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ABSTRACT

Today’s microprocessors achieve instruction-level parallelism by aggressive pipelining
and the ability to process multiple instructions in parallel.  A typical processor can be broken
into two main parts, the frontend and the backend.  The frontend sequences through the static
representation of the program and creates a dynamic stream of instructions to feed the
backend.  The backend executes the instructions.

Trace processors make use of a new microarchitecture organization that enables them to
achieve higher throughput in both the frontend and backend.  In the frontend a trace
processor uses a trace cache to enable it to fetch across multiple branches in a single cycle.
The trace cache records short dynamic sequences of instructions, traces, and can provide
one trace of instructions per cycle when a path is repeated.  Traces are dispatched, one per
processing element, to a distributed backend.  The backend is constructed of simple execution
engines and high aggregate throughput is achieved through replication.

This thesis proposes three mechanisms that enable a very high-performance frontend for
trace processors.  The first mechanism, trace pre-construction, augments the trace cache by
performing a task analogous to prefetching.  It increases both the average performance of
the trace cache, and the robustness of the trace cache to varying workloads.  Pre-
construction can reduce the trace cache miss rates up to 80%.

The second mechanism, instruction pre-processing, takes advantage of the trace cache to
dynamically optimize applications.  It can enable transformations that both dynamically
optimize common instruction sequences, and take advantage of implementation-specific
hardware.  The dynamic optimizations, performed in the frontend, can expose more
parallelism to the trace processor backend.  Three specific optimizations are considered:
instruction scheduling, constant propagation and instruction collapsing.  Together these
optimizations increase performance by up to 20%.

The third mechanism, next-trace prediction, is a control predictor that can match the
bandwidth of the trace cache without sacrificing accuracy.  It performs the functionality of
branch prediction and branch target prediction.  It works in units of traces, so its bandwidth
is perfectly matched to the trace cache.  Next-trace prediction has prediction accuracy
comparable to the best traditional branch predictors, while providing significantly higher
branch throughput.

Together with the trace cache, these mechanisms produce a high-performance frontend
that offers high instruction fetch bandwidth and exposes more parallelism to the backend.
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Chapter 1
Introduction

The trend toward ever-faster microprocessors must be continued to meet tomorrow’s

computing needs.  Faster, denser chip technologies help continue performance growth, but

new microarchitectures are needed to push performance further and to use higher transistor

counts effectively.  We are quickly reaching the point where a fundamental new processor

organization, beyond conventional superscalar, is needed.  A possible candidate is the trace

processor organization [65][57][49].  Along with a new processor organization come many

opportunities for novel microarchitectural mechanisms to address new opportunities and

solve weaknesses that arise.  This thesis focuses on a set of new microarchitectural

mechanisms to increase the performance of trace processors.

1.1 Instruction-Level Parallelism Processors

Over the past few decades many ingenious approaches have been proposed to increase

processor performance.  Increased performance comes from both increasing clock speeds and

increasing the amount of work done per clock cycle.  Clock speeds are largely dictated by

circuit technology, which has been advancing at a steady exponential rate [52].  Processors

have been able to maintain a rate of performance improvement above circuit technology
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growth by increasing the amount of work done per cycle, exploiting what is called

instruction-level parallelism (ILP).

In a typical processor, instruction-level parallelism is exploited in two ways.  First,

parallelism is exploited by pipelining [4], where different phases of instruction processing are

performed in an overlapped fashion.  Second, parallelism is exploited by superscalar

execution [59], where multiple instructions are issued and executed in parallel.  Much of the

potential benefit of the former has already been exploited in previous generations of

microarchitectures, and future designs are increasingly focused on exploiting the benefit of

the latter.

Instruction WindowInstruction Cache

INSTRUCTION
FETCH/DECODE

PIPELINE

INSTRUCTION
EXECUTION

PIPELINE

Re-Order Buffer

INSTRUCTION
RETIREMENT

PIPELINE

Branch Mispredict
Recovery Path

BRANCH
PREDICTOR

FRONTEND BACKEND

Figure 1-1 Typical processor organization.

A typical high-performance processor can be broken into two main parts, the frontend

and the backend (see Figure 1-1).  The processor’s frontend sequences through a static

representation of a program (the binary) and creates a dynamic stream of instructions to feed

the backend.  The frontend consists of a branch predictor, that primarily directs sequencing,

and a decode pipeline to decode and analyze instructions.  The frontend processes
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instructions in program order, although it may have a throughput of multiple instructions per

cycle.

The processor’s backend executes the instruction stream and provides feedback to the

frontend about control flow directives in the program.  The backend contains an execution

pipeline that can be decoupled from the frontend with an instruction window.  The execution

pipeline may take instructions in an out-of-order fashion [60] from the instruction window,

obeying only true dependencies, and may also have a throughput of multiple instructions per

cycle.  In addition to the execution pipeline, the backend has a retirement pipeline that

commits the work performed by instructions.  For an out-of-order processor the retirement

pipeline is decoupled from the execution pipeline by a re-order buffer [56].  The retirement

pipeline is in-order.

The performance of the processor’s frontend is limited by branch instructions,

instructions that conditionally or unconditionally redirect the processor to fetch from another

location.  In order to keep the pipeline fed, the frontend must predict the behavior of branch

instructions (their target and whether they are taken or not), as the instructions will not be

decoded and executed until later in the pipeline.  Today’s processors can only predict one

branch instruction per cycle (branch instructions can occur as often as one out of four

instructions for some applications).  Even if multiple branch instructions were predicted, a

normal instruction cache can only fetch a contiguous run of instructions up to the first taken

branch.  When the prediction for a branch is wrong, the instructions following the branch are

flushed from the pipeline and the processor starts refilling the pipeline with the correct
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instructions.  The penalty for mispredictions, in terms of lost potential work, can be very

large.

The performance of the processor’ s backend depends on the execution resources

available and the amount of parallelism exposed in the instruction stream.  Adding more

execution resources increases the peak throughput of the backend.  Increasing the size of the

instruction window, if the frontend can keep it full, increases the number of instructions

exposed to the backend.  The more instructions the backend can observe, the more likely it

can find independent instructions to execute in parallel.  The ability to increase the number of

execution resources and the size of the instruction window is limited by size constraints and

logic complexity.  The more execution resources or the larger the instruction window, the

more complex and potentially slower the necessary logic will be.

A processor requires a peak instruction fetch bandwidth considerably higher than the

sustained instruction throughput of the processor.  The higher bandwidth is needed because

some fraction of the fetch bandwidth is wasted fetching instructions that correspond to

incorrect speculative paths.  More importantly, the high bandwidth is needed to refill the

instruction window quickly (to expose instructions to the backend) after branch

mispredictions.

There are a number of factors limiting the scalability of the general superscalar

microarchitecture of today’ s high-performance processors.  Today’ s processors achieve an

average throughput in the range of one to two instructions per cycle.  To sustain a higher

throughput will require the ability to fetch and decode more than one basic block per cycle.
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An entirely new approach to instruction fetch is required to achieve the needed fetch

bandwidth.  Significantly higher peak throughputs are also needed in the backend to sustain

higher average throughputs.  To achieve this requires overcoming complexity constraints that

limit the size of the instruction window and the number of execution resources that can be

incorporated.

1.2 Overview of the Trace Processor microarchitecture

The trace processor microarchitecture has the potential to enable higher amounts of

instruction-level parallelism than can be achieved with today’ s superscalar

microarchitectures.  The trace processor microarchitecture addresses the factors limiting the

throughput of both the frontend and the backend of processors.  This enables the

development of processors that can achieve higher performance while maintaining complete

compatibility with existing instruction sets.

I use the term “trace processor” to refer to a processor built around the concept of a trace

cache [41][48][40] and organized for the execution of traces (for both the processor frontend

and backend).  Specifically I refer to the microarchitecture organization proposed by

Vijapeyam and Mitra [65] and by Rotenberg, Sazeides, Smith and myself [49].  This

microarchitecture organization built on a number of other works [14][58][48][57][3].  In this

section the general concept and motivation of the trace processor paradigm is discussed.  A

detailed description of the actual trace processor hardware is given in the next chapter.
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A trace is a valid dynamic sequence of instructions not longer than some maximum

length (16 or 32 for example).  The instructions in a trace need not be contiguous in the static

representation of the program and an instruction can occur multiple times in the same trace

and in multiple different traces.  Traces are constructed during program execution and stored

in a special cache, a trace cache.  When there is a trace in the cache that matches the

expected dynamic behavior of the program, it can be fetched from the trace cache in a single

cycle.

N

 T

A

B C

D

E

F

G

TN

N

N

N  T

T

Figure 1-2 Example CFG.

Trace cache operation can best be understood via an example.  Figure 1-2 shows a program’ s

control flow graph (CFG), where each node is a basic block, and the arcs represent potential

transfers of control.  In the figure, arcs corresponding to branches are labeled to indicate

taken (T) and not taken (N) paths.  The sequence ACD represents one possible trace, which

holds the instructions from the basic blocks A, C, and D.  This would be the sequence of

instructions beginning with basic block A where the next two branches are taken.  These

basic blocks are not contiguous in the original program, but would be stored as a contiguous

block in the trace cache (see Figure 1-3).
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INSTRUCTION CACHE TRACE CACHE

basic block of instructions

control flow of dynamic program

A

C

D

A C D

Figure 1-3 Instruction cache and trace cache representations of a program.

The trace cache replaces the instruction cache as the primary source for fetching

instructions, providing an entire trace worth of instructions per cycle.  To use the increased

fetch bandwidth of the trace cache, the branch predictor must also have increased bandwidth.

This is achieved with a special predictor that works in units of traces: a next-trace predictor

(discussed in detail in Chapter 5).  The decode pipeline is also modified to support the higher

bandwidth, decoding and analyzing instructions in units of traces.

In a trace processor, the backend as well as the frontend are built to operate in units of

traces.  A distributed backend is constructed from many small, simple processing elements

(similar to a multiscalar processor [14]).  Each processing element resembles the execution

engine of a modest superscalar processor.  Using small, simple execution engines enables

them to be built to operate at higher clock rates.  Replication is used to provide high

aggregate throughput.

Traces are dispatched, one per processing element, to the distributed backend.  Each

processing element executes instructions from its own trace.  The traces are part of one single
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program, so there are data dependencies among traces.  Values generated by traces are

communicated between processing elements and all original program semantics are obeyed.

The communication of values between processing elements has a greater latency than the

communication of values within a processing element.  This extra latency is the penalty for

partitioning the execution resources.

1.3 Thesis Contributions

Incorporating a trace cache into a processor’ s frontend raises a number of

implementation issues and opens up new opportunities for increasing performance.  One

important issue is that the dynamic nature of traces causes the trace cache to be sensitive to

the processor’ s workload.  The trace cache must learn dynamic behavior, which limits its

benefit when executing new regions of code.  The dynamic nature of traces also means the

working set of traces is much larger than the comparable static representation, leading to

capacity miss problems.  Another important issue is that a new approach to branch prediction

must be used in order to provide a bandwidth sufficient to take advantage of the fetch

bandwidth of the trace cache.  The trace cache can also enable a whole range of optimizations

that dynamically transform programs to optimize specific dynamic sequences of instructions

for implementation-specific hardware.

The proposed mechanisms are built to take advantage of the specific behavior of the

trace cache and the fundamental paradigm of having a processor function in the unit of traces

of instructions.  This thesis consists of three main parts, each dedicated to a different

mechanism to incorporate with the trace cache.  Together these mechanisms enable the full
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potential of the trace cache to be realized, and produce a high-performance, robust frontend

for trace processors.

In the first part, I propose trace pre-construction, to augment trace caches by performing

a function analogous to prefetching.  The trace pre-construction mechanism observes the

processor’ s instruction dispatch stream to detect opportunities for jumping ahead of the

processor.  After doing so, the pre-construction mechanism fetches static instructions from

the predicted future region of the program, and constructs a set of traces in advance of when

they are needed.  Trace pre-construction can significantly increase both the performance of

the trace cache and the robustness of the trace cache to varying workloads.  Trace pre-

construction requires sophisticated hardware, but does not affect the complexity of the main

processor core.

In the second part, I propose a new class of hardware optimizations that transform the

instructions within traces to increase the performance of the processor’ s execution engine.

Traces are “pre-processed” for both optimizing common dynamic instruction sequences and

to utilize implementation-specific execution resources.  I propose three specific

optimizations: instruction scheduling, constant propagation, and instruction collapsing.

Together these optimizations enable the processor to exploit significantly more instruction-

level parallelism.

In the third part, I propose a new type of control predictor to match branch prediction

throughput with the bandwidth of the trace cache.  I propose a next-trace predictor that treats

the traces as basic units and explicitly predicts sequences of traces.  The predictor collects
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histories of trace sequences (paths) and makes predictions based on these histories.  The basic

predictor is enhanced to a hybrid configuration that reduces performance losses due to cold

starts and aliasing in the prediction table.  The Return History Stack is introduced to increase

predictor performance by saving path history information across procedure call/returns.

The pre-construction and pre-processing mechanisms take advantage of an extended

pipeline organization enabled by the trace cache.  An autonomous engine analyzes the

program independently of the main processor.  This engine performs work on the program

that is encoded, along with instructions, into traces that are placed into the trace cache.  The

trace cache decouples this new engine from the main processor core.  The main processor

core can utilize work performed by this new engine to increase the efficiency of instruction

fetch and execution.  A full description of this pipeline organization is given in the next

section.

I believe that the trace processor organization is a very promising microarchitecture, and

the work of this thesis complements it well, but this work can be viewed as applicable in a

larger context.  The work in this thesis is directly applicable to any processor organization

that uses a trace cache.  Much of this work is also indirectly applicable to any processor

organization that uses larger blocks of work in the frontend.

1.4 An Extended Pipeline Model

Initial work in developing sophisticated new frontend mechanisms made it clear that it

was important to rethink how we logically view the processor pipeline.  This led to a new
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extended pipeline organization and a framework for a range of mechanisms for optimizing

processor performance.

The extended pipeline model contains a new pipeline, distinct from the fetch and execute

pipelines (see Figure 1-4).  I refer to the pipeline as a pre-processing engine, as it works on

instructions before they are fed into the normal processing phases.  The trace cache provides

an opportunity to decouple this pre-processing engine from the traditional processor core.

The pre-processing engine analyzes the program and encodes information into traces that it

places in the trace cache.  The main processor core fetches instructions from the trace cache

and can take advantage of the extra information that is encoded along with the instructions in

the trace.  This pipeline organization is similar to the organization used by the CRISP

processor [11].  The pre-processing engine is analogous to the prefetch and decode unit in the

CRISP processor, and the trace cache performs the same role as the decoded instruction

cache does in the CRISP processor.

The new pipeline organization takes advantage of two characteristics of traces.  First, a

valid trace can be placed into the trace cache at any time, independently of what the rest of

the processor is doing.  Second, the instructions within a trace need not be identical to the

instructions specified in the static program representation, just functionally equivalent.
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Figure 1-4 New pipeline organization with “pre-processing.”

The pre-processing engine can be used for implementing many different functions.

Using traces as the intermediate representation enables optimizations that encompass many

instructions.  The concept of the pre-processing engine emerged while I was developing the

mechanism to pre-process traces (hence the overlap of nomenclature).  As I started exploring

trace pre-construction I realized that the pre-processing engine approach could be used for a

whole range of mechanisms.  Beside pre-construction and pre-processing, the new pipeline

organization could be used for other optimizations like data memory prefetching.

