
Out-of-Order Vector Architectures

Roger Espasa, Mateo Valero�

Computer Architecture Dept.

U. Polit�ecnica de Catalunya-Barcelona

froger,mateog@ac.upc.es

http://www.ac.upc.es/hpc

James E. Smithy

Dept. of Electrical & Computer Engr.

University of Wisconsin-Madison

Madison, WI 53706

jes@ece.wisc.edu

Abstract

Register renaming and out-of-order instruction is-
sue are now commonly used in superscalar processors.
These techniques can also be used to signi�cant advan-
tage in vector processors, as this paper shows. Perfor-
mance is improved and available memory bandwidth
is used more e�ectively. Using a trace driven simu-
lation we compare a conventional vector implementa-
tion, based on the Convex C3400, with an out-of-order,
register renaming, vector implementation. When the
number of physical registers is above 12, out-of-order
execution coupled with register renaming provides a
speedup of 1.24{1.72 for realistic memory latencies.
Out-of-order techniques also tolerate main memory la-
tencies of 100 cycles with a performance degradation
less than 6%. The mechanisms used for register
renaming and out-of-order issue can be used to sup-
port precise interrupts { generally a di�cult problem
in vector machines. When precise interrupts are im-
plemented, there is typically less than a 10% degrada-
tion in performance. A new technique based on reg-
ister renaming is targeted at dynamically eliminating
spill code; this technique is shown to provide an extra
speedup ranging between 1.10 and 1.20 while reducing
total memory tra�c by an average of 15{20%.

1 Introduction

Vector architectures have been used for many years
for high performance numerical applications { an area
where they still excel. The �rst vector machines were
supercomputers using memory-to-memory operation,
but vector machines only became commercially suc-
cessful with the addition of vector registers in the
Cray-1 [12]. Following the Cray-1, a number of vec-
tor machines have been designed and sold, from su-
percomputers with very high vector bandwidths [8]
to more modest mini-supercomputers. More recently,

�This work was supported by the Ministry of Education of
Spain under contract 0429/95, by CIRIT grant BEAI96/II/124
and by the CEPBA.

yThis work was supported in part by NSF Grant MIP-
9505853.

the value of vector architectures for desktop applica-
tions is being recognized. In particular, many DSP
and multimedia applications { graphics, compression,
encryption { are very well suited for vector implemen-
tation [1]. Also, research focusing on new processor-
memory organizations, such as IRAM [10], would also
bene�t from vector technology.

Studies in recent years [13, 5, 11], however, have
shown performance achieved by vector architectures
on real programs falls short of what should be achieved
by considering available hardware resources. Func-
tional unit hazards and conicts in the vector register
�le can make vector processors stall for long periods of
time and result in latency problems similar to those in
scalar processors. Each time a vector processor stalls
and the memory port becomes idle, memory band-
width goes unused. Furthermore, latency tolerance
properties of vectors are lost: the �rst load instruc-
tion at the idle memory port exposes the full memory
latency.

These results suggest a need to improve the memory
performance in vector architectures. Unfortunately,
typical hardware techniques used in scalar processors
to improve memory usage and reduce memory latency
have not always been useful in vector architectures.
For example, data caches have been studied [9, 6];
however, the results are mixed, with performance gain
or loss depending on working set sizes and the fraction
of non-unit stride memory access. Data caches have
not been put into widespread use in vector processors
(except to cache scalar data).

Dynamic instruction issue is the preferred solution
in scalar processors to attack the memory latency
problem by allowing memory reference instructions to
proceed when other instructions are waiting for mem-
ory data. That is, memory reference instructions are
allowed to slip ahead of execution instructions. Vec-
tor processors have not generally used dynamic in-
struction issue (except in one recent design, the NEC
SX-4 [14]). The reasons are unclear. Perhaps it has
been thought that the inherent latency hiding advan-
tages of vectors are su�cient. Or, it is possibly be-
cause the �rst successful vector machine, the Cray-
1, issued instructions in order, and additional innova-
tions in vector instruction issue were simply not pur-
sued.

Besides in-order vector instruction issue, traditional

vector machines have had a relatively small number of
vector registers (8 is typical). The limited number of
vector registers was initially the result of hardware
costs when vector register instruction sets were origi-
nally being developed; today the small number of reg-
isters is generally recognized as a shortcoming. Reg-
ister renaming, useful for out-of-order issue, can come
to the rescue here as well. With register renaming
more physical registers are made available, and vector
register conicts are reduced.

Another feature of traditional vector machines is
that they have not supported virtual memory { at
least not in the fully exible manner of most modern
scalar processors. The primary reason is the di�culty
of implementing precise interrupts for page faults { a
di�culty that arises from the very high level of con-
currency in vector machines. Once again, features for
implementingdynamic instruction issue for scalars can
be easily adapted to vectors. Register renaming and
reorder bu�ers allow relatively easy recovery of state
information after a fault condition has occurred.

In this paper, we show that using out-of-order is-
sue and register renaming techniques in a vector pro-
cessor, performance can be greatly improved. Dy-
namic instruction scheduling allows memory latencies
to be overlapped more completely { and uses the valu-
able memory resource more e�ciently in the process.
Moreover, once renaming has been introduced into the
architecture, it enables straightforward implementa-
tions of precise exceptions, which in turn provide an
easy way of introducing virtual memory, without much
extra hardware and without incurring a great per-
formance penalty. We also present a new technique
aimed at dynamically eliminating redundant loads.
Using this technique, memory tra�c can be signi�-
cantly reduced and performance is further increased.

2 Vector Architectures and Implemen-
tations

This study is based on a traditional vector processor
and numerical applications, primarily because of the
maturity of compilers and the availability of bench-
marks and simulation tools. We feel that the general
conclusions will extend to other vector applications,
however. The renaming, out-of-order vector architec-
ture we propose is modeled after a Convex C3400. In
this section we describe the base C3400 architecture
and implementation (henceforth, the reference archi-
tecture), and the dynamic out-of-order vector archi-
tecture (referred to as OOOVA).

2.1 The C3400 Reference Architecture

The Convex C3400 consists of a scalar unit and an
independent vector unit. The scalar unit executes all
instructions that involve scalar registers (A and S reg-
isters), and issues a maximum of one instruction per
cycle. The vector unit consists of two computation
units (FU1 and FU2) and one memory accessing unit

Fetch

Decode&Rename

MEMORY

@

L/S
unit

Reorder
Buffer

released regs

S-regs A-regs V-regs
mask-regs

S A M V

Figure 1: The Out-of-order and renaming version of
the reference vector architecture.

(MEM). The FU2 unit is a general purpose arithmetic
unit capable of executing all vector instructions. The
FU1 unit is a restricted functional unit that executes all
vector instructions except multiplication, division and
square root. Both functional units are fully pipelined.
The vector unit has 8 vector registers which hold up
to 128 elements of 64 bits each. The eight vector regis-
ters are connected to the functional units through a re-
stricted crossbar. Pairs of vector registers are grouped
in a register bank and share two read ports and one
write port that links them to the functional units. The
compiler is responsible for scheduling vector instruc-
tions and allocating vector registers so that no port
conicts arise. The reference machine implements vec-
tor chaining from functional units to other functional
units and to the store unit. It does not chain memory
loads to functional units, however.

