operating Systems, pp. 2-
11, Oct. 1996.

[16] T. Parr, ANother Tool for Language Recognition
(ANTLR), available at http://www.ANTLR.org.

[17] R. Rajwar, A. Kagi, J. Goodman, private correspondence.
The SimpleMP simulator was produced by the Galileo
group at the University of Wisconsin - Madison.

[18] J. E. Smith, T. Heil, S. Sastry, T. M. Bezenek, “Achieving
High Performance via Co-Designed Virtual Machines,”
Intl. Workshop on Innovative Architecture, pp. 77-84, Oct.
1999.

[19] Y. H. Song, M. Dubois, “Assisted Execution,” Tech. Rep.
CENG 98-25, EE-Systems, University of Southern
California, Oct. 1998.

[20] “MAJC Architecture Tutorial”, Sun Microsystems White
Paper, May 1999.

[21] J. E. Thornton, “Design of a Computer – The Control Data
6600,” Scott, Foresman and Co., 1970.

[22] D. M. Tullsen et al., “Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous
Multithreading Processor,” 23rd Intl. Symp. on Computer
Architecture, pp. 191-202, May 1996.

[23] D. W. Westcott, V. White, “Instruction Sampling
Instrumentation,” U.S. Patent #5151981, assigned to IBM,
Sept. 1992.

[24] P. R. Wilson, “Uniprocessor Garbage Collection
Techniques,” 1992 Intl. Workshop on Memory
Management, pp. 1-42, Sept. 1992.

[25] W. Yamamoto et al., “Performance Estimation of
Multistreamed, Superscalar Processors,” 27th Hawaii Intl.
Conf. on System Sciences, pp. I:105-204, Jan. 1994.

[26] C. Young, D. S. Johnson, D. R. Karger, M. D. Smith,
“Near-Optimal Intraprocedural Branch Alignment,” 1997
Conf. on Programming Language Design and
Implementation, pp. 183-193, June 1997.

[27] C. Zilles, G. Sohi, “A Programmable Co-processor for
Profiling,” to appear 7th Intl. Symp. on High Performance
Computer Architecture, Jan. 2001.