This new organization enables sophisticated mechanisms to be incorporated into the

processor with minimal impact on the tightly tuned processor core.  This is important, as

performance is very sensitive to the length of the pipelines in the processor core and the clock

speed of the processor core.  The pre-processing engine does not impact the latency to resolve

mispredicted branches or the latency to redirect fetch and refill the main processor pipeline.

1.5 Related Previous Work

In this section I discuss the previous work that relates to each of the three main

mechanisms I propose in this thesis.
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1.5.1 Previous work related to trace pre-construction

Trace pre-construction builds on a large body of work related to pre-fetching.  Over the

past few decades the speed of processors has grown significantly faster than the speed of

large memory structures.  Hierarchical memory structures and prefetching have been

extensively utilized to address the discrepancy between processor and memory speeds.  In the

area of prefetching, more work has been focused on prefetching of data than instructions.

The temporal and spatial locality of instructions has allowed hierarchical memories to

perform very well, reducing the need for sophisticated prefetching.  There is still a sizeable

body of work on instruction prefetching using both software and hardware based approaches.

A number of software approaches to reduce the need for instruction prefetching and/or

enable simple instruction prefetching approaches to perform well have been proposed

[42][30][61].  Compiler directed prefetching of instructions has also been proposed in a

number of works [66][27].

There have been many proposed hardware schemes to support instruction prefetching

based on spatial locality.  A simple approach that is commonly applied is using long cache

lines to give some degree of implicit prefetching [44].  Prefetching sequential cache lines

have been studied in a number of works [53][21][55].

Other hardware instruction prefetching mechanisms have included prefetching the targets

of branches.  Smith and Hsu [55], and Pierce and Mudge [43] propose fetching the target of

conditional branches that are not taken.  The CRISP processor [11] incorporated an

autonomous prefetch mechanism that could sequence ahead of the processor and prefetch
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across calls and branches.  Attempting to predict taken branches relatively far ahead in the

instruction stream and to prefetch from the target was proposed by Young and Shekita [69].

Reinman, Austing and Calder [47] propose letting the branch predictor sequence ahead of the

processor which could be used to provide a small degree of instruction prefetching.

The pre-construction engine I propose attempts to sequence significantly far ahead of the

processor.  To do this the pre-construction engine makes use of a policy for jumping ahead of

the processor first proposed for the Dynamic Multithreading architecture [2] by Akkary and

Driscoll.

1.5.2 Previous work related to pre-processing

I consider three pre-processing optimizations, instruction scheduling, constant

propagation and instruction collapsing.  These optimizations all borrow from established

work in compilers as well as previous work in dynamic optimizations.  I originally presented

a description of the pre-processing optimizations at the 5th International Symposium on High-

Performance Computer Architecture [24].  Very similar work was done independently around

the same time by Friendly, Patel and Patt [17].

There has been extensive research into instruction scheduling within compilers.

Instruction scheduling has been incorporated to optimize for specific pipeline organizations

and to accommodate long latency operations [20][24][1].  For both superscalar and VLIW

architectures it has been proposed that the compiler can schedule code to take advantage of

parallel hardware to increase ILP [7][6][50].
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The scheduling optimizations I consider are similar to the work in dynamically grouping

instructions proposed in a number of works.  Melvin et al. [32] proposed dynamically

grouping independent instruction together to make use of parallel issue hardware.  Franklin

and Smotherman [15] proposed dynamically constructing VLIW instructions (stored in a

shadow cache).  Further work in the area includes the work with DIF caches [37].

Constant propagation/constant folding is a common optimization that is utilized in every

optimizing compiler [1].  It is an intuitive optimization that can be easily implemented in the

compiler without causing any side effects.

Data dependence collapsing has been proposed as a way to increase parallelism by

collapsing data dependent operations into a single more complicated operation.  Data

collapsing first appeared in the context of floating-point arithmetic in operations like the

fused multiply-add operation that is present in many instruction sets [34].  S. Vassiliadis et al.

[63] proposed a mechanism to collapse dependent pairs of fixed-point arithmetic or logical

operations.  This work was continued by Phillips and Vassiliadis [45].  Performance studies

to evaluate the potential of data collapsing of consecutive instructions were carried out in a

number of works [28][62].  Y. Sazeides et al. [50] studied more relaxed forms of data

collapsing.  They found that 29% to 47% of instructions could be collapsed leading to a

substantial increase in instruction-level parallelism.  They also found that a majority of

collapsing involved non-consecutive instructions.
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1.5.3 Previous work related to next-trace prediction

Next-trace prediction builds on previous work in branch prediction.  It incorporates

aspects of advanced branch predictors, including work in path-based histories.  It also

incorporates aspects of previously proposed methods to predict multiple branches in a single

cycle, multiple-branch prediction.

Branch prediction in some form is a fundamental part of next-trace prediction (either

implicitly or explicitly).  Hardware branch predictors predict the outcome of branches based

on previous branch behavior.  At the heart of most branch predictors is a Pattern History

Table (PHT), typically containing two-bit saturating counters [54].  The simplest way to

associate a counter with a branch instruction is to use some bits from the address of the

branch, typically the least significant bits, to index into the PHT [54].  If the counter’ s value

is above some threshold the branch is predicted taken.  When the branch is later executed, the

counter is incremented or decremented depending if the branch was taken or not.

Correlated predictors can increase the accuracy of branch prediction because the

outcome of a branch tends to be correlated with the outcome of previous branches [39][68].

The correlated predictor uses a Branch History Register (BHR).  The BHR is a shift register

that is usually updated by shifting in the outcome of branch instructions -- a one for taken and

a zero for not taken.  In a global correlated predictor there is a single BHR that is updated by

all branches.  The BHR is combined with some bits (possibly zero) from a branch’ s address,

either by concatenating or using an exclusive-or function, to form an index into the PHT.

With a correlated predictor a PHT entry is associated not only with a branch instruction, but
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with a branch instruction in the context of a specific BHR value.  When the BHR alone is

used to index into the PHT, the predictor is a GAg predictor [68].  When an exclusive-or

function is used to combine bits from the BHR and the branch’ s address, the predictor is a

GSHARE  predictor [31].   GSHARE has been shown to offer consistently good prediction

accuracy.

Nair [36] proposed “path-based” prediction, a form of correlated branch prediction that

has a single branch history register and prediction history table.  The innovation is that the

information stored in the branch history register is not the outcome of previous branches, but

their truncated addresses.  To make a prediction, a few bits from each address in the history

register as well as a few bits from the current branch’ s address are concatenated to form an

index into the PHT.  Hence, a branch is predicted using knowledge of the sequence, or path,

of instructions that led up to it.  This gives the predictor more specific information about

prior control flow than the taken/not taken history of branch outcomes.  Bennett, Sharma,

Smith and I [21] refined the path-based scheme and applied it to next task prediction for

multiscalar processors (building on previous work in next task prediction by Franklin [14]

and Breach [3]).  It is an adaptation of this multiscalar predictor that forms the core of the

path-based next-trace predictor presented here.

In order to support simultaneous fetching of multiple basic blocks, multiple branches

must be predicted in a single cycle.  A number of modifications to the correlated predictors

discussed above have been proposed to support predicting multiple branches at once.

Pnevmatikatos, Franklin, and Sohi proposed a Multiblock prediction mechanism that

implicitly predicts multiple branches with a single prediction [46].  The approach in
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Multiblock prediction of working in units that encompass multiple branches is similar to the

approach taken in implementing the next-trace predictor proposed in this thesis.  A specific

form of multiblock prediction is next task prediction [14][58][22][3] in multiscalar

processors.  Franklin and Dutta [12] proposed subgraph oriented branch prediction

mechanisms that uses local history to form a prediction that encodes multiple branches.  Yeh,

et al. [67] proposed modifications to a GAg predictor to multiport the predictor and produce

multiple branch predictions per cycle.  Rotenberg et al. [48] also used the modified GAg for

their initial trace cache study.

Recently, Patel et al. [40] proposed a multiple branch predictor tailored to work with a

trace cache.  The predictor attempts to achieve the advantages of a GSHARE predictor while

providing multiple predictions.  The predictor uses a BHR and the address of the first

instruction of a trace, exclusive-ored together, to index into the PHT.  The entries of the PHT

have been modified to contain multiple two-bit saturating counters to allow simultaneous

prediction of multiple branches.  The predictor offers superior accuracy compared with the

multiported GAg predictor, but does not quite achieve the overall accuracy of a single branch

GSHARE predictor.
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Chapter 2
Basic Trace Processor

In this chapter I present the organization of the basic trace processor into which I

incorporate novel frontend mechanisms.  I first present a general overview of the trace

processor organization.  Then I present the specific configurations I use for this thesis.

Finally, I discuss the simulation methodology and benchmarks used to generate the results

presented in this thesis.

2.1 Trace Processors

Trace processors are based on hardware mechanisms that allow the processor to predict

and fetch a long sequence of instructions, a trace, in a single cycle.  Traces are dispatched,

one per processing element, to a distributed backend.  Figure 2-1 shows a top-level diagram

of a trace processor.  The principles and main components of a trace processor will be

discussed in the following sections.
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Figure 2-1 Trace processor hardware.

2.1.1 High level sequencing and wide fetch

Associated with the trace cache is a trace fetch unit, which fetches a trace from the cache

each cycle.  To do this in a timely fashion, it is necessary to predict what the next trace will

be.  A straightforward method is to predict simultaneously the multiple branches within a

trace.  Then, armed with the last PC of the preceding trace and the multiple predictions, the

fetch unit can access the next trace.  A more efficient approach to prediction is to treat the

traces as the basic units of prediction and explicitly predict sequences of traces.  This can be

implemented with the next-trace predictor proposed Chapter 5.

A single entry in the trace cache holds an entire trace of instructions.  The trace cache is

indexed using the prediction information returned by the trace predictor.  Thus, an entire trace

consisting of multiple basic blocks is fetched in one clock cycle.  This gives a very high

bandwidth fetch path [49].
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When the next trace of a program is not in the cache, the “slow path” hardware (Figure

2-1) constructs a trace, using branch prediction as needed to predict an entire trace.  The trace

construction performs some necessary transformations of the trace so that the specialized

processing elements can execute the trace.  This includes performing pre-renaming of

registers contained in traces (described in the following section).  This newly constructed

trace is dispatched to an idle processing element to be executed.  The total penalty for

constructing a trace with the slow path hardware is variable.  There is at least one cycle

latency per basic block (more cycles if the instruction cache misses) to fetch the needed

instructions.  One additional cycle of latency past the fetching of the last basic block is

modeled to account for trace construction transformations.

2.1.2 Register rename logic

Each trace has a live-in and live-out set of registers [65][49].  The live-in set of registers

are those architected registers that are read before being written in a trace.  The live-out set of

registers are those architected registers for which a trace generates new values.  The live-in

and live-out registers in trace processors are equivalent to the live-in and live-out registers in

multiscalar processors [14][58][3].

Within a trace some register values remain entirely local, generated and consumed in the

trace and never used by later instructions.  A register value is known to be local when a trace

writes to a given architected register, uses that register, and then overwrites a new value to

the same architected register.
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Pre-renaming of local register values can be performed in the trace construction

hardware off the critical path.  Pre-renaming consists of mapping the architected registers of

the instructions within a trace to a new trace-level name space.  During the pre-rename,

dependences within a trace are encoded and the set of live-in and live-out registers are

determined.  At time of dispatch the rename logic needs to map live-in and live-out registers

to global names [65].

2.1.3 Distributed execution engine

The execution resources of a trace processor are divided among its processing elements

(Figure 2-1).  The distributed execution engine design builds on the work of multiscalar

processors [14][58][3].  Each processing element has its own register file, instruction window

and execution resources.  Zero-cycle bypassing between execution units occurs only within

individual processing elements, reducing the complexity and latency of the bypass logic.  The

goal of distributing the execution resources is to develop smaller, simpler execution engines

that run with faster clocks than large centralized designs [58].

The register file in trace processors is hierarchical.  Each processing element has a local

register file to which every instruction in the trace writes its result.  Each processing element

also has a copy of a replicated global register file.  Instructions with live-in source operands

read from the local copy of the global register file.  Instructions with live-out destination

operands write to the local register file, the local copy of the global register file, and

broadcast to all other global register files.  There is a longer latency for global register
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communication, but the ability to build tightly coupled processing elements with high clock

speeds combined with the natural locality of data communication compensate for this latency.

Memory dependencies are handled in the same manner as they would be in a superscalar

processor.  I consider an aggressive approach where loads are allowed to issue before all

previous stores are resolved.  This reduces unnecessary stalling of loads by speculating that

all loads are independent.  Hardware must detect dependence violations caused by loads

going early.  The processor has selective reissue logic to reissue loads and all dependent

operations when a load is determined to have violated true dependences.  The dependence

checking can be based on central Load/Store Queue or an Address Resolution Buffer (ARB)

[16].

2.2 Trace Caches

2.2.1 Trace selection

Traces are formed by recording dynamic sequences of instructions observed in the

processor.  While observing the instruction stream, the trace selection heuristic will

determine at some point that a trace is complete.  That dynamic sequence will then be

recorded as a trace and the subsequent instructions will become the beginning of a new trace.

The heuristics used to partition the instruction stream into traces has a significant impact on

all elements of the trace processor’ s front-end.  They affect the probability that the processor

will be able to reuse a trace and the number of traces competing for space in the trace cache.
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The instruction supply bandwidth of a trace cache is a function of the hit rate and the

number of instructions supplied in the case of a hit.  There exists a tradeoff in trace selection

between the desire for long traces to increase the benefit of the trace cache in the case of a hit,

and the desire for short traces to increase the hit rate of the trace cache.  Using longer traces

increases the number of instructions that can potentially be supplied by the trace cache per

cycle.  On the other hand, using shorter traces can increase the probability that the trace cache

will contain useful traces.  For example, the probability that a specific 128 instruction long

sequence will be repeated in a given period of time is lower than the probability that one or

more of the corresponding 8 different 16 instruction long sequences will be repeated.  But, if

the 128 instruction long sequence is repeated, delivering all the instructions in a single cycle

provides higher bandwidth than requiring 8 cycles.

The trace selection heuristic will likely produce traces of varying length in order to

capture common instruction sequences.  We only consider trace cache implementations

where each entry of the cache holds a single trace and has fixed resources adequate to hold a

trace of some maximum length.  In such an implementation, traces of length less than the

maximum length will waste potential resources.  It is therefore important to consider both the

maximum and average trace lengths.  The size of the trace cache is a function of the former

while the effective fetch bandwidth of the trace cache is a function of the latter.

Besides determining the appropriate size of traces, the trace selection heuristic must

carefully determine where traces start and stop.  Traces in the trace cache are only useful if

they perfectly match the instructions immediately needed by the processor.  There are two

requirements of a match.  First, the trace must start with the next instruction needed by the
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processor.  Second, the path represented in the trace must correspond to the expected path the

processor will execute.

2.2.1.1 Trace alignment problem

When a dynamic sequence of instructions is observed repetitively there is an opportunity

to take advantage of the trace cache.  But, just because a sequence is observed repetitively

does not mean that the trace cache will be able to provide the needed instructions.  This

occurs because of the trace alignment problem.

The trace processor breaks a dynamic sequence of code into traces, according to the trace

selection heuristic.  For any given sequence of code there are many valid ways to divide it

into traces, depending on where the first trace starts (see Figure 2-2).  This trace alignment

problem reduces the opportunities to use traces in the cache and also increases the number of

traces competing for entries in the cache.

Dynamic Instruction Sequence

2 Valid Trace Sequences

Figure 2-2 Illustration of different possible trace alignments.