2.2 The Dynamic Out-of-Order Vector
Architecture (OOOVA)

The out-of-order and renaming version of the refer-
ence architecture, OOOVA, is shown in �gure 1. It is
derived from the reference architecture by applying a
renaming technique very similar to that found in the
R10000 [16]. Instructions ow in-order through the
Fetch and Decode/Rename stages and then go to one
of the four queues present in the architecture based
on instruction type. At the rename stage, a mapping
table translates each virtual register into a physical
register. There are 4 independent mapping tables, one
for each type of register: A, S, V and mask registers.
Each mapping table has its own associated list of free
registers. When instructions are accepted into the de-
code stage, a slot in the reorder bu�er is also allocated.
Instructions enter and exit the reorder bu�er in strict
program order. When an instruction de�nes a new
logical register, a physical register is taken from the

Issue RF ALU Wb
A-regs

Issue RF
S-regs

EX 1 WbEX 2

Issue RF

...

...
V-regs

 RXBAR RXBAR EX 0 EX 2EX 1

Rename

Decode &Fetch

Issue RF
MEM ...

... @ Range

Calculation

Dependency

Calculation

TLB 0 TLB 1 TLB 2 TLB 3

 REQ 0 REQ 1 REQ 2

Figure 2: The Out-of-order and renaming main in-
struction pipelines.

free list, the mapping table entry for the logical regis-
ter is updated with the new physical register number
and the old mapping is stored in the reorder bu�er
slot allocated to the instruction. When the instruc-
tion commits, the old physical register is returned to
its free list. Note that the reorder bu�er only holds a
few bits to identify instructions and register names; it
never holds register values.

Main Pipelines

There are four main pipelines in the OOOVA architec-
ture (see �g. 2), one for each type of instruction. After
decoding and renaming, instructions wait in the four
queues shown in �g. 1. The A, S and V queues monitor
the ready status of all instructions held in the queue
slots and as soon as an instruction is ready, it is sent
to the appropriate functional unit for execution. Pro-
cessing of instructions in the M queue proceeds in two
phases. First, instructions proceed in-order through
a 3 stage pipeline comprising the Issue/Rf stage, the
range stage and the dependence stage. After they have
completed these three steps, memory instructions can
proceed out of order based on dependence information
computed and operand availability (for stores).

At the Range stage, the range of all addresses po-
tentially modi�ed by a memory instruction is com-
puted. This range is used in the following stage
for run-time memory disambiguation. The range
is de�ned as all bytes falling between the base ad-
dress (called Range Start) and the address de�ned as
baseaddress+(V L�1)�V S (called Range End), where
V L is the vector length register and V S is the vec-
tor stride register. Note that the multiplier can be
simpli�ed because V L � 1 is short (never more than
7 bits), and the product (V L � 1) � V S can be kept
in a non-architected register and implicitly updated
when either VL or VS is modi�ed. In the Dependence
stage, using the Range Start/Range End addresses,
the memory instruction is compared against all previ-
ous instructions found in the queue. Once a memory
instruction is free of any dependences, it can proceed
to issue memory requests.

Machine Parameters

Table 1 presents the latencies of the various functional
units present in the architecture. Memory latency is
not shown in the table because it will be varied. The
memory system is modeled as follows. There is a sin-
gle address bus shared by all types of memory trans-

Parameters Latency
Scal Vect

(int/fp) (int/fp)
read x-bar { 2
write x-bar { 2
vector startup { (*)
add 1/2 1/2
mul 5/2 5/2
logic/shift 1/2 1/2
div 34/9 34/9
sqrt 34/9 34/9

Table 1: Functional unit latencies (in cycles) for the
two architectures.((*) 0 in OOOVA, 1 in REF)

actions (scalar/vector and load/store), and physically
separate data busses for sending and receiving data
to/from main memory. Vector load instructions (and
gather instructions) pay an initial latency and then re-
ceive one datum from memory per cycle. Vector store
instructions do not result in observed latency We use a
value of 50 cycles as the default memory latency. Sec-
tion 4.3 will present results on the e�ects of varying
this value.

The V register read/write ports have been modi�ed
from the original C34 scheme. In the OOOVA, each
vector register has 1 dedicated read port and 1 dedi-
cated write port. The original banking scheme of the
register �le can not be kept because renaming shuf-
es all the compiler scheduled read/write ports and,
therefore, would induce a lot of port conicts.

All instruction queues are set at 16 slots. The
reorder bu�er can hold 64 instructions. The ma-
chine has a 64 entry BTB, where each entry has a
2-bit saturating counter for predicting the outcome of
branches. Also, an 8-deep return stack is used to pre-
dict call/return sequences. Both scalar register �les
(A and S) have 64 physical registers each. The mask
register �le has 8 physical registers. The fetch stage,
the decode stage and all four queues only process a
maximum of 1 instruction per cycle. Committing in-
structions proceeds at a faster rate, and up to 4 in-
structions may commit per cycle.

Commit Strategy

For V registers we start with an aggressive implemen-
tation where physical registers are released at the time
the vector instruction begins execution. Consider the
vector instruction: add v0,v1-->v3. At the rename
stage, v3 will be re-mapped to, say, physical register
9 (ph9), and the old mapping of v3, which was, say,
physical register 12 (ph12), will be stored in the re-
order bu�er slot associated with the add instruction.
When the add instruction begins execution, we mark
the associated reorder bu�er slot as ready to be com-
mitted. When the slot reaches the head of the bu�er,
ph12 is released. Due to the semantics of a vector
register, when ph12 is released, it is guaranteed that
all instructions needing ph12 have begun execution at
least one cycle before. Thus, the �rst element of ph12
is already owing through the register �le read cross-
bar. Even if ph12 is immediately reassigned to a new
logical register and some other instruction starts writ-

#insns #ops % avg.
Program Suite S V V Vect VL

swm256 Spec 6.2 74.5 9534.3 99.9 127
hydro2d Spec 41.5 39.2 3973.8 99.0 101
arc2d Perf. 63.3 42.9 4086.5 98.5 95
o52 Perf. 37.7 22.8 1242.0 97.1 54
nasa7 Spec 152.4 67.3 3911.9 96.2 58
su2cor Spec 152.6 26.8 3356.8 95.7 125
tomcatv Spec 125.8 7.2 916.8 87.9 127
bdna Perf. 239.0 19.6 1589.9 86.9 81
trfd Perf. 352.2 49.5 1095.3 75.7 22
dyfesm Perf. 236.1 33.0 696.2 74.7 21

Table 2: Basic operation counts for the Perfect Club
and Specfp92 programs (Columns 3{5 are in millions).

ing into ph12, the instructions reading ph12 are at the
very least one cycle ahead and will always read the cor-
rect values. This type of releasing does not allow for
precise exceptions, though. Section 5 will change the
release algorithm to allow for precise exceptions.

3 Methodology

To assess the performance bene�ts of out-of-order
issue and renaming in vector architectures we have
taken a trace driven approach. A subset of the Perfect
Club and Specfp92 programs is used as the benchmark
set. These programs are compiled on a Convex C3480
machine and the tool Dixie [3] is used to modify the ex-
ecutable for tracing. Once the executables have been
processed by Dixie, the modi�ed executables are run
on the Convex machine. This runs produce the desired
set of traces that accurately represent the execution of
the programs. This trace is then fed to two simulators
for the reference and OOOVA architectures.

