
Exploiting Idle Floating-Point Resources For Integer Execution

S.Subramanya Sastry
Computer Sciences Dept.

University of Wisconsin-Madison
sastry@cs.wisc.edu

Subbarao Palacharla
Computer Sciences Dept.

University of Wisconsin-Madison
subbarao@cs.wisc.edu

James E. Smith
Dept. of ECE

University of Wisconsin-Madison
jes@ece.wisc.edu

Abstract

In conventional superscalar microarchitectures with partitioned in-
teger and floating-point resources, all floating-point resources are
idle during execution of integer programs. Palacharla and Smith
[26] addressed this drawback and proposed that the floating-point
subsystem be augmented to support integer operations. The hard-
ware changes required are expected to be fairly minimal.

To exploit these idle floating resources, the compiler must iden-
tify integer code that can be profitably offloaded to the augmented
floating-point subsystem. In this paper, we present two compiler al-
gorithms to do this. Thebasicscheme offloads integer computation
to the floating-point subsystem using existing program loads/stores
for inter-partition communication. For the SPECINT95 benchmarks,
we show that this scheme offloads from5% to 29% of the total dy-
namic instructions to the floating-point subsystem. Theadvanced
scheme inserts copy instructions and duplicates some instructions
to further offload computation. We evaluate the effectiveness of the
two schemes using timing simulation. We show that the advanced
scheme can offload from9% to 41% of the total dynamic instruc-
tions to the floating-point subsystem. In doing so, speedups from
3% to 23% are achieved over a conventional microarchitecture.

1 Introduction

Most current superscalar processors [17, 18, 16, 4] are based on
the microarchitecture shown in Figure 1. The instruction fetch
unit reads multiple instructions from the instruction cache, decodes
them, and places them in instruction buffers for execution by the
integer and floating-point subsystems. The integer subsystem con-
tains the integer register file, integer instruction buffers, and a num-
ber of integer functional units that operate on integer operands. The
floating-point subsystem is similar to the integer subsystem except
its functional units perform floating-point arithmetic, and it does
not control the execution of load and store instructions.

For the purpose of this work, the most important feature of this
microarchitecture is the partitioning of processor resources into in-
teger and floating-point subsystems. There are a number of rea-

To appear at the 1998 ACM SIGPLAN Conference on Program-
ming Language Design and Implementaiton, Montreal, Canada,
June 17-19, 1998.

CACHE

DATA

Integer
ALU

Load/
Store

Integer
ALU

DECODE
FETCH &I-CACHE

INTEGER

REGS

Memory address

Load-data

Store-value

FP

REGS

ALU
FP

ALU
FP

Load-data

Store-value

INT INSTR

FP INSTR
BUFFER

BUFFER

Branch outcomes

Integer subsystem

Floating-point subsystem

Branch outcomes

C
om

m
u

n
ic

a
ti

on

d
a
ta

p
a
th

Figure 1: Datapath of a conventional microarchitecture.

sons, both technical and historical, for this partitioning. The two
most pertinent to our discussion follow.

� Dividing the hardware into two simpler subsystems tends to
make both control and data paths faster. In each of the indi-
vidual subsystems, there are fewer register file ports, fewer
data bus sources and destinations, and fewer alternatives for
many control decisions, as compared with a processor where
all the units, registers and busses are shared. The result is a
faster clock cycle.

� Using two subsystems allows specialization. In particular,
the register files, data paths, and functional units can be of
different widths. In older machines, especially when hard-
ware costs were much higher, this was very important. In-
teger data could be half the width of floating-point data (or
sometimes even less). This reason, however, is fast disap-
pearing – the current trend is to make both integer and floating-
point data 64 bits wide. This trend reinforces the optimiza-
tion described in this paper.

The main disadvantage of the partitioned approach is that it can
lead to an imbalance in resource usage. In particular, it leads to idle
floating-point resources (instruction buffers, issue logic, and func-
tional units) during execution of integer programs. A large number
of common programs (compilers, editors, databases, operating sys-
tems) [28, 22] are integer programs that execute very few (if any)

1

floating-point operations. Palacharla and Smith [26] addressed this
drawback and proposed a more general microarchitecture in which
the floating-point subsystem can also execute integer instructions.
The hardware modifications required of existing architectures are
minimal and are similar in spirit to the Intel MMX extensions to
the IA-32 instruction set [20] and the Sun SPARC Visual Instruc-
tion Set (VIS) extensions [19].

� The floating-point functional units are augmented to support
simple integer and logical operations. The more complex
operations, integer multiplication and division, are fairly rare
and do not have to be included. The simple integer units can
be embedded in the existing floating-point units and do not
require additional busses. With today’s transistor budgets,
this additional hardware cost is small.

� Additional opcodes have to be added to the instruction set
to control the new integer instructions. This is probably a
more significant consideration because it requires instruction
set extensions and re-compilation. In our study, we used 22
extra opcodes.

In the rest of the paper, the integer subsystem is called theINT sub-
system and theaugmentedfloating-point subsystem is called the
FPa subsystem. In order to use the proposed microarchitecture ef-
fectively, the compiler must identify integer operations that can be
offloaded to the augmented floating-point subsystem, i.e., the com-
piler has to partition the program by assigning instructions to the
INT and FPa subsystems. This paper presents and evaluates com-
piler algorithms for achieving such code partitioning. The most im-
portant goal of our algorithms is to maximize the utilization of the
floating-point resources during execution of integer code. The main
source of difficulty in doing so is handling inter-partition commu-
nication. Such communication can be achieved either through ex-
isting program loads/stores or through the use ofcopyinstructions
that move data between the INT and the FPa register files. Al-
ternatively, communication can be entirely avoided by duplicating
code. The problem is in striking the right balance between these
communication mechanisms while maximizing the resultant bene-
fits. In this paper, we present two code partitioning schemes. The
first scheme, called thebasic partitioning scheme only uses ex-
isting program loads and stores for inter-partition communication.
The second scheme, called theadvancedpartitioning scheme adds
copy instructions and code duplication for inter-partition communi-
cation. We use simulations to study the effectiveness of these com-
piler schemes. Results for the SPEC95 integer benchmarks show
that the compiler can offload from 9% to 41% of the total dynamic
instructions to the FPa subsystem. This results in performance im-
provements ranging from 2.5% to 23.1% on a 4-way (2 int + 2 fp)
issue machine.

Before presenting further details of the proposed schemes, let
us understand current microarchitectures in a little more detail. Con-
sider the function shown in Figure 2 that computes the floating-
point vector sumc[] = a[] + b[] . Instructions I3 and I4 are floating-
point load instructions. Even though they are called “floating-point”
instructions, they actually issue from the integer instruction buffers
(Figure 1) and execute in the load/store unit of the integer subsys-
tem. This unit computes the effective memory address and sends it
to the data cache. The data cache retrieves the data (if there is a hit)
or gets it from memory (if there is a cache miss) and sends the data
over to the floating-point register file – via the appropriate “Load-
data” path shown in Figure 1. Instruction I5, a floating-point add

Assembly for the C code

I3: l.s $f0, 0($6)
I4: l.s $f2, 0($7)
I5: add.s $f0, $f0, $f2
I6: s.s $f0, 0($5)
I7: addu $5, $5, 4
I8: addu $6, $6, 4
I9: addu $7, $7, 4
I10: addu $8, $8, 1
I11: slt $2, $8, $4

 j $31

I1: move $8, $0
I2: blez $4, $L21

I12: bne $2, $0, $L23

 $L23:

 $L21:C function to compute

floating-point vector sum

 float c[],
void fp_vector_sum(int n,

 float b[])
 float a[],

{

}

 int i;

 for (i = 0; i < n; i++)
 c[i] = a[i]+b[i];

Figure 2: Example floating-point code.

instruction, executes entirely in the floating-point subsystem. In-
struction I6 is a floating-point store which computes the effective
address in the load/store unit of the integer subsystem. The value to
be stored is retrieved from the floating-point register file and gets
written into the data cache. The only other instruction that will
be of interest to us is the conditional branch instruction I12 which
checks for loop termination and sends the outcome back to the in-
struction fetch unit.