An example of the trace alignment problem is a loop with 15 instructions in the body of

the loop and a maximum trace length of 16.  Assume a trace selection policy of packing 16

instructions into every trace is used and the first trace starts with the first instruction of the

first iteration of the loop.  The first trace observed will contain the instructions from the first

iteration of the loop and one instruction from the second iteration of the loop.  The next trace

will contain the last 14 instructions of the second iteration and two instructions from the third
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iteration and so on.  The same dynamic instruction sequence is seen repetitively, but the trace

cache can not provide the needed instruction until the 17th iteration of the loop where the

needed instructions will match the first trace.  This code sequence will also produce 15

different traces.

2.2.1.2 Trace selection heuristics

The trace selection heuristic determines the traces that should be constructed from the

dynamic instruction sequence by using some set of rules to determine when a trace should

terminate.  One rule that must be used is the maximum length restriction; when a trace

reaches a maximum length it is terminated.  Trace selection rules can include stopping at

specific types of instructions (i.e., return instruction).  Trace selection rules can also include

more sophisticated algorithms that include state to record instructions observed in the past.

In developing the rules for trace selection it is important to consider the complexity of

implementing them in hardware.

Trace caches work because the same sequence of code is executed multiple times.  This

occurs due to two common programming constructs: loops and common subroutines.  In

developing trace selection heuristics, it is important to consider these underlying constructs.

Observing the backward branch that forms a loop most easily identifies loops.  Both the calls

to, and the returns from subroutines, are easily observable in the instruction stream.

There are a number of ways selection heuristics can help address the trace alignment

problem.  One way to improve alignment is to have some arbitrary stopping points (where

traces will always terminate) in the static program.  These points help reduce the trace
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alignment problem by forcing different sequences to line up following the stopping point.

These stopping points need not be added to the program, but instead achieved by taking

advantage of constructs already in the program.  For example, the trace selection heuristic can

terminate traces at a specific instruction type such as indirect jumps.  Another way to improve

alignment is to have points in the static program where the number of possible alignments is

limited.  This can be achieved with having points in the program where traces are forced to

terminate a multiple of N instructions past the point.  This reduces the number of possible

alignments past the point to the maximum trace length divided by N.  This approach does not

reduce the alignment problem as much as the stopping point approach, but it does not reduce

the average trace length as much either.

In this thesis trace selection is based on four simple rules:

• Maximum Trace Length.  I consider two different maximum trace lengths, 16 and

32 instructions.  A maximum length less than 16 probably does not make sense, as

the trace cache would not be able to provide significantly higher bandwidth than a

traditional instruction cache.  I do not consider longer traces than 32 instructions

even though interesting design points may exist.  Working at such coarse

granularities raises a range of issues, such as wasted space in the trace cache and

trace granularity retirement, that must be addressed before long traces will be

practical.

• Stop at Indirect Jumps.  Traces are terminated by any indirect jump instruction.  In

the instruction set the processor executes, indirect jumps are encoded as instructions
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that jump to an address contained in a general-purpose register.  The most common

form of indirect jump is a return from subroutine instruction.  The main reason for

stopping at indirect jumps is to make unique identification of traces simpler.  By

forcing traces to end at indirect jumps, traces can be uniquely identified by their

starting address and one bit to encode taken/not taken for each embedded branch.

This can lead to efficient encoding of trace names.  Another reason for stopping at

indirect jumps is to introduce stopping points in a program to force good trace

alignment.

• Loop/Call Alignment.  An important trace selection threshold is to limit the number

of initial trace alignments for loop iterations and subroutines.  This is implemented

with a simple heuristic that makes traces stop a multiple of N (where N is 2,3,4,..)

instructions past a subroutine call instruction, backward branch instruction or

backward jump instruction.  Simply stopping at calls and backward branches

(making N equal to the maximum trace length) would limit the number of initial

trace alignments for subroutines and loop iterations to a single point, but also reduces

the average length significantly.  A compromise is to set N to one fourth of the

maximum trace length.  This limits the number of initial start points while reducing

any individual trace by at most one fourth of the maximum trace length (and

reducing the average by much less).  Figure 2-3, discussed in the next section, shows

the tradeoff of varying values of N.

• Loop Threshold.  For large loop bodies the penalty (in terms of reduction in average

trace length) is minimal for simply stopping at the backward branch that forms the
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loop.  For these loops, it makes sense to end at the backward branch and have each

iteration start with the same trace alignment.  Determining if the penalty is small

requires determining the number of dynamic traces that form the loop body; if it is

large then the impact of shortening the last trace is minimal.  Precisely determining

this is very hard, but a simple approximation can be used.  The approximation used is

to look at the static distance of the backward branch (static size of loop body) and

determine if it is greater than some threshold.  If the static distance is greater than the

threshold, the loop is terminated.  A threshold of around 96 static instructions

performs well (see Figure 2-3 from the next section).

2.2.1.3 Impact of trace selection heuristics

To understand the tradeoffs in trace selection, a range of heuristics were studied.  For

these studies I look at two of the SPECint95 benchmarks, gcc and go.  These two benchmarks

have the largest executable images and contain an order of magnitude more unique traces

than any of the other benchmarks.  For each of these benchmarks, I present the average trace

length and the number of unique static traces (see Figure 2-3).  The number of unique static

traces is a good indicator of the amount of pressure on the trace cache and other dynamic

mechanisms in the processor.

The points for the simplest trace selection heuristics -- pack all traces with the maximum

number of instructions -- are off the graphs in Figure 2-3 (their values are given at the top of

the graph with arrows).  By incorporating the arbitrary stopping points of indirect jumps

(heuristic [16,32],1,0) the number of unique traces is significantly reduced at the cost of some
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reduction in average trace length.  Incorporating the alignment and threshold heuristics

further reduce the number of unique traces while reducing the average trace length.  The most

restrictive heuristic has an order of magnitude fewer unique traces than the heuristic that

packs the maximum number of instructions per trace.

Determining the optimal trace selection heuristic is impossible unless one considers a

specific processor configuration.  My work considers a range of different design

configurations so I use a heuristic that I consider being a generally good compromise.  I

consider both maximum trace lengths of 16 and 32, with a loop call alignment of one fourth

of the maximum length and a loop threshold of 96 (indicated in Figure 2-3 by the small

arrows).
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Figure 2-3 Trace selection tradeoffs presented as number of unique traces vs. average
trace length.     Trace selection heuristics are encoded as <max

length>_<alignment>_<loop_threshold>.  A one (1) for alignment indicates the heuristic is
not used. A zero (0) for threshold indicates that the heuristic is not used.
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2.2.2 Trace naming

To incorporate a trace cache into a processor requires some conventions for identifying

traces.  First, a unique method of identifying traces is required.  The fewer bits used to

identify a trace, the smaller the hardware structures that keep track of traces can be.  Second,

a method of indexing into the trace cache is necessary (a hashing function from the trace

name to the potential position in the trace cache).  This indexing method is important as it

can significantly affect the performance of the trace cache by changing the probability of

conflict misses.

2.2.2.1 Trace naming method

One theoretically possible way of identifying traces is to use the address of every

instruction in the trace, but this name would be prohibitively long.  A better way to uniquely

identify traces is by the address of the first instruction of the trace and the outcomes of all

embedded branches (1 bit per branch).  An embedded branch is a conditional branch

instruction that is not the last instruction of the trace.  This naming system is possible because

indirect jump instructions terminate traces; otherwise the targets of indirect jumps (a full

word per jump) would be required to identify traces.

It is desirable that the trace names be a fixed width.  To make the name a fixed width

requires limiting the number of embedded branches that can be in a trace.  This requires the

trace selection heuristic to end traces at the first conditional branch after a maximum number

of embedded branches has been observed.  A simple way to achieve this is to set the
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maximum number of embedded branches to one less than the maximum trace length (this

means that the number embedded branches is never a factor in trace selection).

Limiting the number of embedded branches to a smaller reasonable value, for example 6

in the case of length 16 traces and 9 in the case of length 32 traces, would reduce the length

of trace names and rarely affect trace selection.  This is the approach that will be used for the

remainder of this thesis.  Even smaller values could be used, but I wanted to avoid having

this limitation affect results.

2.2.2.2 Hashing trace names to index trace cache

A hashing function must be implemented to map any given trace to a single set of the

trace cache.  This is a very important function and can significantly affect the trace cache

performance.  The simplest approach is to use the low order bits of the address of the first

instruction in the trace.  There are two problems with this approach.  First, multiple traces can

originate from the same instruction (depending on which directions are taken for embedded

branches), and often these traces will be accessed in close proximity.  Therefore it is

beneficial for different traces with a common first instruction to map to different sets in the

trace cache.  Second, only using low order bits may not be the best approach.  The starting

addresses of different traces will often vary by a multiple of the maximum trace length.  This

means that low order bits are not always a good way to differentiate traces.

The hashing function chosen for this thesis incorporates most of the bits from the starting

address of the first instruction and the embedded branch outcomes by using the exclusive-or

(XOR) function to combine multiple bits (see Figure 2-4).  For a trace cache with N sets, the



34

index consists of M = logN bits.  The hashing function consists of a number of steps.  First,

the low order M bits of the starting address (word address) are flipped so that the least

significant bit of the address is in the left most bit position.  The flipping causes the least

significant bits – that are most likely to distinguish traces – to be combined with the bits that

are least likely to distinguish traces.  Second, this value is XORed with the branch outcomes,

where the outcome (1 for taken, 0 for not taken) of the first branch is in the right most bit

position and subsequent branch outcomes are in subsequent bits.  A zero value is used for all

bit positions past the last embedded branch.  Third, this value is XORed with the next M bits

of the address (least significant bit in the right most bit position).  Last, this value is XORed

with the next M bits of the address.  In all 3M bits of the address of the first instruction are

incorporated into the function.

STARTING ADDRESS

BRANCH OUTCOMES

6 5 4 3 2 1lsbmsb

flip

XOR

XOR

XOR

TRACE CACHE INDEX

Figure 2-4 Function for forming trace cache index from trace identifier.

There is a significant amount of work that could be done in studying hashing functions

for mapping trace identifiers into trace cache indices.  The function presented here performs
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well and is simple to implement, but better functions may exist.  One can conceive of very

sophisticated mapping functions that assign indices to intentionally avoid cache conflicts and

which maintain mapping tables of indices to trace identifiers.  Such an approach could

potentially allow a direct mapped cache to perform as well as a fully associative cache.  The

expense would be the space and latency of the mapping tables, although the latency could

most likely be avoided for the common read path (by having the trace cache index be the

output of the next-trace predictor).

2.2.3 Trace cache management

2.2.3.1 Trace cache lookups

There are two ways that requests to the trace cache are generated.  First, the trace cache

is accessed when a processing element becomes available by retiring its current trace, and the

next-trace predictor generates the access.  Second, the trace cache is accessed when a

processing element determines that it has an incorrect trace.  In the second situation the

processing element knows the outcome of some branches in the trace, including at least one

branch whose behavior differs from the predicted trace.  The processing element does not

know what trace is correct, as it does not know what happens past the misprediction point of

the current trace.  When a processing element first detects that a trace is incorrect it refers to

an “alternate trace” prediction from the next-trace predictor (this approach is unique to the

trace processor design proposed in [49]).  If the alternate trace matches for those branches

that the processing element knows the outcome it is used, otherwise it is discarded.  If the

alternate trace matches, then a request for the specified trace is made to the trace cache.  If the
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alternate trace does not match, or in the case that the alternate trace itself is later determined

to be incorrect, the good instructions of the trace and the known branch outcomes are passed

to the slow path fetch engine so that a new trace can be constructed (see Figure 2-1).

 When the trace cache is accessed, the hashing function is used to identify which line, or

lines, of the cache may contain the requested trace.  In a set-associative cache, where a trace

may reside in one of multiple lines, the cache may be organized so that all the potential lines

are accessed in parallel.  Each line of the trace cache contains the instructions of the trace and

a tag that identifies the trace.  The tag is used to determine whether the requested trace is

present.  In the case of set-associative caches, the tag is used to identify which line, if any, has

the requested trace.

If the requested trace is available in the trace cache, then the instructions of the trace are

fed into the processor pipeline.  The trace processor frontend is designed so that a sustained

fetch rate of one trace per cycle can be maintained when needed.  The large fetch bandwidth

is useful for rapidly refilling the window after a control misprediction is detected.

2.2.3.2 Instruction supply from the “slow path” fetch engine

The mechanisms of a traditional instruction fetch engine (an instruction cache, branch

target buffer and branch predictor) are present in the trace processor.  There are two cases

when this alternative fetch engine is used.  The first case is when there is a miss in the trace

cache.  In this case the outcomes of all the branches in a trace are already predicted (and

encoded into the trace identifier).  The needed instructions are fetched from the instruction

cache.  The second case is when a misprediction is detected by a processing element.  In this
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case some good instructions and predictions are already available.  The next block of

instructions following the good instructions is fetched from the instruction cache.  Branch

predictions are used to predict any subsequent branches until the end of the trace is reached.

The slow path fetch engine feeds into a trace constructor.  This mechanism determines

when the end of a valid trace is reached and stops the fetch engine.  This mechanism also

performs some transformations on the instructions to make them a valid trace.  The most

important transformation is identifying and renaming register dependences within a trace.

The other transformations may include adding a few bits of decode information per

instruction and developing the trace identifier for the trace.

The predictors for the slow path fetch engine are very simple.  PC indexed bimodal

branch predictors and branch target buffers are used [54].   The next-trace predictor is a very

aggressive predictor and this is where most of the prediction resources are dedicated.  The

slow path predictors are simple to reduce cost and complexity.  Maintaining an accurate

branch history register would be complicated given the transitions between trace granularity

and instruction granularity fetching in the frontend.  The branch predictor is also more likely

to be used when a dynamic instruction sequence is seen for the first time, as the trace-level

predictor will handle most regularly repeated sequences.  In this situation a correlated

predictor is not likely to perform well.

2.2.3.3 Trace cache updates

There are two logical policies for updating the trace cache.  First, the trace cache can be

updated whenever the slow path generates a trace.  Second, the trace cache can be updated
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when a trace generated by the slow path is determined to be good, which occurs at the

retirement of the trace.  Because the slow path is used for cases where the prediction has gone

astray, the trace generated by the slow path may already be in the trace cache.  It is therefore

necessary in the case of a set-associative trace cache to check the cache prior to inserting a

new trace to avoid having the same trace reside in different ways.

There are a number of tradeoffs between the two update policies.  The update-at-

retirement policy avoids placing potentially useless traces in the cache.  But, some of the

erroneous traces generated may be useful later when that path is required.  The early update

also reduces the latency of update, so if a trace is used again in a short period of time it may

be available in cases where the cache would not have been updated by the update-at-

retirement policy.

For this work I will only consider the update immediately policy.  Preliminary studies

showed this policy tends to perform better.  More importantly, this approach works much

better in conjunction with trace pre-construction than the update-at-retirement approach.

2.3 Base Machine Configuration

A trace processor design based on the one proposed by Rotenberg et al. [49] and

described in Section 2.1 is used as the base processor design.  Three different configurations

are used throughout this thesis.  The different configurations have most mechanisms in

common and differ primarily on the size of the instruction window and the instruction issue
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width.  The configurations also differ on the maximum trace size they use; two use length 16

traces while one uses length 32 traces.

2.3.1 Instruction supply mechanisms

The default trace cache for all configurations is 2-way set-associative and has 512 lines

(32 Kbytes of instructions for length 16 traces; 64 Kbytes of instructions for length 32 traces).