3.1 The benchmark programs

Because we are interested in the bene�ts of out-of-
order issue for vector instructions, we selected bench-
mark programs that are highly vectorizable. From all
programs in the Perfect and Specfp92 benchmarks we
chose the 10 programs that achieve at least 70% vec-
torization. Table 2 presents some statistics for the
selected Perfect Club and Specfp92 programs. Col-
umn number 2 indicates to what suite each program
belongs. Next two columns present the total num-
ber of instructions issued by the decode unit, broken
down into scalar and vector instructions. Column �ve
presents the number of operations performed by vec-
tor instructions. The sixth column is the percentage
of vectorization of each program (i.e., column �ve di-
vided by the sum of columns three and �ve). Finally,
column seven presents the average vector length used
by vector instructions (the ratio of columns �ve and
four, respectively).

1 20 70100

hydro2d

0

1000

2000

3000

E
xe

cu
ti

on
 c

yc
le

s
(x

10
e6

)

1 20 70100

dyfesm

0

500

1000

1500

< , , >
< , ,MEM>
< ,FU1, >
< ,FU1,MEM>
<FU2, , >
<FU2, ,MEM>
<FU2,FU1, >
<FU2,FU1,MEM>

Figure 3: Functional unit usage for the reference ar-
chitecture. Each bar represents the total execution
time of a program for a given latency. Values on the
x-axis represent memory latencies in cycles.

4 Performance Results

4.1 Bottlenecks in the Reference Archi-
tecture

First we present an analysis of the execution of the
ten benchmark programs when run through the refer-
ence architecture simulator.

Consider the three vector functional units of the
reference architecture (FU2, FU1 and MEM). The ma-
chine state can be represented with a 3-tuple that
captures the individual state of each of the three units
at a given point in time. For example, the 3-tuple
hFU2; FU1;MEM i represents a state where all units
are working, while h ; ; i represents a state where all
vector units are idle.

Figure 3 presents the execution time for two of the
ten benchmark programs (see [4] for the other 8 pro-
grams). Space limitations prevents us from providing
them all, but these two, hydro2d and dyfesm, are rep-
resentative. During an execution the programs are
in eight possible states. We have plotted the time
spent in each state for memory latencies of 1, 20, 70,
and 100 cycles. From this �gure we can see that the
number of cycles where the programs proceed at peak
oating point speed (states hFU2; FU1;MEM i and
hFU2; FU1; i) is quite low. The number of cycles
in these states changes relatively little as the memory
latency increases, so the fraction of fully used cycles
decreases. Memory latency has a high impact on total
execution time for programs dyfesm (shown in Fig-
ure 3), and trfd and o52 (not shown), which have
relatively small vector lengths. The e�ect of memory
latency can be seen by noting the increase in cycles
spent in state h ; ; i.

The sum of cycles corresponding to states where
the MEM unit is idle is quite high in all programs.
These four states (h ; ; i, h ; FU1; i, hFU2; ; iand
hFU2; FU1; i) correspond to cycles where the mem-

swm
256 hydro2d arc2d

flo52
nasa7

su2cor tom
catv bdna

trfd
dyfesm

0 20 40 60

Idle Memory port %

12070100

F
igu

re
4
:
P
ercen

tag
e
o
f
cy
cles

w
h
ere

th
e
m
em

ory
p
ort

w
as

id
le,

fo
r
4
d
i�
eren

t
m
em

o
ry

la
ten

cies.

ory
p
o
rt

cou
ld

p
o
ten

tia
lly

b
e
u
sed

to
fetch

d
a
ta

from
m
em

ory
fo
r
fu
tu
re

v
ector

co
m
p
u
ta
tio

n
s.

F
igu

re
4

p
resen

ts
th
e
p
ercen

ta
g
e
of

th
ese

cy
cles

over
to
tal

ex
e-

cu
tion

tim
e.

A
t
la
ten

cy
7
0,

th
e
p
ort

id
le
tim

e
ran

ges
b
etw

een
30
%

a
n
d
65%

o
f
total

ex
ecu

tion
tim

e.
A
ll

1
0
b
en
ch
m
a
rk

p
rogram

s
are

m
em

ory
b
o
u
n
d
w
h
en

ru
n

o
n
a
sin

g
le

p
ort

v
ecto

r
m
ach

in
e
w
ith

tw
o
fu
n
ction

al
u
n
its.

T
h
erefo

re,
th
ese

u
n
u
sed

m
em

o
ry

cy
cles

are
n
ot

th
e
resu

lt
o
f
a
la
ck

o
f
loa

d
/
sto

re
w
o
rk

to
b
e
d
on
e.

4
.2

P
e
rfo

rm
a
n
c
e
o
f
th
e
O
O
O
V
A

In
th
is

section
w
e
p
resen

t
th
e
p
erform

a
n
ce

of
th
e

O
O
O
V
A

a
n
d

com
p
a
re

it
w
ith

th
e
referen

ce
arch

i-
tectu

re.
W
e
con

sid
er

b
o
th

overall
p
erform

an
ce

in
sp
eed

u
p
a
n
d
m
em

ory
p
ort

o
ccu

p
a
tio

n
.

S
p
e
e
d
u
p

T
h
e
e�
ects

o
f
a
d
d
in
g
ou
t-of-o

rd
er

ex
ecu

tion
an
d
re-

n
am

in
g
to

th
e
referen

ce
arch

itectu
re

can
b
e
seen

in
�
gu
re

5.
F
o
r
ea
ch

p
rogram

w
e
p
lot

th
e
sp
eed

u
p
over

th
e
referen

ce
arch

itectu
re

w
h
en

th
e
n
u
m
b
er

o
f
p
h
y
si-

ca
l
vecto

r
registers

is
va
ried

fro
m

9
to

64
(m

em
ory

la-
ten

cy
is
set

a
t
5
0
cy
cles).

In
each

gra
p
h
,
w
e
sh
ow

th
e

sp
eed

u
p
fo
r
tw
o
O
O
O
V
A
im

p
lem

en
ta
tion

s:
\
O
O
O
V
A
-

1
6"

h
a
s
len

g
th

16
in
stru

ctio
n
q
u
eu
es,

an
d
\O

O
O
V
A
-

12
8"

h
a
s
len

gth
128

q
u
eu
es.

W
e
also

sh
ow

th
e
m
ax
i-

m
u
m

id
eal

sp
eed

u
p
th
a
t
can

th
eoretically

b
e
a
ch
ieved

(\ID
E
A
L
"
,
a
lo
n
g
th
e
to
p
o
f
ea
ch

g
ra
p
h
).

T
o
com

p
u
te

th
e
ID

E
A
L
sp
eed

u
p
for

a
p
rogram

w
e
u
se

th
e
total

n
u
m
b
er

of
cy
cles

co
n
su
m
ed

b
y
th
e
m
ost

h
eav

ily
u
sed

v
ecto

r
u
n
it
(F
U
1
,
F
U
2
,
or

M
E
M
).
T
h
u
s,
in

ID
E
A
L
w
e

essen
tially

elim
in
a
te
a
lld

a
ta

an
d
m
em

ory
d
ep
en
d
en
ces

fro
m

th
e
p
rog

ram
,
a
n
d
co
n
sid

er
p
erform

a
n
ce

lim
ited

on
ly

b
y
th
e
m
ost

satu
rated

reso
u
rce

a
cross

th
e
en
tire

ex
ecu

tion
.