If the above example were computing aninteger vector sum
instead of afloating-pointvector sum, then the floating-point re-
sources would be completely idle.1 However, if the floating-point
adder could also perform integer adds, then the integer add could
be offloaded to the floating-point subsystem by using the same code
as shown above, with the one exception that instruction I5 would
have a new opcode specifying “integer add of floating-point regis-
ters”. In the rest of the paper, we will strive for this type of function
offloading, as well as offloading of some branch decisions.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents some terminology and de-
scribes the data structure used by the algorithms. Section 4 dis-
cusses the goals of the partitioning algorithms. Section 5 presents
the basic partitioning scheme used by the compiler. In Section 6,
the advanced partitioning scheme is presented. In Section 7, we
present the evaluation methodology and then present performance
improvements resulting from the partitioning schemes discussed in
Sections 5 and 6. We present our conclusions in Section 8.

2 Related work

A number of clustered/partitioned architectures for exploiting fine
grain instruction level parallelism have been proposed in the liter-
ature [24, 15, 13, 12, 27, 8, 9]. All of these architectures attempt
to reduce hardware complexity to obtain a faster clock cycle. In
all these architectures, the hardware resources are uniformly parti-
tioned across multiple clusters resulting in homogeneous clusters.
However, in the superscalar architecture considered in this paper,
the clusters are heterogeneous and only one of the clusters (INT
subsystem) can address memory. Since all loads and stores always
execute on one cluster, it is much harder to achieve balanced parti-
tioning for integer programs, because memory addressing and ac-
cess forms a big portion of program execution in most integer pro-
grams.

1Although, in this example, the floating-point resources are nearly idle even when
executing floating-point code! This is not uncommon, and the techniques proposed in
this paper can probably be effective with floating-point code.

2

In the context of VLIW machines (ELI, Multiflow TRACE, LC-
VLIW), there has been prior work to partition code across clusters
[14, 23, 5, 3, 11]. Ellis’ BUG (bottom-up greedy) assignment al-
gorithm in the Bulldog compiler [14] assigns instructions to func-
tional units in all clusters. The algorithm is based on the assump-
tion that functional units are the only limiting resource in the ma-
chine. Inter-cluster communication bandwidth is not considered a
limiting resource. In his thesis [5], Banerjia shows that when inter-
cluster communication resources are scarce, the excessive copies
introduced by BUG can hurt performance.

Capitanio, Dutt, and Nicolau [3] present compiler schemes to
achieve balanced code partitions while minimizing inter-cluster com-
munication. However, this study applied the code partitioning tech-
niquesonly to straight-line loop bodies of floating-point codes.

Unlike the BUG algorithm, the partitioning algorithms presented
by Banerjia [5], Capitanio et al. [3], and Desoli [11] attempt to
maximize utilization of hardware resources in all clusters while
minimizing inter-cluster communication. In this respect, these al-
gorithms are similar in spirit to our partitioning algorithms. The
main difference is that these algorithms are based on a statically-
scheduled machine model with homogeneous clusters, whereas our
algorithms are for a dynamically-scheduled superscalar machine
with heterogeneous clusters. This simplifies the problem since it
is not necessary to schedule for individual issue slots. A further
difference between our approaches is that these earlier algorithms
do not consider code duplication as a means of eliminating inter-
cluster communication.

In the Multicluster architecture [15], the hardware takes care
of inter-cluster communication automatically. The compiler does
not insert explicit copy instructions. The hardware performs inter-
cluster copying based on the architectural registers used by the
operands of an instruction. The compiler performs code partition-
ing by assigning registers to instruction operands. The primary
objective of the partitioning algorithms is to achieve load balance
between clusters. Since all hardware resources including the reg-
ister file are partitioned equally between the clusters, load balance
is considered far more important than the the increased commu-
nication between clusters. Again, code duplication is not used to
eliminate some of this communication, though it is recognized as a
possible improvement to their algorithms.

The MMX extensions to the IA-32 instruction set [1] are aimed
at speeding up multimedia programs by performing multiple bit,
byte, or word operations in parallel like a SIMD processor. To
maintain backward compatibility and avoid changes to the oper-
ating system, these extensions were implemented by augmenting
the floating-point subsystem to perform these integer operations by
using the floating-point registers to hold the integer data. To ex-
ploit these MMX extensions to their full potential, it is necessary to
vectorize sub-word integer operations. However, for programs that
do not have any SIMD parallelism (non-multimedia programs), the
compiler can still profitably exploit these MMX extensions in the
manner described in this paper.

3 Terminology and Data Structures

In this section, we first describe the data structure used by the par-
titioning algorithms. We then present some terminology to aid sub-
sequent discussion.

The primary data structure used in code partitioning is the reg-
ister dependence graph (RDG) which represents all the register de-

pendences in a program. The RDG is a directed graph which has a
node corresponding to each static instruction in the program. There
is an edge from nodevi to nodevj if instructioni produces a value
that could be consumed by instructionj. These edges are deter-
mined by solving thereaching-definitionsdataflow problem [2].
Load and store instructions are special-cased in the RDG to sim-
plify the partitioning algorithms. Each load instruction is split into
two nodes - one representing the load address and the other repre-
senting the loaded value. Similarly, each store instruction is split
into two nodes - one representing the store address and the other
representing the store value. This is done because a load instruc-
tion computes the address in the INT subsystem, but the value can
be loaded into either subsystem. Likewise, the value being stored
can come from either the INT subsystem or the FPa subsystem.

Figure 3 shows C code frominvalidate for call , a fre-
quently executed function in the SPEC benchmarkgcc . The for
loop in the program runs through all pseudo registers and does
some bookkeeping for those that are invalidated by function calls.
The figure shows assembly code compiled for a conventional mi-
croarchitecture. The figure also shows the RDG2 for the program
fragment. Nodes2; 8; and11 correspond to load instructions and
have been split. Address nodes have the suffix ”a” while value
nodes have the suffix ”v”. To show that both nodes correspond to
a single program instruction, the split nodes have been enclosed
in a bigger oval node. Similarly, node14 corresponds to a store
instruction and has been split.

Given the RDG, thebackward sliceof G with respect to a node
v, denoted byBackward-Slice(G; v), is defined to be the set of
all nodes from whichv can be reached. Similarly, theforward slice
of G with respect tov, denoted byForward-Slice(G; v), is de-
fined to be the set of all nodes that can be reached fromv. Note
that backward slices, as defined, do not go past load-value nodes.
Similarly, forward slices do not go past address nodes. This is the
primary difference from the traditional definition of slices [21].