For trace construction the processor uses a 16K entry branch predictor (indexed by low order

bits of pc) and a 16K entry branch target buffer, these require 4 Kbytes and 64 Kbytes

respectively.  The instruction cache is 4-way set-associative with 128-byte line size and has a

total capacity of 256Kbytes.  The mechanisms in the slow path are sized relatively large to

avoid having poor performance on the slow path make the trace cache look good.

The next-trace predictor is a hybrid predictor that combines a correlated predictor and a

simple predictor.  The correlated predictor has 64K entries and is indexed based on a hash

function that incorporates the history of the last eight traces.  The simple predictor has 32K

entries and is indexed by only the history of the most recent trace.  The predictor uses a

Return History Stack.  A detailed description of the predictor is given in Chapter 5.  The

predictor requires over 256 Kbytes of space for the straightforward implementation.  This

cost could be reduced by at least a factor of two with the reduced cost implementation

discussed in Chapter 5.  Further reducing the size of the predictor by a factor of two or four

will have no effect for most of the benchmarks and only produce minor performance

degradations for a couple of benchmarks (see results on sensitivity of predictor to size in

Section 5.5.1)
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2.3.2 Data memory subsystem

There is a single level-one data cache shared by all the processing elements in the

processor.  The level-one data cache has 4 ports of which any single processing element can

only access 2 ports per cycle.  The data cache is non-blocking and is write-back.  The data

cache has 64-byte lines, is 4-way set-associative and has a total size of 64Kbytes.

Memory operations are broken into two sub-operations at the processing element,

address computation and the load/store operation.  Address computation requires one cycle.

The level-one data cache has a two cycle hit latency.  This leads to an overall load-use latency

of 2 cycles.  A perfect level-two cache is modeled.  The level-two cache has a 10-cycle hit

latency.  Contention for the level-two cache is not modeled.

Loads are allowed to issue before all previous stores are resolved.  The processor has

selective reissue logic to reissue loads and all dependent operations when a load is

determined to have violated true dependences.  A violation is detected when a store operation

is performed.  The cycle after a violation is detected the offending load is reset in the

instruction window.  It will then compete in following cycles for issue bandwidth.

Instructions dependent on the load will reissue when they receive new values [49].

2.3.3 General execution engine configuration

Traces are dispatched, one per processing element, to a distributed backend.  Each

processing element is assumed to have enough functional units that any combination of

operations, up to the issue width, can be issued in parallel in a given cycle.  A real

implementation would most likely use a more restrictive processing element where only
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certain combination of instructions could be issued in parallel (based on observed utilization

of functional units).

The latency of each operation is equivalent to the latency of the corresponding operation

in the MIPS R10000 processor [33].  Each processing element has full bypasses internally

and can support back-to-back dependent operations.  For communication between processing

elements there are global result busses.  There are 8 total global result busses and an

individual processing element can only use up to 4 in a single cycle.  It takes a full cycle for

global results to be broadcast on a result bus.  If an instruction is executed in one processing

element in cycle K, the result can be broadcast in cycle K+1, and dependent operations can be

executed in other processing elements in cycle K+2.

2.3.4 Three processor configurations

The parameters that differ between the processor configurations are the length of traces,

the number of processing elements and the issue bandwidth per processing element.  Figure

2-5 gives an example of how performance (measured in Instruction Per Cycle) varies as a

function of these three parameters for the benchmark gcc.  Separate results are presented for

length 16 and length 32 traces.  The configurations are given as the aggregate window size

and the aggregate issue bandwidth (grouped by window size).  The number of processing

elements is the aggregate window size divided by the trace length.  The issue width per

processing element is the aggregate issue width divided by the number of processing

elements.  The other benchmarks show similar sensitivities to the parameters.
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Figure 2-5 Performance as a function of execution engine configuration for gcc.

There are three processor configurations commonly used in the studies presented in this

thesis.  A small configuration, which uses length 16 traces and has 4 processing elements

with 2-way issue per processing element (total window size of 64 instructions and total issue

bandwidth of 8).  A medium configuration, which uses length 16 traces and has 8 processing

elements with 2-way issue per processing element (total window size of 128 instructions and

total issue bandwidth of 16).  And a large configuration, which uses length 32 traces and has

8 processing elements with 4-way issue per processing element (total window size of 256 and

total issue bandwidth of 32).
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2.4 Simulation Methodology

2.4.1 Simulator

This research requires extensive infrastructure.  At the core is a very detailed execution

driven simulator that models a trace processor.  Eric Rotenberg and myself jointly developed

the simulator.  The simulator models all the major components of a trace processor and

provides a cycle-level accurate timing model of execution.

The simulated processor executes the Simplescalar instruction set [5].  The Simplescalar

instruction set is a vanilla RISC instruction set closely modeled on the MIPS instruction set.

There is neither extra information in, nor special transformation done on, the programs to

support the trace processor model.

The functional simulator available with the Simplescalar tool set is run in parallel with

the timing simulator.  The retirement stream of the timing simulator is compared against the

functional simulator to guarantee correct functional behavior of the timing simulator.  This

approach proved extremely important in developing and debugging the simulator.

Verifying timing accuracy of the simulator is much more difficult.  I believe the timing

results of the simulator to be highly reliable, although I can not prove them to be absolutely

correct.  The simulator is cycle based, that is, there is a global cycle and each pipe stage (from

the last back to the first) performs its work for each cycle and then the processor moves to the

next cycle.  Many asserts and checks are integrated into the simulator to detect timing

anomalies (such as an instruction retiring too few cycles after being fetched).  Running
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simple hand coded micro-benchmarks and running standard benchmarks on processor

configurations that resembled other “trusted” simulators provided sanity checks of the timing

simulator.  Having two separate individuals actively working on every part of the simulator

also helped to provide checks.

The simulator runs on a variety of platforms including Sparc/Solaris, x86/Solaris and

X86/Windows NT (with Interix).  The majority of the results for this thesis were generated

on PentiumPro (x86) systems running Windows NT with an Interix subsystem.  Some results

(those related to the benchmark m88ksim) were generated on Sun Sparc systems running

Solaris.

2.4.2 Benchmarks

The SPEC95 integer benchmarks (SPECint95) are used for the performance evaluation

studies in this thesis.  The SPEC benchmarks are the most commonly used benchmarks for

academic microarchitecture research.  The integer benchmarks offer more challenges in

achieving high instruction fetch bandwidth, as they contain smaller basic blocks.  For this

reason, the thesis focuses on the integer benchmarks.  Key results for the SPEC95 floating-

point benchmarks (SPECfp95) are provided in Appendix A.  The SPEC benchmarks

represent real programs but are smaller on average than many important commercial

applications.  The benchmarks are compiled with the Simplescalar compiler that is a

derivative of gcc-2.6.3.  The benchmarks are compiled with optimization level “O3.”

Unfortunately I am unable to run operating system code or observe the effects of context

switches with the simulation infrastructure.  This, combined with the relatively small
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footprints of the SPEC benchmarks, limits the ability to fully stress the caches and dynamic

prediction structures portions of the processor (all relying on dynamic learning).  I use two

approaches for dealing with this limitation.  First, modeling smaller cache structures to

increase the probability of conflicts, hopefully getting results similar to running larger

workloads with larger caches.  Second, periodically invalidating some portion of the cache

lines to model context switches.  This is important when studying ways of reducing the

frequency and cost of trace cache misses.

For many of the SPECint95 applications reduced size inputs (derived from the traditional

inputs) are used so that all or most of an application can be executed.  I run each benchmark

for at most 200 million instructions.  This allows a reasonable portion of a program to be

exercised, while keeping the simulation times reasonable.  The specific inputs used and the

number of executed instructions for each SPECint95 benchmark are given in Table 2-1.

Table 2-1 Input data sets for SPECint95 benchmarks.

Benchmark Input Instructions executed
compress Self generated input based on parameters

“ 400000 e 2231”
First 200 million
instructions

gcc genrecog.i 116,292,119 instructions
go 9 by 9 game 132,916,788 instructions
ijpeg Input file Vigo.ppm, 4 encodings based on

different encoding parameters and 1 decoding.
116,736,148 instructions

li 8 queens problem First 200 million
instructions

m88ksim dcrand 120,478,991 instructions
perl scrabbl.in First 200 million

instructions
vortex vortex.raw First 200 million

instructions
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Some of the key trace-level characteristic of the SPECint95 benchmarks are given in

Table 2-2.  The base performance on the SPECint95 benchmarks for the three processor

configurations are presented in Table 2-3.  Later results will often be presented as a

percentage speedup over these base performance values.

Table 2-2 Characteristics of SPECint95 benchmarks.

Length 16 Traces Length 32 Traces
Benchmark Average Trace

Length
Number of

Unique Traces
Average Trace

Length
Number of

Unique Traces
compress 13.47 602 19.84 488
gcc 13.09 32529 21.41 28576
go 13.91 24382 24.58 23209
ijpeg 14.75 2833 26.75 2602
li 11.29 1138 18.20 924
m88ksim 12.44 3487 22.76 2984
perl 13.39 2574 23.12 2113
vortex 13.71 7579 23.20 5604

Table 2-3 Base performance on the SPECint95 benchmarks for the three processor
configuration.

Performance (Instruction Per Cycle)
Benchmark Small Configuration Medium

Configuration
Large Configuration

compress 1.68 1.85 1.94
gcc 2.42 3.06 3.67
go 2.05 2.50 2.94
ijpeg 2.75 3.34 3.95
li 2.50 3.21 4.14
m88ksim 2.59 3.08 4.26
perl 2.58 3.25 4.04
vortex 2.95 4.14 5.36
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Chapter 3
Trace Pre-Construction

In this chapter I propose a new mechanism, trace pre-construction, to significantly

increase the performance of the trace cache.  Trace pre-construction augments the trace cache

by performing a task analogous to prefetching.  Pre-construction is implemented with a

sophisticated mechanism that sequences ahead of the processor and generates likely future

traces.  The extended pipeline organization (as described in Section 1.4) is employed to

decouple the pre-construction mechanism from the main processor core.

The dynamic aspect of traces, which enables the trace cache to provide high instruction

fetch bandwidth, makes trace caches vulnerable to compulsory and capacity misses.  The

compulsory miss problem arises because traces are “ learned”  from observing dynamic

program behavior; if a given dynamic trace has not been observed before, the trace cache will

not be able to provide that trace.  Each static instruction may occur in many different dynamic

sequences, creating redundancy between and within traces.  Because of this redundancy, the

working set of traces is larger than the comparable static representation.  Hence, there can

potentially be a very large number of unique traces observed for a program, this exacerbates

compulsory misses and causes capacity misses.  Not only do the learning time and the large

working set of trace caches limit their performance, they limit the robustness of trace caches

to varying workloads and environments
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A potential method for reducing the miss rate of trace caches is to “ prefetch”  into the

trace cache.  Prefetching has been shown to be effective at reducing the miss rates of

instruction caches [53][55][69].  Prefetching is based on predicting an item to be requested

from the cache in the future, and then fetching the item from lower-levels of the memory

hierarchy.  When prefetching is successful, the item is in the cache by the time it is needed,

and a cache miss is avoided.  The effectiveness of prefetching is dependent on the accuracy of

predicting what will be needed and the timeliness of this prediction.

When applying the concept of prefetching to trace caches, the dynamic aspect of traces

raises a number of issues.  First, trace caches are not part of a true memory hierarchy, as there

is no base level that contains all possible traces.  Therefore the term “ prefetching”  is not

entirely accurate, as there is nowhere from which to fetch complete traces.  I use the term pre-

construction of traces because potential traces need to be constructed from static instructions.

Second, predicting future traces is a difficult problem.  Traces are identifiable by their

starting instruction and the outcomes of branches within the trace. To be effective, the pre-

construction mechanism must identify a region of the program the processor will reach and

the dynamic paths that will be taken through that region.  In addition, the pre-construction

mechanism must also identify the trace alignment along each path.  Two traces are aligned if

one terminates where the next begins.  For a single path through a region of code there are

many possible sequences of traces that can be identified, depending on where the first trace

starts (trace alignment is discussed in Section 2.2.1.1).  If the trace starting points identified

by the pre-construction mechanism do not match the starting points needed by the processor,

the pre-construction effort will have been wasted.
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Third and finally, there is the issue of timeliness.  The pre-construction mechanism must

stay sufficiently ahead of the processor to accommodate the high latency of constructing

traces.  The pre-construction mechanism must be responsive to the processor “ catching up”  to

it; i.e., knowing when to give up on a region and move farther ahead of the processor.  At the

same time, the pre-construction mechanism must avoid getting too far ahead of the processor;

the pre-construction mechanism should not tie up space in the trace cache with traces that

will not be needed in the near future.

In this chapter I describe an implementation of a trace pre-construction mechanism.  The

mechanism attempts to sequence ahead of the processor and construct potentially useful

traces from the static program representation.  The hardware required to implement pre-

construction resembles a small processor core of its own.  Pre-construction fits into the new

pipeline organization of the pre-processing pipeline.  The hardware to perform pre-

construction is decoupled from the main processor core.  The trace cache acts as the

mechanism that decouples the pre-construction hardware from the main processor core, while

allowing useful work to be passed from the pre-construction hardware to the main core.

3.1 Incorporating Trace Pre-Construction

Trace pre-construction is incorporated into a trace processor frontend by adding two

main components, a pre-construction engine and a pre-construction buffer (see Figure 3-1).

The pre-construction engine fetches instructions from the instruction cache, constructs traces,

and places them into the pre-construction buffer.  The pre-construction buffer is accessed in

parallel with the trace cache.  Misses are avoided when the trace cache misses but the pre-
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construction buffer contains the desired trace.  In this case the trace is copied from the pre-

construction buffer to the trace cache.  The separate pre-construction buffer is used to avoid

trace cache pollution (displacing traces the processor is currently using with traces the

processor may use in the future).

Trace
Cache

Trace
Constructor

Branch
Predict

Next
Trace

Predictor

I-Cache

Slow Path

Pre-
Construct

Buffer

Pre-
Construction

Engine

 Trace Pre-
construction

Execution
Engine

Figure 3-1 Trace processor with trace pre-construction.

The pre-construction engine could also “ warm up”  the next-trace predictor.  When the

pre-construction engine generates a new trace that does not already have an entry in the

predictor, it could update the predictor with a likely candidate based on the pre-construction

engine’ s heuristics.  While integrating the pre-construction engine with the predictor appears

to be a very interesting optimization, preliminary experiments I performed show minimal

benefit from it (less than 0.1% impact on overall performance).  Under certain circumstances

I think the benefit would be more significant, such as cases when the predictor is suffering

substantially from capacity misses.  However, these do not occur in the benchmark set

studied here.  Therefore, I do not present results for using this optimization in this thesis.
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3.2 Implementing Trace Pre-Construction

There are three major steps in trace pre-construction.  The first is identifying start points

for potential pre-construction regions (see Figure 3-2).  A region is a portion of the program

the processor is likely to reach in the future, and it is identified by the address of the first

instruction, the start point.  The pre-construction engine observes the instruction stream being

dispatched to the processor core and predicts region start points.  Once potential regions are

identified, pre-construction begins for possible traces within the region.  To solve the trace

alignment problem (Figure 2-2), it is desirable that regions correspond to some natural

boundaries of programs where the trace alignment is predictable.

The second step of trace pre-construction is fetching instructions from the regions.  The

pre-construction engine contains some number of small instruction windows, called pre-

construction windows.  The most recently identified regions are each assigned a pre-

construction window.  The pre-construction engine fetches instructions for each region,

starting at the region start point, and fills them into the corresponding window.  The

instructions are buffered in a window because each instruction may be used many times in

constructing different traces.  The instructions in the window are linked together to form a

control-flow graph (CFG).  Typically multiple dynamic paths through each region will be

fetched; precisely which instructions are fetched as part of a region and their order depends

on the heuristics implemented.