A
s
can

b
e
seen

from
�
g
u
re

5
,
th
e
O
O
O
V
A

sign
if-

ica
n
tly

in
crea

ses
p
erform

a
n
ce

over
th
e
referen

ce
m
a-

ch
in
e.

W
ith

1
6
p
h
y
sical

registers,
th
e
low

est
sp
eed

u
p

is
1
.24

(for
to
m
catv

).
T
h
e
h
igh

est
sp
eed

u
p
s
are

for
trfd

a
n
d
d
y
fesm

(1.72
an
d
1
.7
0
resp

.);
th
e
rem

ain
in
g

p
ro
gra

m
s
g
ive

sp
eed

u
p
s
o
f
1
.3
{1.4

5
.
F
o
r
n
u
m
b
ers

of
p
h
y
sical

reg
isters

g
reater

th
a
n
16
,
ad
d
itio

n
a
l
sp
eed

u
p
s

are
gen

erally
sm

all.
T
h
e
largest

sp
eed

u
p
from

goin
g
to

64
p
h
y
sical

registers
is
for

b
d
n
a
w
h
ere

th
e
ad
d
ition

al
im

p
rovem

en
t
is

8.3%
.
T
h
e
im

p
rovem

en
t
in

b
d
n
a
is

d
u
e
to

an
ex
trem

ely
large

m
ain

lo
op
,
w
h
ich

gen
erates

a
seq

u
en
ce

of
b
asic

b
lo
ck
s
w
ith

m
ore

th
an

800
v
ector

in
stru

ction
s.

M
ore

p
h
y
sical

registers
allow

it
to

b
etter

m
atch

th
e
large

availab
le

IL
P

in
th
ese

b
asic

b
lo
ck
s.

O
n
th
e
oth

er
h
an
d
,
if
th
e
n
u
m
b
er

of
p
h
y
sical

vector
registers

is
a
m
a
jor

con
cern

,
w
e
ob
serv

e
th
at

12
p
h
y
s-

ical
registers

still
give

sp
eed

u
p
s
of

1.63
an
d
1.70

for
trfd

an
d
d
y
fesm

an
d
th
at

th
e
oth

er
p
rogram

s
are

in
th
e
ran

ge
of

1.23
to

1.38.
T
h
ese

resu
lts

su
ggest

th
at

a
p
h
y
sical

vector
register

w
ith

as
few

as
12

registers
is
su
�
cien

t
in

m
ost

cases.
A

�
le

w
ith

16
registers

is
en
ou
gh

to
su
stain

h
igh

p
erform

an
ce

in
ev
ery

case.
W
h
en

w
e
in
crease

th
e
d
ep
th

of
th
e
in
stru

ction
q
u
eu
es

to
128,

th
e
p
erform

an
ce

im
p
rov

em
en
t
is
q
u
ite

sm
all

(cu
rv
e
\O

O
O
V
A
-128").

A
n
aly

sis
of

th
e
p
ro-

gram
s
sh
ow

s
th
at

tw
o
factors

com
b
in
e
to

p
rev

en
t
fu
r-

th
er

im
p
rovem

en
ts
w
h
en

in
creasin

g
th
e
n
u
m
b
er

of
is-

su
e
q
u
eu
e
slots.

F
irst,

th
e
sp
ill

co
d
e
p
resen

t
in

large
b
asic

b
lo
ck
s
in
d
u
ces

a
lot

of
m
em

ory
con

icts

in
th
e

m
em

ory
q
u
eu
e.

S
econ

d
,
th
e
lack

of
scalar

registers
som

etim
es

p
reven

ts
th
e
d
y
n
am

ic
u
n
rollin

g
of

en
ou
gh

iteration
s
of

a
vector

lo
op

to
m
ake

fu
ll
u
sage

of
th
e

m
em

ory
p
ort.

M
e
m
o
r
y
P
o
r
t
U
sa
g
e

T
h
e
ou
t-of-ord

er
issu

e
featu

re
allow

s
m
em

ory
access

in
stru

ction
s
to

slip
ah
ead

of
com

p
u
tation

in
stru

ction
s,

resu
ltin

g
in

a
com

p
action

of
m
em

ory
access

op
era-

tion
s.

T
h
e
p
resen

ce
of

few
er

w
asted

m
em

ory
cy
cles

is
sh
ow

n
in

�
gu
re

6.
T
h
is
�
gu
re

con
tain

s
th
e
n
u
m
b
er

of
cy
cles

w
h
ere

th
e
ad
d
ress

p
ort

is
id
le
d
iv
id
ed

b
y
th
e

total
n
u
m
b
er

of
ex
ecu

tion
cy
cles.

B
ars

for
th
e
refer-

en
ce

m
ach

in
e,
R
E
F
,
an
d
for

th
e
ou
t-of-ord

er
m
ach

in
e,

O
O
O
V
A

are
sh
ow

n
.
T
h
e
O
O
O
V
A

m
ach

in
es

h
as

16
p
h
y
sical

vector
registers

an
d
a
m
em

ory
laten

cy
of

50
cy
cles.

W
ith

O
O
O
V
A
,
th
e
fraction

of
id
le
m
em

ory
cy
-

cles
is
m
ore

th
an

cu
t
in

h
alf

in
m
ost

cases.
F
or

all
b
u
t

tw
o
of

th
e
b
en
ch
m
ark

s,
th
e
m
em

ory
p
ort

is
id
le

less
th
an

20%
of

th
e
tim

e.

R
e
so
u
r
c
e
U
sa
g
e

W
e
n
ow

con
sid

er
resou

rce
u
sage

for
th
e
O
O
O
V
A

m
a-

ch
in
e
an
d
com

p
are

it
w
ith

th
e
referen

ce
m
ach

in
e.

T
h
is

is
illu

strated
in

�
gu
re

7.
T
h
e
sam

e
n
otation

as
in

�
g-

u
re

3
is
u
sed

for
rep

resen
tin

g
th
e
ex
ecu

tion
state.

A
s

in
th
e
p
rev

iou
s
su
b
section

s,
th
e
O
O
O
V
A
m
ach

in
e
h
as

16
p
h
y
sical

vector
registers

an
d
m
em

ory
laten

cy
is
set

at
50

cy
cles.

F
igu

re
7
sh
ow

s
th
at

th
e
m
a
jor

im
p
rove-

m
en
t
is
in

state
h
;
;
i,
w
h
ich

h
as

alm
ost

d
isap

p
eared

.
A
lso,

th
e
fu
lly

-u
tilized

state,
hF

U
2
;
F
U
1
;
M
E
M

i,
is

relatively
m
ore

freq
u
en
t
d
u
e
to

th
e
b
en
e�
ts

of
ou
t-of-

ord
er

ex
ecu

tion
.
A
s
w
e
h
ave

alread
y
seen

,
th
e
avail-

ab
ility

of
m
ore

th
an

on
e
m
em

ory
in
stru

ction
read

y
to

b
e
lau

n
ch
ed

in
th
e
m
em

ory
q
u
eu
es

allow
s
for

m
u
ch

h
igh

er
u
sage

of
th
e
m
em

ory
p
ort.