Given this definition of a forward slice, all forward slices in a
RDG terminate at memory addresses, call arguments, return values,
branch outcomes, or store values. Using these terminal nodes, we
define various computational slices as follows.

TheLdSt sliceof a program is defined to be the set of all instruc-
tions that contribute to the computation of addresses for load/store
instructions. Given the RDGG of a program, let

LS(G) = Set of load/storeaddressnodes inG. Then,
LdSt slice =[v2LS(G)Backward-Slice(G; v).

In Figure 3,LS(G) = f2a; 8a; 11a; 14ag; the LdSt slice has been
marked.

A branch slice is defined to be the set of instructions involved
in computing a branch outcome. This can be computed by starting
from a branch node and computing its backward slice. Store value,
call argument, and return value slices are defined similarly.

4 Partitioning Goals

In an out-of-order superscalar processor, instruction window size
and issue width primarily determine how much instruction level
parallelism (ILP) can be exploited by the hardware. Bigger the in-
struction window and wider the issue width, more the ILP that can

2The RDG is based on the assembly code shown. However, in the compiler, it is
based on the intermediate representation of the program.

3

Program fragment in C from gcc

regno++

reg_tick[regno]++

$4 = reg_tick[regno]

regno = 0

$2 = regs_invalidated_by_call & (1 << regno)

$2 = regno < FIRST_PSEUDO_REGISTER

LOADS

STORE

11a

11v

5

17

2a

2v

extern unsigned long regs_invalidated_by_call;

for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
 if (regs_invalidated_by_call & (1 << regno)) {
 delete_equiv_reg(regno);

I1:
$L5:

move $16, $0

 andi $2, $2, 0x1
 beq $2, $0, $L4
 move $4, $16
 jal delete_equiv_reg
 lw $3, reg_tick
 sll $2, $16, 2
 addu $2, $2, $3
 lw $4, 0($2)
 bltz $4, $L4
 addu $4, $4, 1
 sw $4, 0($2)

$L4:
 addu $16, $16, 1
 slt $2, $16, 66
 bne $2, $0, $L5I17:

I16:
I15:

I14:
I13:
I12:
I11:
I10:
I9:
I8:
I7:
I6:
I5:
I4:
I3:
I2:

Assembly code for the program

Instruction format is :

if (reg_tick[regno] >= 0)
 reg_tick[regno]++;

}

 sra $2, $2, $16
lw $2, regs_invalidated_by_call

LdSt Slice

10

1312

15

16

3
6

7

14v 14a

9

4

1

8a

8v

<op> <dst>, <src1>, <src2>

Figure 3: An example program fragment.

be exploited. In the augmented architecture, since the FPa sub-
system is capable of executing integer instructions, if properly ex-
ploited, this effectively doubles the window size and issue width for
integer programs. Thus, our partitioning schemes concentrate on
maximizing the utilization of the floating-point instruction window
and issue logic while keeping to a minimum any resulting commu-
nication and instruction overheads.

In our machine model, since only the INT subsystem can exe-
cute loads and stores, all loads and stores are assigned to the INT
partition. As discussed previously, the LdSt slice of a program
computes load and store addresses. Potentially, portions of this
LdSt slice could be assigned to the FPa partition. However, since
all memory addresses are ultimately needed in the INT subsystem,
this necessitates the use of copy instructions on some address com-
putation paths. This is undesirable since memory addressing and
access tend to be on the critical path of most programs, integer or
floating-point. Hence, in our partitioning algorithms, we assign the
complete LdSt slice of a program to the INT partition.

Calling conventions impose further restrictions on our schemes.
These conventions require integer-valued arguments and return val-
ues to be passed/returned in integer registers. So, call argument and
return value nodes are always assigned to the INT partition. Fur-
ther, if call argument and return value slices are assigned to the
FPa partition, copies would be required to adhere to calling con-
ventions. If it is unprofitable to introduce these copies, these slices
would instead be assigned to the INT partition.

The remaining computational slices, branch slices and store-
value slices, are potential candidates for assignment to the FPa par-
tition. Some of these slices can be assigned to the FPa partition
without requiring any inter-partition communication. It is shown
by Palacharla and Smith [26] (and is borne out by our simulations)
that the LdSt slices of integer programs account for close to 50% of
all dynamic instructions executed. This puts an upper bound on the
size of the FPa partition that our algorithms can identify. Calling
conventions and communication overheads would reduce this size

further.
Based on these observations, we decided to let the partition-

ing schemes greedily assign as much of the branch and store-value
slice to the FPa partition as possible. The goal of the partition-
ing algorithms is to maximize the size of the FPa partition. The
limitations of these greedy partitioning strategies are discussed in
Section 6.6. We are now ready to present details of our code parti-
tioning schemes. The next section discusses the basic partitioning
scheme.

5 Basic Partitioning Scheme

In this section, we present the basic partitioning scheme that at-
tempts to partition the program without introducing extra instruc-
tions for inter-partition communication. It achieves all inter-partition
communication through existing program loads/stores. We first de-
scribe the conditions that need to be satisfied by the INT and FPa

partitions to adhere to this restriction. We then describe a partition-
ing algorithm that identifies partitions satisfying these conditions.

5.1 Partitioning conditions

Given a programP and its RDGG, the goal is to partitionG into
a INT partition,I(G), and a FPa partition,F (G), that satisfy the
following conditions:

1. F (G) andI(G) are disjoint.

2. If v 2 F (G), thenBackward-Slice(G; v) \ I(G) = ;.
For a nodev 2 F (G), this condition specifies thatv or any
of its ancestors should notreceiveany value fromI(G) via a
register.

3. If v 2 F (G), thenForward-Slice(G; v) \ I(G) = ;. For
a nodev 2 F (G), this condition specifies thatv or any of
its descendants should notsupplyany value toI(G) via a
register.

4

The last two conditions are a manifestation of the restriction not to
introduce any extra communication instructions in the program. It
can easily be shown that failure to satisfy either of these two con-
ditions necessitates the use of extra copy instructions to maintain
correctness of the generated assembly code.

5.2 Partitioning Algorithm

We now present a simple algorithm to find the largest setF (G)
that satisfies the partitioning conditions. We aim for the largest set
because the goal of our algorithms is to maximize the size of the
FPa partition. LetGu be the undirected graph corresponding to
G, i.e. Gu consists of the same vertices and edges asG, but the
edges are undirected. Then, the partitioning conditions can be in-
terpreted as: Ifv 2 F (Gu), thenv is not reachable from any node
in I(Gu). So, every connected component inGu either belongs
to I(Gu) or F (Gu) but is not shared between the two partitions.
Since load/store address nodes, argument and return-value nodes
are assigned to the INT partition, connected components contain-
ing these nodes are assigned to the INT partition. All other compo-
nents are assigned to the FPa partition. These components contain
instructions that computeonly branch outcomes and store values.

Consider the graph in Figure 4 which corresponds to the exam-
ple presented in Figure 3. The partitions identified by the basic par-
titioning algorithm are marked. The graph has four connected com-
ponents. One component consists of the nodesf11v; 12; 13; 14vg.
This component computes the store value for the store instruction
I14. Since this component does not contain any load/store address
nodes, it is assigned to FPa. In contrast, all the other components
contain load/store address nodes and hence are assigned to INT.
Figure 4 also shows the partitioned assembly code. Integer instruc-
tions that execute in FPa are shown inbold with a ”,c” suffix. The
load and store instructions (I11 and I14) are italicized to point out
that these instructions are converted to floating-point load and store
instructions.