The third step of trace pre-construction is identifying and constructing possible traces

from each region.  To do this the trace alignment must be predicted.  Based on program
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constructs and the trace selection heuristic used, the most likely starting points for traces are

identified.  Initially only a few trace starting points will be identified near the beginning of

the region.  Possible traces beginning at these initial starting points are constructed and

placed in the pre-construction buffer.  As traces are constructed within the region, subsequent

trace starting points are identified.

Region Start Point

Region

 Trace Start Points

Current Processor Position

Existing Traces

 Initial Trace Start Point

Figure 3-2 Overview of trace pre-construction (solid lines indicate traces thus far,
dotted lines indicate future traces).

One important design decision in developing trace pre-construction is the degree to

which it relies on learning dynamic behavior.  By incorporating sophisticated learning

mechanisms that dynamically learn the behavior of specific applications, trace pre-

construction can be made more efficient.  A possible learning mechanism might dynamically

develop and maintain a graph representation of a program with priorities specified at every

decision point.  This information could be used to identify which region the processor is

likely to reach in the near future and the paths that are likely to be taken within that region.

The alternative is to implement trace pre-construction based on simple heuristics and implicit

information encoded into the static program representation.

I focus on trace pre-construction using a minimal amount of dynamic learning.

Implementations based on dynamic learning warrant more exploration, but they have a
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number of drawbacks that led me to look at simpler alternatives.  First, there are the obvious

drawbacks of size and complexity of learning mechanisms.  More importantly, with trace pre-

construction based on dynamic learning there are issues of working set size and learning

latency.  These are the same issues that limit the effectiveness of the trace cache and lead to

the need for pre-construction.  Implementing a pre-construction mechanism that does not rely

on dynamic learning increases the robustness of the processor; it enables the processor to

gracefully handle large programs and frequent context switches.

3.2.1 Identifying and managing region start points

The pre-construction engine takes advantage of two common, easily identifiable

constructs found in all programs: calls to subroutines and loops.  When a call to a subroutine

is dispatched to the processor, the return point is identified as a region start point (see Figure

3-3).  When the call is executed there is a very high probability that the program will later

reach the return point, easily identified as the static instruction following the call.  When a

taken backward branch is dispatched to the processor, the pre-construction engine assumes a

loop and the exit point of the loop is identified as a region start point (see Figure 3-3).

Although not all backward branches correspond to loops and not all loops exit to the

instruction immediately following the backward branch, this heuristic works in most cases.

These heuristics are similar to the heuristics proposed for identifying spawning opportunities

in Dynamic Multithreading processors [2].
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EXECUTION

START PRE-CONSTRUCTION

EXECUTION

START PRE-CONSTRUCTION

backward branch

Figure 3-3 Identifying region start points.

The region start points corresponding to loops and subroutines exhibit an orderly nested

behavior.  The most recently observed backward branch or call corresponds to the next loop

exit or subroutine return observed.  This behavior makes it easier to manage and prioritize

region start points.  The more recent region start points should be given higher priority

because they represent regions of code the processor will reach soonest.  As the processor’ s

execution passes through region start points, they can be discarded.

A small stack of region start points is maintained (see Figure 3-4).  In order to stay ahead

of the processor, it is necessary to observe the dispatch instruction stream, which includes

speculative instructions.  Start points are pushed onto the stack when a call or backward

branch is observed on the processor’ s dispatch stream.  When the stack fills up, the oldest

entry on the stack will be discarded to make room for newer entries.  To avoid redundancy, a

new start point is not pushed if it corresponds to the same region as the current top of the

stack.  Start points are removed from the stack if they correspond to misspeculation or when

the processor’ s execution has reached the region to which they correspond.  Observation of

the retirement stream of the processor determines when a start point should be removed.



55

DISPATCH STREAM

Call/Loop

Discard
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Figure 3-4 Start point stack.

Along with the start point stack there is an active region buffer.  Each unique starting-

point address in the start point stack has one entry in this buffer.  The entries in this buffer

have priorities corresponding to their highest priority entry in the start point stack.  In

addition the buffer also remembers the most recent regions for which all traces have been

generated (such a region is considered completed), even after all the start point stack entries

corresponding to them have been removed.

The pre-construction engine actively works on the highest priority, uncompleted, regions

referenced in the active region buffer (these correspond to the highest priority start points).

Remembering the regions for which pre-construction has completed reduces redundant work.

The regions that have been recently completed are marked uncompleted if one of the traces

they generated is replaced before being used.  The method for supporting this is discussed

when the pre-construction buffer is explained.
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3.2.1.1 Why calls and loops?

Calls to subroutines and loop back edges are used to identify start points because they are

common program constructs that are easily identifiable and whose behavior is well defined.

They provide an opportunity to easily determine when to jump ahead, and where to jump,

allowing the pre-construction engine to stay ahead of the processor.  My work on thread

selection for the Dynamic Multithreading (DMT) Architecture [2] suggested this approach.

Pre-construction based on subroutines and loops performs well enough that I did not

investigate alternative methods.

Not all subroutine calls and loop back edges are good start points.  Occasionally the time

from the call  to the subroutine return or from the back edge to the loop exit is too long or too

short.  It is possible to augment pre-construction with mechanisms that dynamically learn

which calls and back edges are good for jumping ahead of the processor.  However, I

experimented with such mechanisms and found that they offered minimal benefit.

Potentially, a compiler can identify better start points to direct pre-construction and

encode this information into the program.  The problem of identifying these points is similar

to the problem of identifying tasks in a multiscalar compiler [64].  A compiler-supported

version of pre-construction warrants more exploration, but I chose to focus on hardware-only

implementations.
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Figure 3-5 Pre-construction engine.

3.2.2 Fetching instructions contained in regions

Once the pre-construction regions are identified, the next step is to fetch the instructions

from those regions.  Each of these regions is assigned a pre-construction window to hold the

fetched instructions.  As they are fetched, the instructions in the pre-construction window are

linked together to form a control-flow graph (CFG), with each static instruction only

appearing once.

There can be one or more instruction cache ports available for pre-construction (I will

focus on implementations that use only one).  Corresponding to each instruction cache port is

an instruction fetch and decode unit (see Figure 3-5).  The regions share the instruction fetch

and decode unit(s), with higher priority given to the region corresponding to the newest start

point on the start point stack.

The first fetch from a region is for a cache line’ s worth of instructions beginning with the

starting point instruction of the region.  When a fetch is performed, the instructions are
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placed into the appropriate pre-construction window, and one or more subsequently needed

fetches are identified.  Decoding the instructions and looking for conditional or non-

conditional control-transfer instructions identifies additional fetch points.  One cycle is

required for the actual fetch (assuming instruction cache hit) and one cycle is required for the

decoding of instructions, these two tasks are pipelined.  The targets of control-transfer

instructions are computed in the decode step and pushed onto a small worklist of needed

fetches.

For each conditional branch, the bimodal branch predictor (table of 2-bit saturating

counters indexed by branch address) in the slow path mechanism is referenced.  The

information from the branch predictor is used for two purposes.  First, the pre-construction

engine will only follow the dominant direction for highly biased branches.  This reduces the

number of paths that are followed.  Backward branches that are highly biased in the taken

direction most likely correspond to loops that will eventually exit, so both directions are

followed in this case.  Second, the favored direction of weakly-biased branches are

remembered and encoded into the CFG.  This information is used later to determine which

traces to construct first.  If there is no entry in the branch predictor, forward branches are

assumed to be weakly-biased not taken and backward branches are assumed to be weakly-

biased taken.

There is one worklist of instruction fetches per active region.  The worklists use a simple

algorithm to order fetches.  The priority of the first fetch request is one (lower values have

higher priority).  The priority value is increased for every conditional branch observed to

reach the current fetch point; it is increased by one if the branch corresponds to the favored
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direction and by three if it corresponds to the non-favored direction.  This priority scheme

was determined to be a good balance of depth vs. breadth (the tradeoff is explored in Section

3.3.3.4).  Instruction fetch requests with equal priority are handled in a first come first serve

manner.

A design that does not use the branch predictor is also considered.  Referencing the

predictor requires extra read ports on the prediction table.  Avoiding the need for these extra

ports reduces the cost of implementing pre-construction.  The results suggest that using

simple static predictions degrades performance by a moderate, but possibly acceptable,

amount (see Section 3.3.3.4).  With minimal compiler support the performance would likely

be comparable.

3.2.3 Decoupling instruction fetch from trace construction

The pre-construction windows are used to decouple the instruction fetch and trace

construction mechanisms in the pre-construction engine.  There are two obvious alternatives

for this design.  The first is to have no buffers; instructions would be directly fed to the trace

constructors from the fetch mechanisms.  This would reduce the size and possibly the latency

of pre-construction.  The problem of not having buffering is that some instructions may be

used in many traces, and it is more efficient to buffer instructions than fetch them

repetitively.  The second alternative would be to use one large pre-construction window that

is shared.  This would be more flexible and possibly more efficient.  But, separate pre-

construction windows make management much simpler.  Pre-construction windows are filled

contiguously, and the only state needed for buffer management is a single pointer that
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indicates where the next instruction should be inserted.  When a region is completed or

preempted, the entire buffer can be cleared by simply resetting the pointer to the head of the

buffer.

3.2.4 Constructing traces for regions

Once the fetching of instructions has begun for a region, the next step is to construct the

traces for the region.  There are a number of trace construction units available for pre-

construction (see Figure 3-5).  The regions share the units; with priority based on which

region corresponds to the newest start point on the start point stack.  The number of trace

construction units need not be equal to the number of instruction cache ports available to the

pre-construction mechanism.  A small worklist is used to maintain trace starting points in a

region.

A few initial points in the CFG are identified as starting points of traces.  For regions

starting at return points, initially only the first instruction of the region is identified as a trace

starting point.  Because traces end at return instructions, the first trace of the region will start

at the first instruction.  For regions starting at the exit point of loops, identifying initial

starting points is more complicated; when at the time the loop exits, there may be a trace that

contains some instructions from the last iteration of the loop and some instructions from

beyond the exit of the loop.  The trace selection heuristic of forcing traces to end at some

even multiple of instructions beyond a backward branch limits the number of initial trace

starting points.  The initial trace starting points are pushed onto the worklist.
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A free trace constructor unit will take a trace starting point from the worklist and attempt

to generate all possible traces with that start point.  The trace constructor unit fetches the

needed instructions from the pre-construction window, requiring one read for each run of

contiguous instructions.  When a conditional branch is reached, the trace constructor uses the

information from the CFG as to which direction is favored.  The trace constructor also pushes

the decision point onto a small hardware stack so it can generate the alternative trace later.

For each new trace constructed, a new trace starting point is identified (corresponding to the

instruction following the last instruction of the new trace) and pushed on the worklist.  After

generating a trace, the trace constructor will pop the last decision point from its hardware

stack and back up to start generating the alternative trace.

To avoid tying up trace constructors, a trace start point is not eligible until it is known

that all traces starting from it can be generated.  Along with each instruction is kept its

minimal distance from the first instruction of the region.  In the simulated implementation a

true minimal distance is maintained, but in a real implementation most likely an

approximation would be used.  Maintaining the true minimal distance requires occasionally

propagating information when a reconvergent path is found.  A simple-to-implement

approximation is to maintain the distance observed from the start point to reach a current

instruction.  By looking at the minimal distance of a trace start point and the lowest minimal

distance on the worklist, it is easy to make a conservative decision whether all traces from the

start point can be constructed.

There is one worklist of trace starting points per active region.  The worklists use a

simple algorithm to order fetches.  The priority of the first identified trace starting points are
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one (lower values have higher priority).  New trace starting points are generated when a trace

is created for an existing trace starting point.  The priority value of a new starting point is one

higher than the value of the trace starting point that led to it.  Trace starting points with equal

priority are handled in a first come first serve manner.

3.2.5 The pre-construction buffer

The pre-construction buffer is a small cache accessed in parallel with the trace cache.

The pre-construction buffer stores with each trace the start point address of the region that

generated the trace.  This information is needed for two reasons.  First, it is used for

determining replacement when a way of the buffer is full.  The relative priority of these start

points (the newer the start point the higher the priority) is used for determining replacement

when a new trace is written to the buffer.  Second, the pre-construction engine needs to know

when a trace is replaced before it is used.  If the region corresponding to a replaced trace is

still active, the starting address of the trace is added to the trace construction worklist to be

possibly regenerated in the future.  If the region corresponding to a replaced trace is in the list

of completed regions, the region will be marked as no longer completed.

An important optimization for pre-construction is to make sure there is no redundancy

between the trace cache and the pre-construction buffer.  This is achieved by checking the

trace cache before adding an entry to the pre-construction buffer and checking the pre-

construction buffer when adding a trace to the trace cache.  If a trace is already in the trace

cache, it is not added to the pre-construction buffer.  When a trace is added to the trace cache,

the copy in the pre-construction buffer, if present, is invalidated.
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The pre-construction engine is informed when a trace is replaced in the pre-construction

buffer before being used.  This information can be used to keep track of which regions may

need to have pre-construction performed for them again in the future.  This information is a

rough approximation because of the interaction between the trace cache and the pre-

construction buffer.  If a trace is used, it will be placed in the trace cache and removed from

the pre-construction buffer.  If this trace is subsequently replaced in the trace cache, the pre-

construction engine is not informed.

3.3 Results for Length 16 Traces

The result section starts with a summary of the performance of pre-construction.  These

results give an idea of how a well-tuned pre-construction engine behaves.  Next is an analysis

of how changes in the pre-construction engine effect performance.  Various configurations

are tested to demonstrate the range of performance of pre-construction and to determine a

well-balanced configuration.  For the summary and the analysis of the design space only the

two benchmarks gcc and go are presented.  These two benchmarks have the largest

instruction working sets of the SPECint95 benchmarks and therefore stress the trace cache

the most.  Finally, detailed performance results are presented for all the benchmarks.

Corresponding results for the SPECfp95 benchmarks are given in Appendix A.

3.3.1 Processor configuration

These results are based on a trace processor that uses traces with a maximum length of

16 instructions.  The execution engine is based on the small processor configuration
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described in Section 2.3.4.  The execution engine consists of four processing elements with

2-way issue per processing elements.  This gives the processor an aggregate instruction

window size of 64 instructions and a maximum aggregate issue width of eight instructions

per cycle.  The trace cache is 2-way set-associative and, unless otherwise stated, has 256

lines.

Table 3-1 Default pre-construction configuration.

Parameter Default Value Notes
Buffer Size 128 Traces The number of traces in the pre-construction buffer.  The

buffer is 2-way set-associative.
Active
Regions
(Pre-
construction
windows)

4 The maximum number of active regions.  An active region is
a region for which the prefetch engine is actively trying to
construct traces.  An active region is assigned an instruction
window and competes for instruction cache ports and trace
constructors.

Window
Size

256 Insns The size of the instruction window used to build a CFG for
an active region.  There is one instruction window per active
region.

Instruction
Cache Ports

1 The number of instruction cache ports the pre-construction
engine can use.  We model dedicated ports, although in a real
implementation these ports would likely be shared with other
activities (I-cache fills and/or fetches for the slow path).

Trace
Constructors

4 The number of trace constructors.  Trace constructors pull
instructions out of the instruction window and create valid
traces.