4
.3

T
o
le
ra
n
c
e
o
f
M
e
m
o
ry

L
a
te
n
c
ie
s

O
n
e
w
ay

of
lo
ok
in
g
at

th
e
ad
van

tage
of
ou
t-of-ord

er
ex
ecu

tion
an
d
register

ren
am

in
g
is
th
at

it
allow

s
lon

g

9 16 32 64

swm256

1.0

1.1

1.2

1.3

Sp
ee

du
p

9 16 32 64

hydro2d

1.0

1.2

1.4

9 16 32 64

arc2d

1.0

1.2

1.4

9 16 32 64

flo52

1.0

1.2

1.4

1.6

9 16 32 64

nasa7

1.0

1.2

1.4

1.6

Sp
ee

du
p

9 16 32 64

su2cor

1.0

1.2

1.4

9 16 32 64

tomcatv

1.0

1.2

1.4

9 16 32 64

bdna

1.0

1.2

1.4

1.6

1.8

9 16 32 64

trfd

1.0

1.5

2.0

Sp
ee

du
p

9 16 32 64

dyfesm

1.0

1.5

2.0

2.5

IDEAL
OOOVA-128
OOOVA-16

Figure 5: Speedup of the OOOVA over the REF architecture for di�erent numbers of vector physical registers.

swm256

hydro2d

arc2d
flo52

nasa7
su2cor

tomcatv

bdna
trfd

dyfesm

0

10

20

30

40

50

Id
le

 M
em

or
y

P
or

t
%

REF
OOOVA

Figure 6: Percentage of idle cycles in the memory port
for the Reference architecture and the OOOVA archi-
tecture. Memory latency is 50 cycles and the vector
register �le holds 16 physical vector registers.

memory latencies to be hidden. In previous subsec-
tions we showed the bene�ts of the OOOVA with a
�xed memory latency of 50 cycles. In this subsection
we consider the ability of the OOOVA machine to tol-
erate main memory latencies.

Figure 8 shows the total execution time for the ten
programs when executed on the reference machine and
on the OOOVA machine for memory latencies of 1,
50, and 100 cycles. All results are for 16 physical vec-
tor registers. As shown in the �gure, the reference
machine is very sensitive to memory latency. Even
though it is a vector machine, memory latency inu-
ences execution time considerably. On the other hand,
the OOOVA machine is much more tolerant of the in-

hydro2d

dyfesm

0

5

10

15

20

25
E

xe
cu

ti
on

 c
yc

le
s

(x
10

e8
)

< , , >
< , ,MEM>
< ,FU1, >
< ,FU1,MEM>
<FU2, , >
<FU2, ,MEM>
<FU2,FU1, >
<FU2,FU1,MEM>

Figure 7: Breakdown of the execution cycles for the
REF (left bar) and OOOVA (right bar) machines. The
OOOVA machine has 16 physical vector registers. For
both architectures, memory latency was set at 50 cy-
cles.

crease in memory latency. For most benchmarks the
performance is at for the entire range of memory la-
tencies, from 1 to 100 cycles.

Another important point is that even at a mem-
ory latency of 1 cycle the OOOVA machine typically
obtains speedups over the reference machine in the
range of 1.15{1.25 (and goes as high as 1.5 in the case
of dyfesm). This speedup indicates that the e�ects of
looking ahead in the instruction stream are good even
in the absence of long latency memory operations.

At the other end of the scale, we see that long
memory latencies can be easily tolerated using out-
of-order techniques. This indicates that the individ-

1 50 100

swm256

45

50

55

60

65

cy
cle

s (
 x

10
^8

)

1 50 100

hydro2d

20

25

30

1 50 100

arc2d

20

25

30

1 50 100

flo52

8

10

12

1 50 100

nasa7

20

25

30

35

cy
cle

s (
 x

10
^8

)

1 50 100

su2cor

15

20

25

1 50 100

tomcatv

5

6

7

8

1 50 100

bdna

6

8

10

12

14

16

1 50 100

trfd

10

15

20

cy
cle

s (
 x

10
^8

)

1 50 100

dyfesm

5

10

15

REF
OOOVA-16
IDEAL

Figure 8: E�ects of varying main memory latency for three memorymodels and for the 16 physical vector registers
machines.

ual memory modules in the memory system can be
slowed down (changing very expensive SRAM parts
for much cheaper DRAM parts) without signi�cantly
degrading total throughput. This type of technology
change could have a major impact on the total cost of
the machine, which is typically dominated by the cost
of the memory subsystem.

5 Implementing Precise Traps

An important side e�ect of introducing register re-
naming into a vector architecture is that it enables a
straightforward implementation of precise exceptions.
In turn, the availability of precise exceptions allows
the introduction of virtual memory. Virtual memory
has been implemented in vector machines [15], but
is not used in many current high performance par-
allel vector processors [7]. Or, it is used in a very
restricted form, for example by locking pages contain-
ing vector data in memory while a vector program
executes [7, 14].

The primary problem with implementing precise
page faults in a high performance vector machine is
the high number of overlapped \in-ight" operations
{ in some machines there may be several hundred.
Vector register renaming provides a convenient means
for saving the large amount of machine state required
for rollback to a precise state following a page fault or
other exception. If the contents of old logical vector
registers are kept until an instruction overwriting the
logical register is known to be free of exceptions, then
the architected state can be restored if needed.

In order to implement precise traps, we introduce
two changes to the OOOVA design: �rst, an instruc-
tion is allowed to commit only after it has fully com-

pleted (as opposed to the \early" commit scheme we
have been using). Second, stores are only allowed to
execute and update memorywhen they are at the head
of the reorder bu�er; that is, when they are the oldest
uncommitted instructions.

Figure 9 presents a comparison of the speedups over
the reference architecture achieved by the OOOVA
with early commit (labeled \early"), and by the
OOOVA with late commit and execution of stores
only at the head of the reorder bu�er (labeled \late").
Again, all simulations are performed with a memory
latency of 50 cycles.

We can make two important observations about the
graphs in Figure 9. First, the performance degrada-
tion due to the introduction of the late commit model
is small for eight out of the ten programs. Programs
hydro2d, arc2d, su2cor, tomcatv and bdna all degrade
less than 5% with 16 physical registers; programs o52
and nasa7 degrade by 7% and 10.3%, respectively.
Nevertheless, performance of the other two programs,
trfd and dyfesm, is hurt rather severely when going to
the late commit model (a 41% and 47% degradation,
respectively). This behavior is explained by load-store
dependences. The main loop in trfd has a memory de-
pendence between the last vector store of iteration i
and the �rst vector load of iteration i + 1 (both are
to the same address). In the early commit model, the
store is done as soon as its input data is ready (with
chaining between the producer and the store). In the
late commit model, the store must wait until 2 in-
tervening instructions between the producer and the
store have committed. This delays the dispatching of
the following load from the �rst iteration and explains
the high slowdown. A similar situation explains the
degradation in dyfesm.