5.3 Limitations of the Basic Partitioning Scheme

The basic partitioning algorithm is simple and efficient3. How-
ever, it misses opportunities to assign more computation to the FPa

partition because of the restriction not to introduce extra instruc-
tions. Consider the partitioning in Figure 4 again. The branch
slicesf1; 15; 16; 17g andf1; 15; 2v; 3; 4; 5g contain the address-
ing instructionsI1 and I15 and hence, could not be assigned to
FPa. However, if we relax the restriction on introducing extra in-
structions in the program, we could assign these branch slices to the
FPa subsystem as shown below. Suppose the architecture has in-
structions to copy values directly between the INT and FPa register
files4. Then, copy instructions can be inserted in the INT subsys-
tem to copy the results ofI1 andI15 to the FPa subsystem. This
allows the earlier branch slices to execute in FPa. Figure 5 shows
the resulting assembly code and the associated RDG. In this ex-
ample, copy instructions have enabled the offloading of five more
instructions to FPa. Since I1c is outside the loop, copy overheads
are incurred every loop iteration only for instruction I15c.

For this example, code duplication can be used to achieve the
same partitioning as realized by inserting copy instructions. In the

3Linear in the number of nodes and edges of the RDG.
4Such instructions are present in a number of instruction sets (e.g. MIPS [10] and

Alpha [6]).

C code fragment of our example shown in Figure 3, the loop induc-
tion variableregno is used both for address computation as well
as for branch computation. By duplicatingregno in FPa, the two
pieces of code can proceed independently without any communication5 .
Figure 6 shows the assembly code and the associated RDG when
this is done. I1d and I15d are duplicated instructions and enable
five more instructions (relative to the basic partitioning scheme) to
be offloaded to the FPa subsystem. Since I1d is outside the loop,
overheads are incurred each loop iteration only for instruction I15d.

Calling conventions further limit the ability of the basic parti-
tioning algorithm to offload computation to the FPa partition. All
components containing argument and return value nodes are as-
signed to the INT partition by the basic partitioning scheme. Copy
instructions can alleviate this problem too. One could let the par-
titioning algorithm ignore the restrictions imposed by the calling
conventions and later, when necessary, introduce copy instructions
to adhere to these conventions.

Thus, copy instructions and code duplication can achieve better
code partitioning. However, copy and duplicate instructions not
only increase the size of the FPa partition, but can also increase the
total number of dynamic instructions executed, which can degrade
performance. Care must be taken to minimize the drawbacks of
copy and duplicate instructions. The advanced partitioning scheme
to be presented in the next section uses a cost model to determine
where copy instructions or duplicate code will help.

6 Advanced Partitioning Scheme

In this section, we study advanced partitioning techniques that give
better partitions than the basic partitioning scheme. As discussed
previously, this is achieved through the use of copy instructions
to achieve inter-partition communication and through code dupli-
cation to eliminate inter-partition communication. However, it is
important to minimize overheads introduced by these instructions.
We now present a cost model that enables this.

6.1 Cost Model

The cost model to be presented computes profitability of offload-
ing integer instructions to FPa while taking into account any over-
heads introduced due to copies and duplicates. Intuitively, the ben-
efit from a copy or a duplicated instruction is the number of extra
dynamicinstructions that will execute in the FPa subsystem as a
result of the copy/duplicate. Given a RDGG,

LetScopy be the set of nodes inG for which copy instructions
are inserted.

LetSdupl be the set of nodes inG which are duplicated.
LetSc be the set of nodes inG that can be moved from INT to

FPa as a result of the copies and duplicates.
The nodes inSc execute in FPa yielding a bigger FPa partition.
However, execution of nodes inScopy andSdupl introduces over-
head in the program. This is quantified by the following equations.

Benefit =
P

v2Sc
nB(v)

Overhead = ocopy �
P

v2Scopy
nB(v)

+ odupl �
P

v2Sdupl
nB(v)

where B(I) : Basic block containing instructionI
nB : Runtime execution count of basic blockB

5There is control flow communication between the two through the shared fetch
unit as shown in Figure 1.

5

11a

11v

5

17

2a

2v

10

1312

15

16

3
6

7

14v 14a

9

4

1

8a

8v

INT PARTITION

FP PARTITIONa

lw $2, regs_invalidated_by_call

I1:

 sra $2, $2, $16
 andi $2, $2, 0x1
 beq $2, $0, $L4
 move $4, $16
 jal delete_equiv_reg
 lw $3, reg_tick
 sll $2, $16, 2
 addu $2, $2, $3

 addu $16, $16, 1
 slt $2, $16, 66

I17:
I16:
I15:

$L4:
I14:
I13:
I12:
I11:
I10:
I9:
I8:
I7:
I6:
I5:
I4:
I3:
I2:

$L5:

 bltz,c $f0, $L4
 addu,c $f0, $f0, 1
 sw $f0, 0($2)

 lw $f0, 0($2)

move $16, $0

 bne $2, $0, $L5

Figure 4: Basic code partitioning.

11a

11v

2a

2v

15c

5

17

LdSt Slice

10

1312

15

6

7

14v 14a

9

1

8a

8v
1c

16

3

4
Copies

move $16, $0

 addu $2, $2, $3
 sll $2, $16, 2
 lw $3, reg_tick
 jal delete_equiv_reg
 move $4, $16

 addu $16, $16, 1I15:
$L4:

I14:
I13:
I12:
I11:
I10:
I9:
I8:
I7:
I6:
I5:
I4:
I3:
I2:

I1:

$L5:

 slt,c $f4, $f2, 66
 bne,c $f4, $0, $L5

 addu,c $f0, $f0, 1
 bltz,c $f0, $L4

 beq,c $f4, $0, $L4
 andi,c $f4, $f4, 0x1
 sra,c $f4, $f4, $f2

 lw $f0, 0($2)

lw $f4, regs_invalidated_by_call

 sw $f0, 0($2)

I17:
I16:

I1c:

I15c:

cp_to_fp $16, $f2

 cp_to_fp $16, $f2

Figure 5: Partitioning with copy instructions.

ocopy : Overhead of a copy instruction
odupl : Overhead due to duplication

Then,Profit = Benefit�Overhead

It is beneficial to introduce copy and duplicate instructions only
if Profit � 0. Thus, the problem reduces to determiningScopy,
Sdupl, andSc that maximizeProfit. To computeProfit, nB ,
the execution count of basic blockB, needs to be estimated for
all basic blocks. In this study, we obtainednB usingbasic-block
execution profiles. For functions that are not covered by the profile,
we usedprobabilisticestimates for execution counts. IfpB is the
probability that basic blockB executes anddB is the loop nesting
depth ofB, thennB is set topB � 5dB . pB ’s are computed on the
assumption that both directions of a branch are equally likely to be
taken.

The copy and duplication overheads,ocopy andodupl, were de-
termined empirically. We experimented with different values for
these parameters and picked the values that provided the best re-
sults. For our benchmarks, we empirically found thatocopy be-
tween 3 and 6 andodupl between 1.5 and 3 yield the best results.
Next, we discuss the heuristics the compiler uses to determine prof-
itableScopy, Sdupl, andSc.