Use Slow
path
Predictors

True The pre-construction engine can potentially reference the
branch predictor from the slow path hardware to better direct
pre-construction.

Bias 3 The drop in priority given to fetches for the less favored
(based on prediction from dynamic or static predictor)
direction of a conditional branch.

Start point
Stack Depth

12 The number of entries in the start point stack.  The start point
stack is used to keep track of regions for which pre-
construction should be performed.

Active
Region
Buffer Size

16 One active region buffer entry is used for each unique entry
in the start point stack.  Additional entries are used to
remember regions for which pre-construction has recently
been completed.
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There are many parameters that can be adjusted in the pre-construction engine.  The

default pre-construction engine configuration is given in Table 3-1.  Unless stated otherwise,

each parameter will be set to its default value.  The work lists for directing fetch and trace

construction are sufficiently large as to never fill up.

3.3.2 Example Performance

The reduction in trace cache misses is a good first-cut metric of pre-construction

performance.  Figure 3-6 and Figure 3-7 give the trace cache miss rates, in the units of misses

per 1000 instructions, for a variety of trace cache and pre-construction configurations for the

benchmarks gcc and go, respectively.  The graphs present the miss rate as a function of the

combined size of the trace cache and the pre-construction buffer.  The pre-construction

engine will require some additional area, but this is not considered in the comparison.  The

trace cache size varies over a range of 64 to 1K entries.  In section 0 the overall performance

implications of reducing the trace miss rate are discussed.

The benchmarks gcc and go both see significant benefit from trace pre-construction.  For

a given trace cache size, there is a 30% to 40% decrease in miss rate for the smallest pre-

construction configuration up to a 45% to over 50% decrease in miss rate for the largest pre-

construction configuration.  The benefit from pre-construction is much more significant than

allocating comparable area to the trace cache.  For comparable area, the best pre-construction

configurations offer approximately a 30% to 40% decrease in miss rate for both benchmarks.
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Figure 3-6 Trace miss rate (in misses per 1000 instructions) for gcc with 16 long traces.
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Figure 3-7 Trace miss rate (in misses per 1000 instructions) for go with 16 long traces.
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The benchmark gcc sees the most benefit from incorporating a small pre-construction

buffer and allotting most of the area to the trace cache.  On the other hand, the benchmark go

sees the most benefit from a large pre-construction buffer.  Because of this behavior, either a

compromise has to be made, or a design that dynamically allocates space for the pre-

construction buffer needs to be used.  A unified buffer (used for both the trace cache and the

pre-construction buffer) would offer higher performance, but would likely be very complex to

implement.  I do not investigate a unified buffer approach further.  The tradeoffs of a unified

buffer are similar to the tradeoff of having separate instruction and data caches or a single

unified cache.  Unified (instruction and data) caches offer higher potential performance, but

most processor designs use separate caches to support higher bandwidth and enable the

caches to be customized for different tasks.

3.3.3 Tuning the Configuration

3.3.3.1 Number of active regions and depth of region start point stack

Adding more active regions to the pre-construction engine has two effects.  First, work

can be performed on multiple regions in parallel.  The amount of parallelism is dependent on

the resources available.  In practice, the highest priority region uses most of the resources.

The second, and more significant, benefit of multiple active regions is to preserve the work

done on a region after a higher priority region is started.  This enables the pre-construction

engine to continue a region after the other region completes or is squashed.

There is a significant benefit to adding more active regions up to four, beyond four there

is minimal benefit and even some degradation when adding more regions (see Figure 3-8 and
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Figure 3-9).  This performance curve reflects the behavior of loops and subroutines.

Consider the case where the pre-construction engine is working on the region following a call

to subroutine A and a nested call within A to subroutine B is observed.  There is a good

opportunity, if there are enough active regions, to perform pre-construction on the portion of

subroutine A following the call and preserve the work from the earlier observed call.  Beyond

a point, remembering regions corresponding to calls or loop edges observed in the past can

become detrimental as subroutines and loops tend to be either very small or very large.  If

there is a significant amount of code seen after a call or back edge, there is likely to be even

more code executed before the corresponding return or loop exit is seen.  The work for such a

region therefore may be of little use, as it will be ultimately displaced before it can be used; it

also may displace other potentially useful information in the pre-construction buffer.

The pre-construction engine has the highest performance with 4 active regions, but the

lower cost implementation with only two regions is worth noting.  The pre-construction

engine performs relatively well with only 2 active regions.  Depending on the cost of

implementation, this smaller implementation may offer a better price/performance ratio.



69

GCC

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

0 1 2 3 4 5 6 7 8

Number of Active Regions

M
is

se
s 

p
er

 1
00

0 
in

sn
s

Figure 3-8 Effect of changing the number of active regions for gcc.
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Figure 3-9 Effect of changing the number of active regions for go.
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The start point stack and active region buffer are closely tied together.  The start point

stack must be smaller than the active region buffer.  The performance impact of altering the

size of the active region buffer is shown in Figure 3-10 and Figure 3-11 (for a buffer size of 8

a start point stack depth of 4 is used, for larger buffer sizes a start point stack depth of 12 is

used).  Adding more entries to the active region buffer allows the pre-construction engine to

remember more regions that have been completed to avoid redundant pre-construction.  It can

be detrimental to remember for too long a period of time that a specific region completed.

The only way a completed region transitions to not completed is when the buffer overflows

or if a trace corresponding to the region is replaced before being used.  If a trace is used, and

therefore brought into the trace cache, the region will still be considered completed even if

the trace is subsequently replaced in the trace cache.  The results suggest that a size of around

16 is best for the active region buffer.

The depth of the start point stack cannot be increased without also increasing the size of

the active region buffer.  To identify the impact of a shorter stack depth, a stack with fewer

entries was tested while keeping the active region buffer at 16.  To identify the impact of a

deeper stack depth, a stack depth with more than 12 entries was tested, increasing the size of

the active region buffer comparably.  The results from these tests are shown in Figure 3-12

and Figure 3-13.  For stack depths less than twelve, the trace cache miss rate goes up.  For

deeper stack depths, the miss rate goes up comparable to increasing the size of the active

region buffer alone.  This suggests that there is little or no benefit from a deeper stack.
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Figure 3-10 Effect of changing the size of the active region buffer for gcc.
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Figure 3-11 Effect of changing the size of the active region buffer for go.
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Figure 3-12 Effect of changing the depth of the start point stack for gcc.
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Figure 3-13 Effect of changing the depth of the start point stack for go.
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3.3.3.2 Instruction cache ports and trace constructors

The most valuable resource used by the pre-construction engine is probably instruction

cache ports, as adding additional ports to a cache may significantly impact its size and

latency.  The number of instruction cache ports available to the pre-construction engine

determines the instruction fetch bandwidth of the engine.  Balanced with the instruction

cache ports are the trace constructors, which consume the instructions.  Trace constructors

require a non-trivial amount of hardware, although their cost is still relatively small.  Figure

3-14 and Figure 3-15 show the affects of varying the number of instruction cache ports and

the number of trace constructors.

There is a significant performance benefit when going from one instruction cache port to

two.  Going beyond two instruction cache ports does not seem to have much additive benefit.

If two cache ports were available, it would make sense to let the pre-construction engine use

them both.  However, the performance benefit of a second instruction cache port probably

does not justify the cost of adding a port if it is not already available for other reasons.  The

benefit of more instruction cache ports is the increase in bandwidth.  Other approaches to

increase the fetch bandwidth, such as using longer cache lines, would likely provide some of

the same benefit of additional ports.

Adding additional trace constructors leads to notable performance improvements up to

four trace constructors.  Beyond four, the benefit of additional trace constructors is minimal.

For a pre-construction engine with two instruction cache ports, it would make sense to have

four trace constructors.  For a pre-construction engine with only one instruction cache port,
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four trace constructors probably still represent the best balance (making the best use of the

high cost instruction cache port).  A lower cost implementation with only one port and two

trace constructors also performs well.
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Figure 3-14 Effect of changing the number of I-cache ports and trace constructors for
gcc.
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Figure 3-15 Effect of changing the number of I-cache ports and trace constructors for
go.

3.3.3.3 Pre-construction window size

The size of the pre-construction window has a significant impact on the performance of

pre-construction.  If the pre-construction window is not large enough, the pre-construction

engine can not capture a significant portion of each region.  If the instruction window is too

large, the pre-construction engine may spend too much time on a single region at the expense

of other regions.  A window size around 256 instructions appears to be the best (see Figure

3-16 and Figure 3-17).  This result may partially be an artifact of the compiler and the

workload.  This size of window likely corresponds to the common size of constructs (such as

subroutines and loop bodies) in the applications.  The sensitivity of the pre-construction

engine to the window size is likely also dependent on the bandwidth of the resources to fill

and drain the window.
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Figure 3-16 Effect of changing the window size for gcc.
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Figure 3-17 Effect of changing the window size for go.
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3.3.3.4 Utilizing the branch predictor

The branch predictor in the slow path is referenced for branches fetched in the pre-

construction engine.  The prediction is used for two reasons.  First, it determines if a branch

is highly biased. If a branch is highly biased it may be better to only fetch for the favored

path.  Second, the favored direction of a branch can be used to determine the order

instructions are fetched and the order that traces are constructed.  Forward branches

commonly correspond to if-then-else constructs, and for these branches a strong bias in either

the taken or not taken direction is considered.  Backward branches commonly correspond to

loop constructs.  Backward branches that are highly biased not-taken likely correspond to

loops that are never taken and should be considered for directing fetch.  Backward branches

that are highly biased in the taken direction or weekly biased in either direction are

considered to be loops that are taken for some number of iterations and then exited.  For these

branches both directions should be followed.

Referencing the branch predictor to help direct pre-construction leads to notably better

performance (see Figure 3-18 and Figure 3-19).  The affect of varying the bias between the

favored and non-favored directions of branches is not significant.  A bias of three performs at

least as well as any other (see Figure 3-18 and Figure 3-19).  Because the bias of one

performs nearly as well as a higher bias, the direction prediction of branches is not

significant.  What is significant is identifying branches that are highly biased so that only the

dominant direction is followed.

If the compiler can provide information identifying the majority of highly biased

branches, then referencing the branch predictor would not be necessary.  The compiler could
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likely identify many of these branches.  The cost of referencing the branch predictor is a

couple of extra read ports for the prediction table, which is a non-trivial cost.  A design that

could avoid this extra cost would be desirable.
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Figure 3-18 Effect of using dynamic branch prediction and various biases for gcc.
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Figure 3-19 Effect of using dynamic branch prediction and various biases for go.

3.3.4 Trace cache miss rate

In section 3.3.2 the trace cache performance of the two benchmarks gcc and go is given.

In this section the trace cache performance of the remainder of the SPECint95 benchmarks is

given (results for the SPECfp95 benchmarks are presented in Appendix A).  The performance

is given in terms of the number of trace cache misses per 1000 instructions.  The performance

is given as a function of the combined size of the trace cache and the pre-construction buffer.

Only pre-construction buffer sizes of 32 and 64 traces are considered.  In most cases only

trace cache sizes through 256 entries will be considered.  Because of the small working sets

of these benchmarks, the performance of larger trace caches quickly approach the

performance of an ideal trace cache.
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Figure 3-20 through Figure 3-25 show the performance of the trace cache and pre-

construction engine for the remainder of the SPECint95 benchmarks.  Two of these

benchmarks, compress and ijpeg, have such small working sets that even a very small trace

cache performs well and there is little opportunity to improve.  The benchmarks lisp,

m88ksim and perl all show notable benefits with pre-construction.  Of these, perl stresses the

trace cache the most and therefore has the largest absolute gains.  The benchmark vortex

stresses the trace cache almost as much as gcc or go.  Pre-constructions works extremely well

for vortex, reducing the miss rate by up to a factor of five (see Figure 3-25).

All the benchmarks, except for compress, see a lower trace cache miss rate with pre-

construction.  compress sees a minor increase in trace cache miss rate with some

configurations.  The increase is due the trace cache being reduced in size as area is dedicated

to the pre-construction buffer.  A point where equal area configurations can be compared

across all the benchmarks is a total trace cache size of 128 lines (comparing a 128 entry trace

cache with a 64 entry trace cache and a pre-construction engine with a 64 entry pre-

construction buffer).  The average reduction in trace cache misses is 15% (39% if compress is

excluded).  The harmonic mean of the trace cache miss reduction (excluding compress) is

34%.
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Figure 3-20 Trace cache performance for compress.
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Figure 3-21 Trace cache performance for ijpeg.
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Figure 3-22 Trace cache performance for lisp.
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Figure 3-23 Trace cache performance for m88ksim.
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Figure 3-24 Trace cache performance for perl.
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Figure 3-25 Trace cache performance for vortex.
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3.3.5 Impact on instruction cache performance

Pre-construction has a number of important impacts on the performance of the

instruction cache.  By changing the trace cache miss rate, pre-construction affects the number

of instructions supplied by the instruction cache to the decode pipeline.  At the same time,

pre-construction increases the number of overall requests to the instruction cache by

generating requests itself.  Last, but not least, the pre-construction actually prefetches lines

into the instruction cache.

By increasing the number of trace cache hits, pre-construction reduces the number of

instructions that need to be supplied from the instruction cache.  Table 3-2 shows the number

of instructions that are fetched from the instruction cache for the benchmarks with and

without pre-construction.  All the benchmarks, except for compress, see over a 20%

reduction in the number of instructions supplied from the instruction cache.

Table 3-2 Instructions supplied by the instruction cache (slow path).

Benchmark Instruction supplied by I-cache
with 128 (512 for gcc & go) entry

trace cache
(instructions per 1000 instructions)

Instruction supplied by I-cache
with 64 (256 for gcc & go) entry

trace cache and 64 (256 for gcc &
go) entry pre-construct buffer

(instructions per 1000 instructions)
compress 37 67
gcc 233 181
go 326 213
ijpeg 124 86
li 160 107
m88ksim 154 106
perl 435 337
vortex 416 93
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The potential drawback of any prefetching scheme is an increase in memory traffic.  Pre-

construction requires large bandwidth from the instruction cache, but this does not interfere

with other memory requests.  Pre-construction may also increase the number of instruction

cache misses that are issued to lower-levels of memory.  These instruction cache misses will

compete with other memory requests, so quantifying the increase is important.  Table 3-3

gives the instruction cache miss rates with and without pre-construction.  All the benchmarks,

except for m88ksim (which sees a larger increase), see between a 50% and 100% increase in

instruction cache misses.  The increase comes from fetches generated by the pre-construction

engine for regions of code that are never executed.

Table 3-3 Increases to instruction cache misses from pre-construction.

Benchmark Instruction cache misses
with 128 (512 for gcc & go) entry

trace cache
(misses per 1000 instructions)

Instruction cache misses
with 64 (256 for gcc & go) entry
trace cache and 256 entry pre-

construct buffer
(misses per 1000 instructions)

compress 0.002 0.003
gcc 3.0 6.2
go 7.8 11
ijpeg 0.03 .05
li 0.004 .006
m88ksim 0.01 .13
perl 0.008 .02
vortex 1.5 3.1

Pre-construction increases the total number of instruction cache misses, but it reduces the

number of instructions cache misses observed by the slow path.  Table 3-4 shows the number

of instructions supplied from instruction cache misses with and without pre-construction.

Part of the reduction is due to fewer instructions being supplied by the instruction cache.
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But, the reduction in instructions supplied from instruction cache misses is greater than the

reduction in total instructions supplied from the instruction cache.  This is primarily seen in

the case of gcc and go.  This suggests that the pre-construction engine is prefetching

instruction cache lines that are used by the slow path fetch mechanism.