Second, in the late commit model, 12 registers are

9 16 32 64

swm256

1.0

1.1

1.2

1.3

Sp
ee

du
p

9 16 32 64

hydro2d

1.0

1.2

1.4

9 16 32 64

arc2d

1.0

1.2

1.4

9 16 32 64

flo52

1.0

1.2

1.4

1.6

9 16 32 64

nasa7

1.0

1.2

1.4

1.6

Sp
ee

du
p

9 16 32 64

su2cor

1.0

1.2

1.4

9 16 32 64

tomcatv

1.0

1.2

1.4

9 16 32 64

bdna

1.0

1.2

1.4

1.6

1.8

9 16 32 64

trfd

1.0

1.5

2.0

Sp
ee

du
p

9 16 32 64

dyfesm

1.0

1.5

2.0

2.5

IDEAL
early
late

Figure 9: Speedups of the OOOVA over the reference architecture for di�erent numbers of vector physical registers
under the early and late commit schemes.

clearly not enough. The performance di�erence be-
tween 12 and 16 registers is much larger than in the
early commit model. Thus, from a cost/complexity
point of view, the introduction of late commit has a
clear impact on the implementation of the vector reg-
isters.

6 Dynamic Load Elimination

Register renaming with many physical registers
solves instruction issue bottlenecks caused by a limited
number of logical registers. However, there is another
problem caused by limited logical registers: register
spilling. The original compiled code still contains reg-
ister spills caused by the limited number of architected
registers, and to be functionally correct these spills
must be executed. Furthermore, besides the obvious
store-load spills, limited registers also cause repeated
loads from the same memory location.

Limited registers are common in vector architec-
tures, and the spill problem is aggravated because stor-
ing and re-loading a single vector register involves the
movement of many words of data to and frommemory.
To illustrate the importance of spill code for vector ar-
chitectures, table 3 shows the number of memory spill
operations (number of words moved) in the ten bench-
mark programs. In some of the benchmarks relatively
few of the loads and stores are due to spills, but in
several there is a large amount of spill tra�c. For ex-
ample, over 69% of the memory tra�c in bdna is due
to spills.

In this section we propose and study a method that
uses register renaming to eliminate much of the mem-
ory load tra�c due to spills. The method we propose
also has signi�cant performance advantages because a

Vector load ops Vector store ops Total
Program load spill % store spill % %

swm256 2839 315 10 1030 315 23 14
hydro2d 1297 21 1.6 431 21 5 2.4
arc2d 1244 122 9 479 87 15 11
o52 428 41 8.8 181 41 19 12
nasa7 1048 21 2.0 632 20 3 2.4
su2cor 786 201 20 404 103 20 20
tomcatv 234 104 31 72 104 59 41
bdna 142 266 65 71 221 76 69
trfd 433 0 0 224 0 0 0
dyfesm 289 0.5 0.2 108 0.5 0.4 0.2

Table 3: Vector memory spill operations. Columns 2,
3, 5 and 6 are in millions of operations.

load for spilled data is executed in nearly zero time.
We do not eliminate spill stores, however, because of
the need to maintain strict binary compatibility. That
is, the memory image should reect functionally cor-
rect state. Relaxing compatibility could lead to re-
moving some spill stores, but we have not yet pursued
this approach.

6.1 Renaming under Dynamic Load Elim-
ination

To eliminate redundant load instructions we pro-
pose the following technique. A tag is associated with
each physical register (A, S and V). This tag indi-
cates the memory locations currently being held by
the register. For vector registers, the tag is a 6-tuple:
h@1;@2; vl; vs; sz;vi. Virtual addresses @1 and @2
de�ne a consecutive region of bytes in memory and
vl, vs, and sz are the vector length, vector stride and
access granularity used when the tag was created; v is

a validity bit. For scalar registers, the tag is a 4-tuple
{ vl and vs are not needed. Although the problem of
spilling scalar (A and S) registers is somewhat tangen-
tial to our study, they are important in the Convex ar-
chitecture because of its limited number of registers.

Each time a memory operation is performed, its
range of addresses is computed (this is done in the sec-
ond stage of the memory pipeline). If the operation is
a load, the tag associated with the destination physical
register is �lled with the appropriate address informa-
tion. If the operation is a store, then the physical reg-
ister being stored to memory has its tag updated with
the corresponding address information. Thus, each
time a memory operation is performed, we \alias" the
register contents with the memory addresses used for
loading or storing the physical register: the tag in-
dicates an area in memory that matches the register
data.

To keep tag contents consistent with memory, when
a store instruction is executed its tag has to be com-
pared against all tags already present in the register
�les. If any conict is found, that is, if the memory
range de�ned by the store tag overlaps any of the ex-
isting tags, these existing tags must be invalidated (to
simplify the conict checking hardware, this invalida-
tion may be done conservatively).

By using the register tags, some vector load op-
erations can be eliminated in the following manner.
When a vector load enters the third stage of the mem-
ory pipeline, its tag is checked against all tags found
in the vector register �le. If an exact match is found
(an exact match requires all tag �elds to be identical),
the destination register of the vector load is renamed
to the physical register it matches. At this point the
load has e�ectively been completed { in the time it
takes to do the rename. Furthermore, matching is not
restricted to live registers, it can also occur with a
physical register that is on the free list. As long as
the validity bit is set, any register (in the free list or
in use) is eligible for matching. If a load matches a
register in the free list, the register is taken from the
free list and added to the register map table.

For scalar registers, eliminating loads is simpler.
When a match involving two scalar registers is de-
tected, the register value is copied from one register
to the other. The scalar rename table is not a�ected.
Note, however, that scalar store addresses still need
to be compared against vector register tags and vec-
tor stores need to be compared against scalar tags to
ensure full consistency.

A similar memory tagging technique for scalar reg-
isters is described in [2]. There, tagging is used to
store memory variables in registers in the face of po-
tential aliasing problems. That approach, though, is
complicated because data is automatically copied from
register to register when a tag match is found. There-
fore, compiler techniques are required to adapt to this
implied data movement. In our application, a tag op-
eration either (a) alters only the rename table or (b)
invalidates a tag without changing any register value.

Issue RF ALU Wb
A-regs

Issue RF
S-regs

EX 1 WbEX 2

Rename

Decode &Fetch

Issue RF
Calculation

 @ Range Dependency

CalculationMEM

V-regs
V-RENAME

TLB 0 TLB 1 TLB 2

 REQ 0 REQ 1

...

...

RXBAR RXBAR EX0 ...

Figure 10: The modi�ed instruction pipelines for the
Dynamic Load Elimination OOOVA.

6.2 Pipeline modi�cations

With the scheme just described, when a vector load
is eliminated at the disambiguation stage of the mem-
ory pipeline, the vector register renaming table is up-
dated. Renaming is considerably complicated if vector
registers are renamed in two di�erent pipeline stages
(at the decode and disambiguation stages). Therefore,
the pipeline structure is modi�ed to rename all vector
registers in one and only one stage.

Figure 10 shows the modi�ed pipeline. At the de-
code stage, all scalar registers are renamed but all
vector registers are left untouched. Then, all instruc-
tions using a vector register pass in-order through the
3 stages of the memory pipeline. When they arrive
at the disambiguation stage, renaming of vector reg-
isters is done. This ensures that all vector instruction
see the same renaming table and that modi�cations
introduced by the load elimination scheme are avail-
able to all following vector instructions. Moreover,
this ensures that store tags are compared against all
previous tags in order.

6.3 Performance of dynamic load elimina-
tion

In this section we present the performance of the
OOOVA machine enhanced with dynamic load elimi-
nation. As a baseline we use the late commit OOOVA
described above, without dynamic load elimination.
We also study the OOOVA with load elimination for
scalar data only (SLE) and OOOVA with load elimi-
nation for both scalars and vectors (SLE+VLE).