6.2 Copying versus duplication

The advanced partitioning algorithm can either duplicate an in-
struction or insert a copy instruction. Code duplication avoids inter-
partition communication whereas copy instructions cause inter-par-
tition communication. However, when a nodeu is duplicated, all of
its parents should either be duplicated or copy instructions should
be inserted for them. If the parents are duplicated too, then the
duplication effect fans out along the backward slice. This can be
avoided if the result ofu is copied instead. Thus, the decision of
duplicatingu depends on whether its parents communicate with
the FPa partition, and, if so, whether they are copied or dupli-
cated. This decision can change with any change in the status of
these parents. A simple heuristic is presented below that makes
these decisions during a prepass of the partitioning algorithm. Let
u1; : : : ; uk be the parents ofv. Initially, dupl cost(v) = 1 and
copying cost(v) = ocopy �nB(v) for all nodesv. The duplication
cost is iteratively computed as:

dupl cost(v) = odupl � nB(v) +
Pk

i=1
min(copying cost(ui);

dupl cost(ui))

v is duplicated only ifdupl cost � copying cost. This heuristic
is based on the assumption that ifv is to be duplicated, then each

6

11a

11v

2a

2v

5

17

LdSt Slice

10

1312

15

6

7

14v 14a

9

1

8a

8v

16

3

4

1d

15d

Duplicates

I1:

 move $4, $16
 jal delete_equiv_reg
 lw $3, reg_tick
 sll $2, $16, 2
 addu $2, $2, $3

 addu $16, $16, 1

I16:

I15:
$L4:

I14:
I13:
I12:
I11:
I10:
I9:

I7:
I8:

I6:
I5:
I4:
I3:
I2:

$L5:

move $16, $0

I17: bne,c $f4, $0, $L5
 slt,c $f4, $f2, 66
 addu,c $f2, $f2, 1

 addu,c $f0, $f0, 1
 bltz,c $f0, $L4

 beq,c $f4, $0, $L4
 andi,c $f4, $f4, 0x1
 sra,c $f4, $f4, $f2

move,c $f2, $0

 sw $f0, 0($2)

 lw $f0, 0($2)

lw $f4, regs_invalidated_by_call

I15d:

I1d:

Figure 6: Partitioning with code duplication.

of the parents ofv either needs to be copied or duplicated. This
can yield non-optimal solutions because irrespective of whetherv
is duplicated or not, a parent might still be copied/duplicated and
hencev need not be charged with the communication overhead for
that parent.

If odupl � ocopy, no node will be duplicated. So, we require
that odupl < ocopy. This is reasonable because code duplication
can lead to inter-partition independence unlike copy instructions.

6.3 Algorithm for introducing copy instructions and du-
plication code

We are now ready to present an algorithm that identifies sites to
introduce copy instructions and duplicate code to increase the size
of the FPa partition. We restrict the algorithm to introduce copies
only from INT to FPa. This restriction keeps the decision proce-
dure simple and also simplifies the actual insertion of copies and
duplicates. As a result, if a nodeu is assigned to INT,Backward-
Slice(G; v) is also assigned to INT.

There are two distinct phases of the algorithm. Initially, the
LdSt slice is assigned to the INT partition. In the first phase of
the algorithm, the INT partition is expanded to include instructions
that are not profitable for execution in the FPa subsystem. This
expansion is done by analyzing the instructions on theboundary
between the INT and FPa partitions. The boundary is made up of
INT nodes some of whose children are not in INT. For each child
of a boundary instruction, the algorithm checks if it is beneficial
to retain the child instruction in the FPa subsystem. If not, the
boundary is expanded to include the child in the INT partition.

During the second phase of the algorithm, copies and dupli-
cates are tentatively introduced for instructions on the INT bound-
ary. Then, for each connected component (in the undirected RDG)
containing these copies and duplicates,Profit is computed using
the cost model presented earlier. Unprofitable (Profit < 0) com-
ponents are assigned to INT during this phase. The algorithm is
presented below.

0: G = RDG for the function;

1: Assign LdSt slice to the INT partition;

2: Bdry = Boundary of the INT partition;

3: S = Non-INT children of nodes on Bdry;

/******* Phase 1 ******/

4: while (S 6= ;) do f

5: Pick a node u from S;

6: Let P = FPa nodes in Backward- Slice(G; u);

7: Compute loss, the loss to FP a if P is

assigned to INT;

8: if (loss < 0) then f /* Expand bdry */

9: Move P to INT and update Bdry;

10: Add FP a children of nodes in P to S;

11: g

12: elsif (loss = 0) then /*Defer decision*/

13: Add FP a children of nodes in P to S;

14: Remove nodes in P from S;

15: g

/******* Phase 2 ******/

16: Use Bdry to compute Scopy and Sdupl;

17: Tentatively, introduce copies and duplicates

in G for nodes in Scopy and Sdupl;

18: Let Gu = Undirected graph corresponding to G;

19: for each u in Scopy and Sdupl do f

20: Let C = Connected component of Gu

containing u;

21: Compute Profit for C;

22: if (Profit < 0) f

23: Assign C to INT;

24: Remove copies and duplicates from C;

25: g

26: g

The primitive step in the first phase of the algorithm is the com-
putation of loss if a FPa nodeu is moved to INT. As mentioned ear-

7

lier, if u is moved to INT, all FPa nodes inBackward-Slice(G; u)
also get assigned to INT.loss is this accumulated loss and is com-
puted as follows.

P = Set of FPa nodes inBackward-Slice(G; u)
= fv j v 2 Backward-Slice(G; u); v =2 INTg

Q = Boundary nodes that are parents of nodes inP
= fv j v 2 Bdry; 9u 2 P such thatv is u’s parentg

loss =
P

u2P
[nu + �(u)] +

P
v2Q

�(v)

While computingloss, all nodes inP are considered to be in INT.
Let us now examine the equation forloss and account for each of
the terms there. In the first summation, the first term(nu) arises
becauseu no longer executes in FPa. If u has children in FPa and
is assigned to INT, thenu has to be copied if those children are to
execute in FPa. The second term,�(u), accounts for this overhead.
The second summation accounts for changes in copying overheads
of nodes inQ. For a nodev 2 Q, �(v) is computed as follows.
Sincev is in INT6, either:

� v does not have any child in FPa. In this case,v no longer
needs to be copied/duplicated whenP gets moved to INT.
So,�(v) = �overhead. Depending on whetherv is copied
or duplicated,overhead is eithercopying cost(v) or
duplication cost(v).

� v has at least one child in FPa. In this case, irrespective of
what happens toP , there is no change in the status ofv. So,
�(v) = 0.

In line 12, if loss = 0, this is considered to be insufficient infor-
mation to assignP to INT. The decision is deferred until children
of nodes inP are examined. It is possible to make a better decision
when these children are examined because a bigger portion of the
graph is analyzed.

At the end of Phase 1, the boundary of the INT partition will
have stabilized. At this point, the setsScopy andSdupl can be com-
puted by examining the nodes on the boundary.Sc is the set of
nodes that are not in INT. For this partitioning,Profit can be
computed using the earlier specified cost model. However, this so-
lution is not necessarily the best possible solution. It is possible to
improve on this solution further. The first phase of the algorithm
expands the INT boundary by making decisions about whether it is
unprofitableto move a nodeu (and its backward slice) from FPa
to INT. However, ifu is retained in FPa, it is not necessarily prof-
itable. An example should make this clear.

u v

x

p q

Example 2

u v

x

Example 1

copy

x

pn = n = 10q

un = n = 1v

o = 2

n = 2

Legend

In INT

In FPa

Figure 7: Examples for Phase 1 of the advanced scheme.