Table 3-4 Instruction cache misses observed by slow path.

Benchmark Instructions supplied from I-Cache
miss with 128 (512 for gcc & go)

entry trace cache
(instructions per 1000 instructions)

Instructions supplied from I-Cache
miss with 64 (256 for gcc & go)

entry trace cache and 64 (256 for
gcc & go) entry pre-construct

buffer
(instructions per 1000 instructions)

compress 0.007 0.002
gcc 10 7.1
go 35 14
ijpeg 0.13 0.06
li 0.01 0.005
m88ksim 0.03 0.03
perl 0.02 0.01
vortex 7.4 1.8

The instruction cache prefetching effect of pre-construction can be more clearly seen by

considering a degenerate case of pre-construction.  Using a pre-construction engine that

performs the task of fetching instructions for performing pre-construction, but never actually

construct traces, isolates the instruction prefetch contribution.  The number of instructions

supplied from instruction cache misses for this degenerate case is shown in Table 3-5.
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Table 3-5 Instruction cache misses observed with degenerate case of pre-construction.

Benchmark Instructions supplied from I-Cache
miss with 128 (512 for gcc & go)

entry trace cache
(instructions per 1000 instructions)

Instructions supplied from I-Cache
miss with 128 (512 for gcc & go)
entry trace cache and degenerate

case of pre-construction
(instructions per 1000 instructions)

compress 0.007 0.002
gcc 10 7.0
go 35
ijpeg 0.13 0.06
li 0.01 0.005
m88ksim 0.03 0.03
perl 0.02 0.01
vortex 7.4 1.9

3.3.6 Impact on overall performance

The real measure of any performance optimization is how much it reduces the execution

time.  Figure 3-26 through Figure 3-33 show the performance improvements for the

SPECint95 benchmarks.  For these benchmarks the performance benefit of adding pre-

construction is between 0% and 10%.  For a total trace cache size (trace cache and pre-

construction buffer) of 128 entries the average speedup is 3% with a harmonic mean of 1.5%

(compress is excluded from the harmonic mean).  For the three benchmarks with the highest

trace cache miss rate, gcc, go and vortex, the average speedup is 5%.  This is a modest, but

respectable, performance improvement.  By combining pre-construction with the pre-

processing optimization the performance improvement is even more significant (this is

shown in Section 4.6).

The performance improvement from pre-construction comes from both reducing the

number of trace cache misses and reducing the demand instruction cache misses.  To break

down the improvement, the graphs show the benefit of the instruction cache prefetching
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performed by the pre-construction engine.  The performance of “ instruction cache

prefetching”  is based on a degenerate pre-construction engine that fetches instructions for

pre-construction regions, but does not generate traces.  For these results the size of the pre-

construction buffer is zero.  gcc sees about one third of the total benefit come from

instruction cache prefetching, while go sees over one half of the total benefit come from

instruction cache prefetching.  The rest of the benchmarks see minimal benefits from

instruction cache prefetching.

By reducing the trace cache miss rate, pre-construction increases the peak rate at which

instructions can be fetched into the instruction window.  The focus is the peak fetch

bandwidth, not the average fetch bandwidth.  The average instruction fetch rate can not be

higher than the number of instructions retired per cycle, which is less than a basic block per

cycle.  Trace caches (and pre-construction) help performance by filling the instruction

window quickly, to expose potentially independent instructions, when the window is nearly

empty.  A nearly empty instruction window is most commonly caused by control

mispredictions which force a significant part of the window to be flushed.
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Figure 3-26 Performance for compress.
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Figure 3-27 Performance for gcc.
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Figure 3-28 Performance for go.
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Figure 3-29 Performance for ijpeg.
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Figure 3-30 Performance for lisp.

M88KSIM

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

0 64 128 192 256

Total size in traces (Trace Cache + Pre-Construction Buffer)

In
st

ru
ct

io
n

s 
P

er
 C

yc
le

 (
IP

C
)

No Prefetch

32 buffer

64 buffer

Instruction Cache Prefetch

Figure 3-31 Performance for m88ksim.
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Figure 3-32 Performance for perl.
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Figure 3-33 Performance for vortex.
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3.4 Results for Transient Performance

How well processors can handle periods of transition is extremely important.  Many of

the mechanisms incorporated into today’ s processors to increase instruction level parallelism

rely on dynamically learning application behavior.  A straightforward example of this is the

reliance of today’ s processors on caches and branch prediction.  This reliance on dynamic

information makes the performance of the processor vulnerable to periods of transition when

the processor begins executing code it has not observed recently.  This can occur because a

context switch has brought in a different application, or because an application has reached a

new region of code.

The trace cache is yet another mechanism that takes advantage of dynamically learning

application behavior.  Pre-construction can help make the trace cache less vulnerable to

periods of transition, because it can construct traces for regions of code that have not been

previously executed.  This is an important aspect of pre-construction, as it increases the

overall robustness of the processor.

To simulate the effects of context switches and entering new regions of code, the

simulator is periodically interrupted and all the dynamic structures (caches and predictors) are

flushed.  This is not the best way to model real world workloads, but it does give some

insight into how the processor handles periods of transition.  What is important is the

performance trend of the processor as the frequency of interrupts increase.

The two benchmarks gcc and go are used for these results.  The first 20 million

instructions are executed from the benchmarks with the processor being interrupted from
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never to once every five thousand instructions.  Two processor configuration are modeled, a

configuration with a 512-entry trace cache, and a configuration with a 256-entry trace cache

and a pre-construction engine with a 128-entry pre-construction buffer.  Length 16 traces are

used for all the results and the execution engine is based on the small configuration.

3.4.1 Trace cache performance during periods of transition

The first metric considered is the miss rate of the trace cache.  Figure 3-34 and Figure

3-35 give the trace cache performance as a function of the frequency of interrupts for the

benchmark gcc and go respectively.  As the frequency of interrupts (the flushing of

dynamically learned state) increases, the trace cache miss rate increases.  With pre-

construction, the rate of increase is less.  For gcc the difference is small, but for go the

difference is significant.  This means that the trace cache performance is more robust with

pre-construction.
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Figure 3-34  Trace cache performance in the presence of interrupts for gcc.
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Figure 3-35 Trace cache performance in the presence of interrupts for go.
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3.4.2 Overall performance during periods of transition

Pre-construction increases the robustness of the trace cache by making it more capable of

handling periods of transition.  This in turns increases the overall robustness of the processor.

As the frequency of interrupts increase, the performance benefit of pre-construction also

increases (see Figure 3-36 and Figure 3-37).  At the extreme point of an interrupt every five

thousand instructions, there is a 15% to 20% performance benefit from pre-construction for

these benchmarks.  That is significantly higher than the benefit observed for the same

benchmarks in the steady state case.
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Figure 3-36 Performance of trace processor in presence of interrupts for gcc.
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Figure 3-37 Performance of trace processor in presence of interrupts for go.

3.5 Results for Length 32 Traces

Pre-construction can also be applied for length 32 traces.  Performance of the trace cache

and pre-construction engine are similar for length 32 traces as for length 16 traces.  The

number of trace cache misses is less with length 32 traces for a trace cache with the same

number of entries, as there are fewer unique traces for any region of code.  At the same time,

the cost of the trace cache, in terms of area, is twice as large for a given number of entries.

For the results based on length 32 traces, a processor with 4 processing elements each

with 4-way issue is used.  This configuration is used instead of the large processor

configuration presented in Section 2.3 because very large instruction windows skew the trace

cache performance results.  A small amount of trace pre-construction is performed naturally
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by a processor with a large instruction window, as potentially useful traces are constructed for

processing elements following incorrect control predictions.  If the control misprediction is

corrected and the same trace is observed on the correct path, it appears as if the trace was pre-

constructed.  Doubling the instruction window from 4 processing elements each 32

instructions long to 8 processing elements each 32 instructions long reduces trace cache

mispredictions by around 5% for some benchmarks.  But, the reduction varies significantly

between benchmarks depending on whether control paths reconverge frequently and if the

reconverged paths have the same trace alignments.

Only the four benchmarks gcc, go, perl and vortex are presented.  The benchmarks lisp

and m88ksim see benefits similar, but slightly less than, the benchmark perl.  The other two

benchmarks have such small working sets that pre-construction does not impact performance.

3.5.1 Trace cache performance for length 32 traces

The trace cache miss rates for length 32 traces are shown in Figure 3-38 through Figure

3-41.  The relative performance of pre-construction is comparable to the performance seen

for length 16 traces.  The actual miss rates are lower for length 32 traces, even comparing to

equal size trace caches for length 16 traces.  Longer traces tend to have better trace cache

performance, but there are other issues that must be considered to determine the best trace

length for a given processor.  Transitioning between trace granularity and instruction

granularity, in cases such as trace cache misses, has larger penalties for longer traces.



99

GCC

0

5

10

15

20

25

0 256 512 768 1024

Total size in traces (Trace Cache + Pre-Construction Buffer)

M
is

se
s 

p
er

 1
00

0 
in

sn
s

No Prefetch

32 buffer

64 buffer

Figure 3-38 Trace cache performance for gcc.
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Figure 3-39 Trace cache performance for go.
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Figure 3-40 Trace cache performance for perl.
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Figure 3-41 Trace cache performance for vortex.
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3.5.2 Overall performance for length 32 traces

The overall performance results for length 32 traces are shown in Figure 3-42 through

Figure 3-45.  For equal size implementations, pre-construction performs from 2% to 7%

better than a trace cache alone for the benchmarks shown.  These results are in line with the

results observed for length 16 traces.
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Figure 3-42 Performance of benchmark gcc with length 32 traces.
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Figure 3-43 Performance for go with length 32 traces.
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Figure 3-45 Performance for vortex with length 32 traces.
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Chapter 4
Instruction Pre-Processing

The trace cache can enable hardware optimizations via dynamic pre-processing

optimizations.  Traces and the trace cache have three important roles in enabling these

optimizations.  First, traces serve as an intermediate representation of a program that can hold

an optimized version.  Second, traces represent specific dynamic paths, which enables new

optimizations.  Third, the trace cache can decouple the hardware that analyzes and optimizes

programs from the main processor core.

The dynamic instruction stream generated from sequences of traces only needs to be

functionally equivalent to the dynamic instruction stream that would otherwise be generated

from fetching the static binary.  This can be used to decouple an internal ISA (the instruction

set the processor executes) from an external ISA (the instruction set that programs are

encoded in).  This is similar to the concept of using decoded instruction caches [10][11] to

transform from an external ISA to an internal ISA.  This could be used to implement an

entirely different internal ISA from external ISA, with translation only performed in the event

of a trace cache miss.  Alternatively this could be used to implement an internal ISA that

simply augments the external ISA with instructions to support implementation-specific

optimization.  I focus on the latter.
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Traces can be optimized for implementation-specific hardware.  The external instruction

set of a processor represents an agreed-on interface between a collection of software and a

family of processors.  Different processors that support the same external instruction set may

have significantly different internal microarchitectures.  By dynamically optimizing an

application for the specific hardware, significant performance benefits can be obtained.

Traces can also be used to perform optimizations that take advantage of having a specific

dynamic sequence of code.  Code can be specialized for a given dynamic path through a

general region of code.  This enables optimizations that could not be performed on the static

program.  By optimizing the instruction stream for implementation-specific features and

specific dynamic sequences, the execution time for regions of code can be significantly

reduced.

Translating to an optimized internal instruction set can be implemented in the traditional

pipeline organization.  The instruction decode pipeline could be lengthened to provide cycles

to perform these translations and optimizations (as is done in Intel’ s PentiumPro processor

and AMD’ s K6 processor).  Lengthening the traditional processor pipeline has a number of

drawbacks.  The most significant drawback is increasing the latency to resolve mispredicted

branches; this can significantly hurt performance.  Lengthening the pipeline also increases the

amount of speculative state that must be preserved and makes the general pipeline

implementation (such as interlocking logic) more complicated.  Performing these

optimizations in the fetch pipeline would also require re-computing all the transformations

each time a given dynamic sequence is observed.
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The pre-processing pipeline organization provides an ideal environment for

implementing the translation to the optimized instruction set.  If the processor core can

execute unoptimized instructions, then the translation hardware can be decoupled from the

processor core.  The pre-processing pipeline can perform the translation and optimization of

instructions and replace entries in the trace cache with optimized entries.  If the processor

core can only execute optimized instructions, than transformation has to be performed on

instructions generated by the slow path fetch logic before the instructions are fed to the

execution engine.  In this case, the translation only needs to be performed in the event of

trace cache misses.

4.1 Overview of Instruction Pre-Processing

Instruction pre-processing takes advantage of traces and the trace cache to provide an

optimized instruction stream to the processor backend.  I study instruction pre-processing in

the context of a trace processor with a distributed execution engine.  Most, if not all, the

optimizations discussed for pre-processing would be equally applicable to a processor that

uses a trace cache for instruction supply but uses a traditional homogenous superscalar

execution engine.

4.1.1 Beyond compiler optimizations

Pre-processing is intended as a complement, not as a substitute, for good optimizing

compilers.  The dynamic nature of traces and implementation dependence allows for

additional transformations that would be impossible, or at least very difficult, at compile



107

time.  There are three inherent characteristics of traces that enable pre-processing

optimizations.

First, traces represent a specific dynamic path through a region of code.  Traces can

potentially contain instructions from multiple basic blocks; and a given instruction can appear

in multiple traces.  Each trace sequence places its instructions within a specific context, and

optimizations applied across basic block boundaries only have to be valid for that specific

context.  This enables specializing code for specific dynamic paths through regions of code.

Compilers have attempted to specialize code for specific dynamic paths with some limited

success [13].

Second, the encapsulation of traces as units of work can make the usage and availability

of resources (both execution and communication resources) more predictable.  In the

proposed trace processor microarchitecture, each trace is executed on its own processing

element.  This makes the availability of the specific hardware resources known at the time a

trace is optimized.  In addition, inter-trace data value communication, i.e., external values

consumed and produced by a trace, is determined as the trace is formed, and the trace can be

optimized for this communication.

Finally, traces provide an intermediate representation of programs that can enable

application binaries, which may be compiled for a large family of processors, to be

dynamically tuned for a specific processor core.  Pre-processing can target new, internal

instructions that the processing elements can execute, but which are not supported in the
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external instruction set.  These internal instructions can provide performance features in a

way that is transparent to the original binary.

4.1.2 Range of optimizations

The most important part of this work is creating the framework for optimizations and

identifying the important information available for optimizations.  The range of optimizations

that could be incorporated into the pre-processing framework is almost boundless.  I look at

three specific optimizations.  These optimizations illustrate the variety of optimizations that

are possible and demonstrate how the characteristics of traces can be exploited during pre-

processing.  The three optimizations are:

• Scheduling instructions.  This optimization is traditionally done in software by

compilers and in hardware by out-of-order instruction issue.  By scheduling within

traces, pre-processing hardware can take advantage of more sophisticated scheduling

algorithms than is done by the highly-localized out-of-order issue.  By having the

dynamic context available, pre-processing hardware can provide a more custom-

tailored schedule than can be done at the static level by the compiler.  Furthermore,

the information regarding use and availability of resources can be used by the

scheduling heuristic to make the best use of the processor hardware.

• Performing constant propagation.  This optimization is traditionally done by

compilers, but including it as part of instruction pre-processing allows optimizations

beyond basic block boundaries that only have to be correct within the context of the

specific control flow implied by the trace.