Figures 11 and 12 present the speedup of SLE
and SLE+VLE over the baseline OOOVA for di�er-
ent numbers of physical vector registers (16, 32, 64).

For SLE+VLE with 16 vector registers (�gure 12),
speedups over the base OOOVA are from 1.04 to 1.16
for most programs and are as high as 1.78 and 2.13 for
dyfesm and trfd. At 32 vector registers registers, the
available storage space for keeping vector data dou-
bles and allows more tag matchings. The speedups in-
crease signi�cantly and their range for most programs
is between 1.10 and 1.20. For dyfesm and trfd, the
speedups remain very high, but do not appreciably
improve when going from 16 to 32 registers.

Doubling the number of vector registers again, to
64, does not yield much additional speedup. For most

swm256 hydro2d arc2d flo52 nasa7 su2cor tomcatv bdna
trfd

dyfesm

1.0

1.1

1.2

1.3

Speedup over OOOVA

163264

F
igu

re
1
1:

S
p
eed

u
p
of
S
L
E
ov
er

th
e
O
O
O
V
A
m
ach

in
e

fo
r
3
d
i�
eren

t
p
h
y
sica

l
vector

reg
ister

�
le
sizes.

swm256 hydro2d arc2d flo52 nasa7 su2cor tomcatv bdna
trfd

dyfesm

1.0

1.5

2.0

Speedup over OOOVA

163264

F
igu

re
1
2:

S
p
eed

u
p
o
f
S
L
E
+
V
L
E

over
th
e
O
O
O
V
A

m
ach

in
e
fo
r
3
d
i�
eren

t
p
h
y
sica

l
v
ector

register
�
le

sizes.

p
rogram

s,
th
e
im

p
rov

em
en
t
is

b
elow

5
%
,
a
n
d
on
ly

tom
catv

a
n
d
trfd

seem
to

b
e
ab
le

to
tak

e
ad
van

tage
of

th
e
ex
tra

reg
isters

(to
m
ca
tv

g
o
es

from
1
.19

u
p
to

1.40
).

T
h
e
resu

lts
sh
ow

th
a
t
m
o
st

of
th
e
d
a
ta

m
ove-

m
en
t
to

b
e
elim

in
ated

is
ca
p
tu
red

w
ith

32
p
h
y
sical

v
ector

registers.
T
h
e
rem

a
rka

b
ly

d
i�
eren

t
p
erfo

rm
an
ce

b
eh
av
ior

of
d
y
fesm

an
d
trfd

req
u
ires

ex
p
lan

atio
n
.

T
h
is

can
b
e

d
on
e
b
y
lo
ok
in
g
at

S
L
E
(�
gu
re

1
1
).

U
n
d
er

S
L
E
,
all

o
th
er

p
ro
g
ra
m
s
h
ave

v
ery

low
sp
eed

u
p
s
(less

th
an

1.0
5)

a
n
d
,
y
et,

trfd
an
d
d
y
fesm

a
ch
iev

e
sp
eed

u
p
s
of

1.30
an
d
1
.3
6,
resp

ectiv
ely

(for
th
e
co
n
�
g
u
ration

w
ith

32
v
ector

reg
isters).

O
u
r
an
aly

sis
o
f
th
ese

tw
o
p
ro-

gra
m
s
sh
ow

s
th
a
t
th
e
a
b
ility

to
b
y
p
ass

sca
lar

d
ata

al-
low

s
th
ese

p
rog

ram
s
to

\
see"

m
o
re

iteration
s
o
f
a
cer-

tain
lo
o
p
a
t
on
ce.

In
p
articu

lar,
th
e
a
b
ility

to
b
y
p
ass

d
ata

b
etw

een
loa

d
s
a
n
d
stores

allow
s
th
em

to
u
n
roll

th
e
tw
o
m
o
st
critical

lo
op
s,
w
h
ereas

w
ith

ou
t
S
L
E
,
th
e

u
n
rollin

g
w
a
s
n
o
t
p
o
ssib

le.

6
.4

T
ra
�
c
R
e
d
u
c
tio

n

A
v
ery

im
p
o
rtan

t
e�
ect

o
f
d
y
n
am

ic
lo
a
d
elim

in
ation

is
th
a
t
it
red

u
ces

th
e
to
tal

am
ou
n
t
of

tra�
c
seen

b
y

th
e
m
em

ory
sy
stem

.
T
h
is
is
a
v
ery

im
p
o
rtan

t
featu

re

swm256 hydro2d arc2d flo52
nasa7 su2cor tomcatv bdna

trfd
dyfesm

0.6

0.8

1.0

Traffic Reduction

SL
E

SL
E

+
V

L
E

F
igu

re
13:

T
ra�

c
red

u
ction

u
n
d
er

d
y
n
am

ic
load

elim
-

in
ation

w
ith

32
p
h
y
sical

vector
registers.

in
m
u
ltip

ro
cessin

g
en
v
iron

m
en
ts,

w
h
ere

less
load

on
th
e
m
em

ory
m
o
d
u
les

u
su
ally

tran
slates

in
to

an
overall

sy
stem

p
erform

an
ce

im
p
rov

em
en
t.

W
e
h
av
e
com

p
u
ted

th
e
tra�

c
red

u
ction

of
each

of
th
e
p
rogram

s
for

th
e
tw
o
d
y
n
am

ic
load

elim
in
ation

con
�
gu
ration

s
con

sid
ered

.
W
e
d
e�
n
e
th
e
tra�

c
red

u
c-

tion
as

th
e
ratio

b
etw

een
th
e
total

n
u
m
b
er

of
req

u
ests

(load
an
d
stores)

sen
t
over

th
e
ad
d
ress

b
u
s
b
y
th
e
b
ase-

lin
e
O
O
O
V
A

d
iv
id
ed

b
y
th
e
total

n
u
m
b
er

of
req

u
ests

d
on
e
b
y
eith

er
th
e
S
L
E
or

th
e
S
L
E
+
V
L
E
con

�
gu
ra-

tion
s.
F
igu

re
13

p
resen

t
th
is
ratio

for
32

p
h
y
sical

v
ec-

tor
registers.

A
s
an

ex
am

p
le,

�
gu
re

13
sh
ow

s
u
s
th
at

th
e
S
L
E
con

�
gu
ration

for
d
y
fesm

p
erform

s
11%

few
er

m
em

ory
req

u
ests

th
an

th
e
O
O
O
V
A

con
�
gu
ration

.
A
s
can

b
e
seen

,
for

S
L
E
+
V
L
E
,
th
e
ty
p
ical

tra�
c

red
u
ction

is
b
etw

een
15

an
d
20%

.
P
rogram

s
d
y
fesm

an
d
trfd

,
d
u
e
to

th
eir

sp
ecial

b
eh
av
ior

alread
y
m
en
-

tion
ed
,
h
av
e
m
u
ch

larger
red

u
ction

s,
as

m
u
ch

as
40%

.

7
S
u
m
m
a
ry

In
th
is
p
ap
er

w
e
h
av
e
con

sid
ered

th
e
u
sefu

ln
ess

of
ou
t-of-ord

er
ex
ecu

tion
an
d
register

ren
am

in
g
for

v
ec-

tor
arch

itectu
res.