In the examples of Figure 7, supposex has been assigned to
INT. For both these examples,Bdry = fxg; S = fu; vg. In
Phase 1 of the algorithm, nodesu andv are successively examined.

6all nodes inQ are in INT since they are inBdry.

Consider nodeu. It can be verified that for both these examples,
loss > 0 for bothu andv. Hence, the boundary of the INT parti-
tion does not change. Let us now computeProfit for both these
examples.
For example 1,Sc = fu; vg; Scopy = fxg; P rofit = �2.
For example 2,Sc = fu; v; p; qg; Scopy = fxg; P rofit = 18.
The reason for this behavior is because Phase 1 uses onlylocal in-
formation, i.e. while analyzingu, v is not examined. Further, only
the immediate children ofu are examined, not all its descendants.

Thus, it is necessary to refine the solution further. This is done
during Phase 2. Initially, copies and duplicates are tentatively intro-
duced for all nodes inScopy andSdupl. Note that introducing these
copies and duplicates disconnects the graph at several places. For
example, in Figure 5, the copies1c and15c introduce a new con-
nected componentf2v ; 3; 4; 5; 16; 17; 1c; 15cg in the undirected
RDG. LetGu denote the undirected version of the RDG. After the
copies and duplicates are introduced, the cost model is applied to
each individual connected component ofGu containing a copy or a
duplicate instruction. All unprofitable (Profit < 0) components
are assigned to INT and the copies and duplicates in that compo-
nent are eliminated.

6.4 Interaction with calling conventions

As discussed in Section 6.6, calling conventions require all integer-
valued arguments and return values to be passed/returned in integer
registers. This constrains the partitioning algorithms in how much
code can be offloaded to FPa. One solution to get around this re-
striction is to perform code partitioning by ignoring calling conven-
tion restrictions and introducing copies where necessary. However,
it is important to evaluate the benefit in introducing such copies.

Let us consider how call arguments (both actual as well as for-
mal) are handled. Return value nodes are handled just like call
argument nodes. Within a function, if the call arguments that are
passed in (formal parameters) are required in FPa, these values
have to be copied to FPa. Similarly, if the computation of the call
arguments (actual parameters) takes place in FPa, then these values
have to be copied to INT at call sites. This is the only case when
copies are introduced from FPa to INT.

For each formal parameter, a dummy node is introduced repre-
senting the definition of the parameter. All these dummy nodes are
pre-assigned to INT. Once this is done, the partitioning algorithm
previously presented evaluates the benefit of introducing copies for
these dummy nodes automatically.

Actual parameter nodes are handled differently. Initially, all
computation of actual parameter values is assigned to FPa. During
Phase 1, the equation forloss is extended to account for copies re-
quired for actual parameter nodes. If a nodeu 2 P is an actual
parameter node, then the first term of the equation for this node
changes from[nu+�(u)] to�copying cost(u) because it is ben-
eficial to move an actual parameter node to INT since a copy is no
longer needed for it. Further, during phase 2, when the cost model
is applied to each connected component (line 21 of the algorithm),
the cost of introducing a copy from FPa to INT is considered an
extra overhead in computingProfit.

6.5 Optimality Issues

The advanced algorithm can yield non-optimal solutions for a num-
ber of reasons. First, as discussed earlier, the decisions for copying
a node or duplicating it are made non-optimally. Second, during

8

Phase 1, better solutions might be obtained by using global infor-
mation. Though the algorithm can yield non-optimal solutions, we
found that these heuristics successfully yield bigger FPa partitions
using very few copy and duplicate instructions. The number of ex-
tra dynamic instructions executed due to copies and duplicates is
less than1% for most benchmarks. Further, the increase in static
code size is also negligible.

6.6 Limitations of the partitioning schemes

A major underlying assumption in our schemes is that the floating-
point subsystem of superscalar architectures can be augmented to
support integer operationswithoutaffecting thelatencyof these op-
erations, i.e. a single cycle add in INT will still take a single cycle
in FPa. If the hardware does not support any single-cycle latency
operations in the floating-point subsystem, then single-cycle result
paths will have to be added when single-cycle integer operations are
supported. This potentially introduces an additional hardware cost.
An alternative would be to modify the algorithms to account for
the increased latency of integer operations when they are moved to
FPa. However, in such a case, the resulting performance improve-
ments would be smaller.

Both the partitioning algorithms presented earlier greedily as-
sign as much computation as possible to FPa without considering
whether this would underutilize the INT unit. The rationale behind
this decision was discussed in Section 4. The primary assump-
tion there was that most integer codes perform significant memory
access. However, for functions that perform very little or no mem-
ory access, this strategy can backfire. For example, theran func-
tion from thecompressbenchmark, that generates random numbers
does not access memory at all. As a result, our partitioning schemes
move the entire function from INT to FPa! However, for integer
programs, we expect this kind of behavior to be rare. Nevertheless,
the algorithms could be improved to consider load balance while
performing code partitioning.

The cost model presented does not take into account the avail-
ability of extra floating-point registers for register allocation. When
some of the integer code is offloaded to FPa, this can reduce the
register pressure on the integer register file and can thus reduce
register spills/refills. However, at the same time, there might be an
increase in register saves/restores across calls. In our simulations,
we found that there was a decrease in loads by 3.7% forgo. At
the other extreme, there was an increase in loads of about 2.6% for
gcc. Considering that most spills/refills and saves/restores hit in the
cache, these small changes in loads/stores might not be a significant
performance factor. However, if these effects are accounted for in
the cost model, better results might be obtained.

In the current schemes, all integer-valued arguments are passed
in integer registers as required by calling conventions. If the par-
titioning algorithms deem it profitable, call arguments are copied
to/from FPa. By performing interprocedural analysis, it might be
possible to reduce some of the copy overheads across calls by pass-
ing integer arguments in floating-point registers.

7 Performance Results

In this section, we first present our evaluation methodology. We
then present results for the effectiveness of the two partitioning
schemes and the net performance improvement over a conventional
microarchitecture.

7.1 Evaluation Methodology

We usedgcc-2.7.1as the base compiler for our work. The com-
piler was modified to generate code for the extended SimpleScalar
[7] instruction set which is based on the MIPS instruction set. The
SimpleScalar instruction set was extended by using new opcodes to
encode integer instructions executing in the floating-point subsys-
tem. We used 22 new opcodes for our study. All integer operations
except integer multiply and divide are supported in the floating-
point subsystem. Our simulation study shows that except forijpeg
which has about 3% of integer multiplications and divisions, all
other benchmarks have negligible amount of these operations. Fur-
ther, this keeps the hardware cost to a minimum since integer mul-
tiply and divide operations tend to be expensive (in terms of die
area) to implement.

Code partitioning is performed on the intermediate representa-
tion of the program after all the initial machine-independent opti-
mizations [2] are complete. Register allocation is performed after
code partitioning. Operands of instructions assigned to the FPa

partition are allocated floating-point registers.
We used a cycle-based timing simulator derived from the Sim-

pleScalar tool set [7]. The timing simulator models both a con-
ventional microarchitecture as well as a microarchitecture with the
augmented floating-point subsystem. Both microarchitectures are
identical in all other respects. The machine parameters we used in
our simulations are presented in Table 1.

We used programs from the SPECint95 benchmark suite to con-
duct our evaluation. The benchmarks and the inputs used are given
in Table 2. For the conventional microarchitecture, the bench-
mark programs are compiled by the base compiler (unmodified
gcc-2.7.1). All the benchmarks are compiled at the-O3 optimiza-
tion level which enables common subexpression elimination, loop
invariant removal, and jump optimizations among others. All the
benchmarks were simulated to completion.

7.2 Percentage of computation o�oaded to FPa

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44

perl go gcc li compress ijpeg m88ksim

%
 in

st
rs

 in
 F

P
_a

Size of the FP_a partition

5.7

8.3 8.9

15.4 14.7

21.4

16.216.2

10.9

25.3

10.8

32.1

29.5

41.6
Basic scheme

Advanced scheme

Figure 8: Size of the FPa partition.

Figure 8 shows the percentage of total dynamic instructions of-
floaded by the compiler for each of the benchmark programs. The
graph shows the size of the FPa partition for both the basic and the

9

Parameter 4-way 8-way
Fetch width any 4 instructions any 8 instructions

I-cache 64KB, 2-way set-associative
128 byte lines,1 cycle hit time,6 cycle miss penalty

Branch Predictor McFarling’s gshare [25] with 32K 2-bit counters, 15 bit global history
Unconditional control flow instructions predicted perfectly

Decode/Rename width any 4 instructions any 8 instructions
Issue window size 16 int/16 fp 32 int/32 fp

Max. in-flight instructions 32 64
Retire width 4 8

Functional Units 2 Int + 2 Fp units 4 Int + 4 Fp units
Functional Unit Latency 6 cycle mul, 12 cycle div, 1 cycle for rest

Issue Mechanism up to 4 ops/cycle up to 8 ops/cycle
out-of-order issue

loads may execute when prior store addresses are known
Physical Registers 48 int/48 fp 80 int/80 fp

D-cache 32KB, 2-way set-associative, write-back, write-allocate
32 byte lines,1 cycle hit time,6 cycle miss penalty

one load/store port two load/store ports

Table 1: Machine parameters.

Benchmark compress li gcc m88ksim go ijpeg perl
Input test.in browse.lsp stmt.i ctl.raw, dhry.big 2stone9.in vigo.ppm scrabbl.pl

Table 2: Benchmark programs.

advanced partitioning schemes. Because all the benchmark pro-
grams are integer programs that execute negligible floating-point
operations, the bars in the graph correspond to the amount of inte-
ger computation that the compiler is able to identify and offload to
the FPa subsystem. Overall, the compiler is successful in offload-
ing a sizable fraction of the total computation to the FPa subsystem.
In the case ofijpeg, m88ksim, compress, andgcc, more than20%
of the total computation is supported in the FPa subsystem. The
graph also shows that the advanced partitioning scheme generates
bigger partitions than the basic scheme for all benchmarks. For
go and compress, the partitions generated by the advanced parti-
tioning scheme are almost twice the size of those generated by the
basic scheme.Ijpeg benefits the most from the advanced scheme:
the FPa computation increases from10:7% to 32:1%. However,
for li , the advanced scheme does not perform better than the ba-
sic scheme becauseli is call intensive and has a number of small
functions.

While the advanced partitioning scheme might be able to of-
fload more computation, the percentages must be judged in con-
junction with the change in the instruction cache performance and
the total number of instructions executed due to the extra instruc-
tions introduced. Hence, we studied the overhead introduced by the
advanced partitioning scheme. For all the benchmarks, we found
the change in static code size to benegligible. As a result, there was
very little change in instruction cache hit rates for all the bench-
marks. The increase in the number of dynamic instructions exe-
cuted is also small. The maximum increase is4% for compress.
Copies account for3:4% and0:6% is due to duplicates. Overall,
these results show that the advanced partitioning scheme is success-
ful in increasing the FPa partition sizes without introducing a lot of
overhead.

7.3 Performance improvements on a 4-way issue machine

Figure 9 shows the performance improvements obtained by the pro-
posed microarchitecture over a conventional microarchitecture for
a 4-way issue (2 int + 2 fp) machine. Performance improvements

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

perl go gcc li compress ijpeg m88ksim

P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t(
in

 %
)

Performance Improvements on a 4-way machine

1.6
2.5

3.7

5.0
4.3

5.9
5.0

6.6
7.0

10.9

5.2

11.1

20.8

23.1Basic scheme

Advanced scheme

Figure 9: Speedups on a 4-way machine.

due to both the basic and advanced partitioning schemes are pre-
sented. Form88ksim, ijpeg, andcompress, improvements over10%
are achieved with the advanced partitioning scheme. In the case of
m88ksim, an impressive improvement of23% is achieved with the
advanced partitioning scheme. Overall, with the advanced parti-
tioning scheme, the hardware is capable of providing modest to
impressive performance improvements.

As expected, performance increases as more instructions are
offloaded to the FPa subsystem. However, the performance does
not directly reflect the size of the FPa partitions for two reasons.
First, the critical path of execution may not be affected by parti-
tioning. For example, in programs that are dominated by loads and
stores, performance is largely determined by the available cache
bandwidth. Second, as discussed in Section 6.6, INT resources
could be underutilized due to load imbalance. This translates to
lower performance than expected. For example, form88ksim, with
the advanced scheme, the INT subsystem is idle12:4% of the cy-

10

cles in which the FPa subsystem is executing one or more instruc-
tions. This partly explains why performance only improves by
about2:6% even though the size of the partition increases by12%.
This problem also occurs to a lesser degree inijpeg.

The graph also shows that except forli andm88ksim, the ad-
vanced partitioning scheme yields much better performance im-
provements than the basic partitioning scheme. In the case ofli , the
increase in the size of the FPa partition is very small. Form88ksim,
load imbalance seems to be the problem as mentioned earlier.

7.4 Performance improvements on a 8-way issue machine

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

perl go gcc li compress ijpeg m88ksim

P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t(
in

 %
)

Performance Improvements on a 8-way machine

0.8 1.0

2.1
3.0

2.3
3.1

1.6 1.8
1.2

2.6
1.7

6.3

17.1
18.0

Basic scheme

Advanced scheme

Figure 10: Speedups on a 8-way machine.

Figure 10 shows the performance improvements on a 8-way is-
sue (4 int + 4 fp) machine. As expected, the improvements are
much smaller because the issue width of INT gets within the range
of the average parallelism in a program. So, the extra issue band-
width of the FPa subsystem is not exploited as much. Programs
like m88ksim, which have enough parallelism are able to exploit
the presence of a bigger instruction window and wider issue and
execution bandwidth.

7.5 Applicability to
oating-point programs

We also experimented with the partitioning schemes on some floating-
point programs from the SPEC92 and SPEC95 benchmark suites.
For floating-point programs, there is not as much room for obtain-
ing performance improvements since the floating-point subsystem
is utilized for performing floating-point computation. Since our
algorithms do not attempt to balance load across the partitions,
we expected slowdowns when these algorithms were applied to
floating-point programs because the offloaded integer instructions
would compete with the floating-point instructions for issue and
execution resources. However, for all but one of the benchmarks
that we tried, there was negligible change (slowdown/speedup) in
running time because the algorithms attempt to offload only branch
and store-value slices to FPa. For floating-point programs, most of
the store-value slices and some of the branch slices are already in
FPa. In these programs, integer computation offloaded to FPa is
very small. However, for one of the SPEC92 benchmarks,ear, as
much as 18% of integer (branch and store-value) computation was
offloaded to FPa that resulted in 18% speedup on a 4-way issue

machine. Thus, it appears that the algorithms presented here can be
applied to floating-point programs as well without hurting perfor-
mance and even improving performance in certain cases. It might
be possible to further improve performance on these programs if
the algorithms are improved to account for load balance across the
partitions.