W
e
h
ave

seen
th
rou

gh
sim

u
lation

th
at

th
e
trad

ition
al

in
-ord

er
vector

ex
ecu

tion
m
o
d
el

is
n
ot

en
ou
gh

to
fu
lly

u
se

th
e
b
an
d
w
id
th

of
a
sin

gle
m
em

ory
p
ort

an
d
to

cover
u
p
for

m
ain

m
em

ory
la-

ten
cy

(ev
en

con
sid

erin
g
th
at

th
e
p
rogram

s
w
ere

m
em

-
ory

b
ou
n
d
).

W
e
h
ave

sh
ow

n
th
at

w
h
en

ou
t-of-ord

er
issu

e
an
d
register

ren
am

in
g
are

in
tro

d
u
ced

,
v
ector

p
er-

form
an
ce

is
in
creased

.
T
h
is

p
erform

an
ce

ad
van

tage
can

b
e
realized

ev
en

w
h
en

ad
d
in
g
on
ly

a
few

ex
tra

p
h
y
sical

registers
to

b
e
u
sed

for
ren

am
in
g.

O
u
t-of-

ord
er

ex
ecu

tion
is
as

u
sefu

l
in

a
v
ector

p
ro
cessor

as
it

is
w
id
ely

recogn
ized

to
b
e
in

cu
rren

t
su
p
erscalar

m
i-

crop
ro
cessors.

U
sin

g
on
ly

12
p
h
y
sical

vector
registers

an
d
an

ag-
gressive

com
m
it

m
o
d
el,

w
e
h
av
e
sh
ow

n
sign

i�
can

t
sp
eed

u
p
s
over

th
e
referen

ce
m
ach

in
e.

A
t
a
m
o
d
est

cost
of

16
vector

registers,
th
e
ran

ge
of

sp
eed

u
p
s
w
as

1.24{1.72.
In
creasin

g
th
e
n
u
m
b
er

of
vector

registers

up to 64 does not lead to signi�cant extra improve-
ments, however.

Moreover, we have shown that large memory laten-
cies of up to 100 cycles can be easily tolerated. The
dynamic reordering of vector instructions and the dis-
ambiguation mechanisms introduced allow the mem-
ory unit to send a continuous ow of requests to the
memory system. This ow is overlapped with the ar-
rival of data and covers up main memory latency.

The introduction of register renaming gives a pow-
erful tool for implementing precise exceptions. By
changing the aggressive commit model into a conser-
vative model where an instruction only commits when
it (and all its predecessors) are known to be free of
exceptions, we can recover all the architectural state
at any point in time. This allows the easy introduc-
tion of virtual memory. Our simulations have shown
that the implementation of precise exceptions costs
around 10% in application performance, though some
programs may be much more sensitive than others.

One problem not solved by register renaming is reg-
ister spilling. The addition of extra physical registers,
per se, does not reduce the amount of spilled data.
We have introduced a new technique, dynamic load
elimination, that uses the renaming mechanism to re-
duce the amount of load spill tra�c. By tagging all
our registers with memory information we can detect
when a certain load is redundant and its required data
is already in some other physical register. Under such
conditions, the load can be performed through a sim-
ple rename table change. Our simulations have shown
that this technique can further improve performance
typically by factors of 1.07{1.16 (and as high as 1.78).
The dynamic load elimination technique can bene�t
from more physical registers, since it can cache more
data inside the vector register �le. Simulations with
32 physical vector registers show that load elimination
yields improvements typically in the range 1.10{1.20.
Moreover, at 32 registers, load elimination can reduce
the total tra�c to the memory system by factors rang-
ing between 15{20% and, in some cases, up to 40%.

Finally, we feel that our results should be of use to
the growing community of processor architectures im-
plementing some kind of multimedia extensions. As
graphics coprocessors and DSP functions are incorpo-
rated into general purpose microprocessors, the ad-
vantages of vector instruction sets will become more
evident. In order to sustain high throughput to and
from special purpose devices such as frame bu�ers,
long memory latencies will have to be tolerated. These
types of applications generally require high band-
widths between the chip and the memory system
not available in current microprocessors. For both
bandwidth and latency problems, out-of-order vec-
tor implementations can help achieve improved per-
formance.

References

[1] K. Asanovic, J. Beck, B. Irissou, B. Kingsbury, N. Morgan,
and J. Wawrzynek. The T0 Vector Microprocessor. In Hot

Chips VII, pages 187{196, August 1995.

[2] H. Dietz and C.-H. Chi. CRegs: A new kind of memory for
referencing arrays and pointers. In Proceedings of Supercom-

puting'88, pages 360{367, Orlando, Florida, November 1988.
IEEE Computer Society Press.

[3] R. Espasa and X. Martorell. Dixie: a trace generation system
for the C3480. Technical Report CEPBA-RR-94-08, Universi-
tat Polit�ecnica de Catalunya, 1994.

[4] R. Espasa and M. Valero. Decoupled vector architectures. In
HPCA-2, pages 281{290. IEEE Computer Society Press, Feb
1996.

[5] R. Espasa, M. Valero, D. Padua, M. Jim�enez, and E. Ayguad�e.
Quantitative analysis of vector code. In Euromicro Workshop

on Parallel and Distributed Processing. IEEE Computer So-
ciety Press, January 1995.

[6] J. Gee and A. J. Smith. The performance impact of vector pro-
cessor caches. In Proceedings of the Twenty-Fifth Hawaii In-

ternational Conference on System Sciences, volume 1, pages
437{449, January 1992.

[7] A. Iwaya and T. Watanabe. The parallel processing feature of
the NEC SX-3 supercomputer system. Intl. Journal of High

Speed Computing, 3(3&4):187{197, 1991.

[8] K. Kitai, T. Isobe, T. Sakakibara, S. Yazawa, Y. Tamaki,
Teruo, and K. Ishii. Distributed storage control unit for the Hi-
tachi S-3800 multivector supercomputer. In ICS, pages 1{10,
July 1994.

[9] L. Kontothanassis, R. A. Sugumar, G. J. Faanes, J. E. Smith,
and M. L. Scott. Cache performance in vector supercomput-
ers. In Proceedings of Supercomputing'94, Washington D.C.,
November 1994. IEEE Computer Society Press.

[10] D. Patterson, T. Anderson, and K. Yelick. A Case for Intelli-
gent DRAM: IRAM. In Hot Chips VIII, August 1996.

[11] K. Robbins and S. Robbins. Relationship between average
and real memory behavior. The Journal of Supercomputing,
8(3):209{232, November 1994.

[12] R. M. Russell. The CRAY-1 computer system. Communica-

tions of the ACM, 21(1):63{72, January 1978.

[13] W. Sch�onauer and H. H�afner. Explaining the gap between
theoretical peak performance and real performance for super-
computer architectures. Scienti�c Programming, 3:157{168,
1994.

[14] P. Tannenbaum. HNSX Supercomputers Inc.; Marketing
Group Director, 1996. Private Communication.

[15] T. Utsumi, M. Ikeda, and M. Takamura. Architecture of the
VPP500 Parallel Supercomputer. In Proceedings of Supercom-
puting'94, pages 478{487, Washington D.C., November 1994.
IEEE Computer Society Press.

[16] K. C. Yager. The Mips R10000 Superscalar Microprocessor.
IEEE Micro, pages 28{40, April 1996.