8 Conclusions

In current superscalar processors, all floating-point resources are
idle during the execution of integer programs. This problem can be
alleviated if the floating-point subsystem is augmented to execute
integer instructions and the compiler can identify integer instruc-
tions that can execute in such an augmented floating-point (FPa)
subsystem. The required modifications are minor and the resultant
microarchitecture stays similar to a conventional microarchitecture.
However, compiler support is required to identify integer compu-
tation that can execute in the FPa subsystem. We presented and
evaluated two code partitioning schemes to do this and evaluated
them. Our evaluation shows two things. First, for our benchmarks,
the compiler is able to offload a significant fraction, from9% to
41%, of the total computation in integer programs to the FPa sub-
system. Second, the partitions identified by the compiler can speed
up programs by3% to 23% over a conventional 4-way issue super-
scalar processor. For three of the benchmarks,compress, ijpeg, and
m88ksim, the performance improved from11% to 23%. Hence,
we believe that with minimal hardware support, idle floating-point
resources on current superscalar processors can be profitably ex-
ploited by the compiler to speed up integer programs.

9 Acknowledgements

This work was supported in part by NSF Grants MIP-9505853 and
MIP-9307830 and by the U.S. Army Intelligence Center and Fort
Huachuca under Contract DABT63-95-C-0127 and ARPA order
no. D346. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of the U. S. Army Intelligence Center and Fort Huachuca,
or the U.S. Government. We would like to thank Prof. Charles Fis-
cher, Prof. Susan Horwitz, Satish Chandra, Amir Roth, Glenn Am-
mons, Yiannakis Sazeides at UW-Madison and Anurag Acharya at
UCSB for providing us with useful comments on earlier drafts of
this paper. Thanks are due to Sanjiv Banerjia for providing us with
chapters of his thesis and pointing us to other related work. We
would also like to thank the anonymous referees for their comments
and suggestions that helped improve the content and presentation
of the paper.

References

[1] Alex Peleg, Sam Wilkie, and Uri Weiser. How Intel Built MMX Tech-
nology. Communications of the ACM, 40(1):25–38, January 1997.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers : Prin-
ciples, Techniques and Tools. Addison Wesley, 1988.

[3] Andrea Capitanio, Nikil Dutt, and Alexandru Nicolau. Partitioned
Register Files for VLIWs: A Preliminary Analysis of Tradeoffs. In
Proceedings of the 25th Annual International Symposium on Microar-
chitecture, pages 292–300, December 1992.

[4] Ashok Kumar. The HP-PA8000 RISC CPU: A High Performance
Out-of-Order Processor. InProceedings of the Hot Chips VIII, pages
9–20, August 1996.

11

[5] Sanjeev Banerjia.Instruction Scheduling And Fetch Mechanisms For
Clustered VLIW Processors. PhD thesis, Dept. of Electrical and Com-
puter Engineering, North Carolina State University, 1998.

[6] Digital Equipment Corporation.Alpha Architecture Handbook, Ver-
sion 3, October 1996.

[7] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating Future
Microprocessors: The SimpleScalar Tool Set. Technical Report CS-
TR-96-1308 (Available from http://www.cs.wisc.edu/trs.html), Uni-
versity of Wisconsin-Madison, July 1996.

[8] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith.
Trace Processors. InProceedings of the 30th Annual International
Symposium on Microarchitecture, pages 138–148, December 1997.

[9] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar Proces-
sors. InProceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 414–425, June 1995.

[10] Gerry Kane and Joe Heinrich.MIPS RISC Architecture. Prentice Hall,
1992.

[11] Giuseppe Desoli. Instruction Assignment For Clustered VLIW DSP
Compilers: A New Approach. Technical Report HPL-98-13, HP Labs,
January 1998.

[12] Gregory A. Kemp and Manoj Franklin. PEWS: A Decentralized Dy-
namic Scheduler for ILP Processing. InProceedings of the Interna-
tional Conference on Parallel Processing, volume I, pages 239–246,
1996.

[13] J.A.Fisher. Very Long Instruction Word Architectures and ELI-512.
In Proceedings of the 10th Annual International Symposium on Com-
puter Architecture, pages 140–150, June 1983.

[14] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD
thesis, Yale University, 1985.

[15] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic.
The Multicluster Architecture: Reducing Cycle Time Through Parti-
tioning. In Proceedings of the 30th Annual International Symposium
on Microarchitecture, pages 149–159, December 1997.

[16] Jim Keller. The 21264: A Superscalar Alpha Processor with Out-of-
Order Execution, October 1996.9th Annual Microprocessor Forum,
San Jose, California.

[17] Linley Gwennap. MIPS R10000 Uses Decoupled Architecture.Mi-
croprocessor Report, 8(14), October 1994.

[18] Linley Gwennap. UltraSparc Unleashes SPARC Performance.Micro-
processor Report, 8(13), October 1994.

[19] Linley Gwennap. UltraSparc Adds Multimedia Instructions.Micro-
processor Report, 8(16), December 1995.

[20] Linley Gwennap. Intel’s MMX Speeds Multimedia.Microprocessor
Report, 10(3), March 1996.

[21] Mark Weiser. Program Slicing.IEEE Transactions on Software Engi-
neering, 10(4):352–357, July 1984.

[22] Ann Marie Grizzaffi Maynard, Colette M. Donnelly, and Bret R. Ol-
szewski. Contrasting Characteristics and Cache Performance of Tech-
nical and Multi-User Commercial Workloads. InProceedings of the
Sixth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 145–156, October
1994.

[23] P.Geoffrey Lowney,
Stefan Freudenberger, Thomas Karzes, W.D.Lichtenstein, Robert P.
Nix, John S. O’Donnel, and John C.Ruttenberg. The Multiflow Trace
Scheduling Compiler.The Journal of Supercomputing, 7(1):51–142,
May 1993.

[24] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Pa-
pworth, and Paul K. Rodman. A VLIW Architecture for a Trace
Scheduling Compiler.IEEE Transactions on Computers, 37(8), Au-
gust 1988.

[25] Scott McFarling. Combining Branch Predictors. Technical Report
DEC WRL Technical Note TN-36, DEC Western Research Labora-
tory, 1993.

[26] Subbarao Palacharla and J. E. Smith. Decoupling Integer Execution
in Superscalar Processors. InProceedings of the 28th Annual Interna-
tional Symposium on Microarchitecture, pages 285–290, November
1995.

[27] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-
Effective Superscalar Processors. InProceedings of the 24th Annual
International Symposium on Computer Architecture, June 1997.

[28] Zarka Cvetanovic and Dileep Bhandarkar. Characterization of Alpha
AXP Performance Using TP and SPEC Workloads. InProceedings of
the 21st Annual International Symposium on Computer Architecture,
April 1994.

12