109

• Collapsing data dependent chains of computation to single instructions.  This

optimization uses compound instructions which may have a lower total latency than

the dependence chain of individual instructions.  For example, a three-input ALU can

be built with essentially the same latency as a two-input ALU [63].  Although three-

input compound instructions may not be part of the machine’ s standard instruction

set, these can be implemented in the hardware for use after instruction pre-processing.

4.2 Incorporating Instruction Pre-Processing

A high-level view of how pre-processing is incorporated into the processor is shown in

Figure 4-1.  When the next trace of a program is not in the cache, the slow path hardware

constructs a trace, using branch prediction as needed.  This newly constructed trace is

dispatched to an idle processing element to be executed and the new trace is also placed in

the trace cache (in non-optimized form).  In parallel with the initial execution of the trace

most of the work of pre-processing is performed.  When the trace is completed (given that it

was a correctly predicted trace) the pre-processor performs the final transformations on the

trace.  We assume a two-cycle latency for this transformation.  The new optimized trace is

then inserted into the trace cache.  Using this model, the latency of instruction pre-processing

is not on the critical path.
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Figure 4-1 Incorporating instruction pre-processing

4.3 Specific Optimizations

4.3.1 Instruction scheduling

The first optimization considered is instruction scheduling.  As a practical matter,

instructions are not literally moved within the trace.  Such movement would probably

consume time or add to hardware complexity; furthermore, the original instruction order must

be “ remembered”  so that precise traps can be correctly implemented.  Rather, we prioritize

the instructions within a trace and rely on out-of-order issue logic to complete the scheduling

task by following these pre-established priorities.  That is, when there are more instructions

ready to issue simultaneously than there are resources, the instructions marked with higher

priority will be issued first.

Instruction scheduling attempts to order instruction execution to achieve the lowest

execution time with the available execution resources.  An upper bound on what instruction

scheduling can achieve is the performance of a processor with an issue bandwidth equal to
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the window size (no competition for execution resources).  The more constrained the

execution resources, the more opportunity instruction scheduling has to increase

performance.

Determining the ideal schedule for instruction execution is a hard problem, and when

only a portion of the instruction window is available (one trace) at a time it is impossible to

determine the global optimum.  Not only is there the matter of determining the critical path

based on data dependencies, there are issues of resolving and recovering from incorrect

control predictions and accommodating variable length, and potentially long length, memory

operations.

I do not investigate ideal scheduling, but instead look at some simple heuristics that have

the potential to increase performance.  There are many possible heuristics that can be used,

either alone or in combination, to assign scheduling priorities within a trace.  Adjusting the

priority of an instruction usually requires related adjustments in other instructions belonging

to the same dependence chain.  However, because the same instruction may belong to

multiple dependence chains, there may be conflicts among different scheduling heuristics;

i.e., one heuristic may attempt to give an instruction a higher priority, while another may

attempt to give a lower priority.  The priority and interactions of the heuristics become very

important.

I investigate three scheduling heuristics, alone and in conjunction.  The heuristics take

advantage of simple program characteristics that make intuitive sense.  The heuristics are:
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• Scheduling for the early resolution of branches.  When a branch is mispredicted,

the latency of branch verification is critical to performance.  For all branches, or for

those branches that have been identified as frequently mispredicted, it is important to

schedule the instructions so that the branch outcome is computed as early as possible.

Initially all branches are given high priority.  After a trace has been executed, only

those branches that have been observed to be mispredicted more than 12.5% of the

time are given high priority and other branches are given lower priority.

• Scheduling for early execution of memory operations.  Memory operations should

be scheduled early as they are often high latency operations.

• Scheduling for inter-trace communication.  Propagating values across task

boundaries requires an extra cycle of latency because of the distributed nature of the

execution resources [49][58].  It is important to schedule instructions to minimize the

impact of this extra latency.  Instructions that produce values needed by subsequent

traces should be scheduled as early as possible.  And instructions that consume values

generated by previous traces should be scheduled as late as possible to allow for the

extra latency.  Often a chain of computation will begin by consuming a value

generated by an earlier task and end with the production of a value used by later tasks,

creating a conflict of interest.  In this case the instructions are given high priority to

schedule them early.  The policy of scheduling for inter-trace communication is

similar to the work in the multiscalar compiler to schedule for inter-task

communication [64].
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Each heuristic is initially explored independently.  Then the heuristics are combined,

giving precedence to the heuristics with the most benefit.  This is not intended to be an

exhaustive search of the design space of instruction scheduling.  This work is intended to

show the type of optimizations that are possible and to demonstrate that benefits can be seen

from simple heuristics.

4.3.2 Constant propagation

The second pre-processing optimization considered is constant propagation within

traces.  There are many cases where computation chains with no inputs are used to generate

constant values.  These can occur because of control dependences that affect the value being

produced or because of encoding limitations in the instruction set.  With traces both of these

restrictions can be overcome.

Control dependences restrict the range of constant propagation in static programs.  As

noted earlier, a trace represents a specific control path through a region of a program.  There

may be constant values that can be propagated for a specific control path that can not be

propagated in the static program due to control dependences.  A good example of traces

overcoming control dependences occurs when a trace contains the initialization and the first

few iterations of a simple for loop.  In this case, the value initially set for the loop count can

be propagated through the first few increments/decrements.

Simplescalar (the external instruction set), like most RISC instruction sets, only supports

16-bit immediate operands for most operations.  When word length immediate operands are

required, two instructions are necessary (a load-upper immediate and an OR/ADD



114

immediate) to load the immediate value into a register so that other instructions can use the

value.  In the internal instruction set, word length immediate fields can be supported; this

transformation increases the space required to hold the instructions but can significantly

reduce the number of instructions that need to be executed.  A common case where this

optimization can be beneficial is generating global addresses for loads/stores.  Because of the

cost of supporting word length operands, we consider both implementations that do and do

not support this feature.

Constant propagation leads to performance improvement in two ways.  First, there are

some instructions that do not need to be executed after constant propagation.  If there are

limited execution resources this removes contention and can speed execution of a trace.  If

the instructions removed by constant propagation put a value into a register that is a live-out

value, the value still needs to be propagated to subsequent traces.  In this case a directive to

forward an immediate value replaces the instruction.  These directives do not require

execution resources but do compete for global result bus bandwidth.  Instructions removed by

constant propagation do not need to generate local register values, as any local instruction

will have the register dependence replaced by an immediate operand.

The second way that constant propagation increases performance is by reducing the

length of dependence chains.  For example, if in the original program there is a load upper

immediate followed by a logical OR immediate followed by an add operation this is a chain

of three dependent instructions that has to execute in series.  With constant propagation the

three instructions can be replaced by an add instruction with a word length immediate
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operand.  If the add instruction’ s other operand is available, the transformed instructions can

operate with two fewer cycles of latency.

4.3.3 Instruction collapsing

There has been much discussion recently of the impact of the relative increase in wire

delays to gate delay [29][52].  The flip side of the relative increase in wire delays is the

relative decrease in gate delays.  While much current research is motivated by the problems

posed by long wire delays there has been little work performed to investigate the

opportunities posed by short gate delays.  Developing more sophisticated execution resources

can significantly reduce the latency of executing a program.  With the relative decrease in the

delays of gates, adding a few levels of logic to execution resources may not impact the cycle

time.

Most instruction sets only support the encoding of operations having two source

operands.  We explore the possibility of incorporating more complex operations into the

internal instruction set of the processor and then transforming the instructions within a trace

to take advantage of these operations.  More complex operations can be used to collapse

small chains of dependent operations into a single operation, thus reducing the latency.  In

general, data collapsing turns a chain of dependent operations into a single operation with

more inputs (see Figure 4-2).  This can lead to increased performance if the new operations

do not increase the base cycle time of the processor.  With the relative decrease of the delay

of gates with respect to wires, these new operations are likely feasible.
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Figure 4-2 Example of instruction collapsing.

Instruction collapsing is implemented by replacing the last instruction in a computation

chain with a new instruction that captures the functionality of all the instructions in the chain.

Other instructions may use the results created by the earlier instructions in the computation

chain, however.  If other instructions need the results created by earlier instructions, then the

earlier instructions must be kept and executed.  In this case, there is no reduction in the

number of instructions executed, but the latency to produce the result of the collapsed

instruction is reduced.

On the other hand, after collapsing is performed, some instructions no longer need to be

executed.  An instruction can only be removed if no instruction within the trace uses its result

and no instruction beyond the current trace can use the result (the result is not a live-out

value).  We investigate the performance impact of either executing or not executing these

instructions.  Not executing the instruction removes unnecessary work and reduces

contention for execution resources.  Executing the instruction simplifies the maintaining of

precise state for recovering from control mispredictions or exceptions.  If a misprediction or

exception occurs in the middle of a trace, the later instructions of the trace will be discarded

and potentially new instructions will be brought in to complete the trace.  In this event, the

data dependences change, and instructions that were optimized away may need to be
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executed.  Executing all instructions also simplifies the logic for performing collapsing as it

does not require the determination of which instructions can be safely removed.

We will study a range of data collapsing configurations to discover where and how it can

best be utilized.  Data collapsing can be used to collapse chains of either heterogeneous or

homogeneous operations, and there are an almost limitless number of computational chains

that can be replaced by specialized hardware to form a single operation.  We only consider

collapsing of fixed-point operations; similar optimizations could be applied to the floating-

point units.  There are a few common operations that can capture most of the benefit of data

collapsing.

Most of the benefits of collapsing can be obtained by adding a new operation that only

has two register source operands and single register destination operand (see Section 4.5.3).

This is very important as this operation does not change the demands on the register file and

data bypassing configurations, both of which are communication intensive and are usually

timing critical.  In addition to the two register operands, the new operation incorporates three

immediate source operands and can collapse a number of common chains of dependent

operations.  The new operation was determined by observing what computation chains were

collapsed by the aggressive collapsing policy described in Section 4.5.3.

The new operation consists of shifting each of the register source operands left by a

small immediate amount (0 to 3), negating either or both operands, and adding the two values

and a third immediate value to produce the result (see Figure 4-3).  This operation is

extremely powerful but only adds a couple of gate delays over the traditional two operand
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add instruction.  The two largest portions, in terms of time, of a traditional add instruction is

the communication latency (including the bypass delays) and the carry propagate logic.  The

immediate shift adds a 4-to-1 mux and using a three-operand addition only adds a carry save

adder (the latency of a single-bit adder).

Carry
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Adder Carry

Save
Adder

Carry
Propagate
Logic
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Shift
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Shift
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Register Source Operand

Register Source Operand

Result
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Figure 4-3 New arithmetic unit.

Whether the additional latency will affect the cycle time of a processor can only be

answered by a full processor design project.  Such a procedure is well beyond the scope of

this work; however, the additional latency is minimal and would likely not affect the cycle

time of a processor.  Given the assumption that this operation can be used, I will show that it

can lead to significant performance improvements.

4.4 Implementing Pre-Processing

Much of the work of instruction pre-processing is overlapped with the first execution of

a trace.  Final transformation is performed on the trace after it is executed, as described in

Section 4.2.  A two-cycle latency is modeled for this transformation.  The details of

implementing each of the optimizations are discussed in the following sections.
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4.4.1 Instruction scheduling

As mentioned above, when instructions are scheduled, the instructions are not literally

reordered, instead a small priority field is added to each instruction.  An increase in priority

needs to be propagated to all other instructions on which the instruction depends.

Dependence analysis is straightforward because local registers are renamed based on

instruction position in the trace.  The hardware to perform the scheduling could likely be

incorporated into the processing elements’  instruction windows, so the work could be

performed while the trace is being executed.

In this implementation a straightforward approach to scheduling is used.  A complete

ordering of instructions (by priority) is maintained.  This requires a field associated with each

instruction that is of size log base 2 of the number of instructions in the trace (4 or 5 bits).

Initially all instructions are ordered by their position in the trace.  Priorities are adjusted to

give priorities according to the heuristics used, while keeping the restriction that an

instruction must have a lower priority than an instruction that it is dependent on.

In a real implementation, a simpler approach would likely be taken (i.e., coarser

granularity of priority).  A reasonable implementation would likely add a couple of bits to

each instruction that could be used to mark them as higher priority.  These fields would

simply be incremented for certain classes of instructions, as well as all instruction on which

they depend.  This field would then be incorporated in the issue logic to determine which

instruction to issue when multiple instructions were ready.
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The instruction scheduling optimization does not effect program correctness or precise

interrupt support.  Scheduling simply provides hints for the out-of-order execution logic.

This minimizes the cost of implementing the optimizations, both in terms of hardware and

engineering time.

4.4.2 Constant propagation

Constant propagation can be incorporated into the initial execution of a trace.  This is

performed by adding a bit to the local register file indicating whether a value was generated

from only constant operands.  Instructions propagate the bit to their destination if all their

sources have the bit set.  Instructions producing a constant value record the value, and they

are marked to inhibit their execution in the future.  Register source operands with the

constant bit set are replaced by the constant value for future executions.  More simply stated,

traces record values that will never change so that they do not need to be recomputed each

time the trace executes.

As mentioned in Section 4.3.2, two types of constant propagation are considered.  The

first only considers cases where a constant value fits in the constant field of the external ISA,

16 bits for most instructions.  In this case the optimization could likely be implemented

without adding any extra state to the trace.  An instruction needs to be able to indicate that its

result value is encoded in the constant field and that the instruction does not need to execute,

this could likely be done with an unused opcode.  An instruction also needs to indicate that a

source operand is not needed and that a constant is used instead, this could likely be done by

translating to corresponding instructions that have immediate operands.
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The second type of constant propagation makes use of larger constant fields than are

available in the external ISA.  This case will require larger instruction encodings.  If the

external ISA supports 16-bit constant fields and the internal ISA supports word length

constant fields, the internal encoding would have to be that much larger (16 bits larger for a

32-bit machine).  This optimization would have a significant impact on the size of the trace

cache by making each entry larger.

The constant propagation optimization can be implemented while providing precise

interrupts.  At the trace boundary the precise state is available, so if a whole trace is to be

retired there is no side effect of having not executed the instructions removed by constant

propagation.  If a branch misprediction or trap occurs in the middle of the trace, the

instructions before the event, removed by constant propagation, must write their results to the

local register file (this does not require execution, just result bandwidth).

4.4.3 Dependence collapsing

Dependence collapsing is implemented in two phases.  The first phase is implemented

during the initial execution of the trace.  A small type field is added to the local register file

specifying the type of the instruction that creates the register value.  Dependent instructions

detect whether they can be collapsed with producing instruction(s).  In this way the

candidates for collapsing are determined.  The second phase is taking dependent chains of

instructions and forming the new compound instruction that captures the same functionality

but has lower total latency.  The compound instruction replaces the last instruction in the

chain.
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The compound instructions will require additional encoding space.  Exactly how much

extra space is required depends on which combinations of instructions are allowed to be

collapsed.  For incorporating the one new compound instruction, a couple extra bits of

opcode space and approximately 9 bits of extra operand information would likely be required.

The extra space for operand information is needed to hold short immediate values to specify

how much to shift operands, as well as an extra register source operand.

For the two types of collapsing investigated, there is a significant difference in how

control mispredictions and interrupts are handled.  In one, instructions that are no longer

needed after collapsing are still executed.  In this case, there are no problems in recovering

from control mispredictions and implementing precise interrupts.  Transformed instructions

simply use the values generated by earlier instructions directly.  If control mispredictions or

exceptions occur, the correct architected state is always available.  In the case that the

unneeded instructions are not executed, recovering from control mispredictions and

implementing precise interrupts is more complicated.  At trace boundaries the correct

architected state is available, but at internal points of the trace some architected state may

have been optimized away.  To support correct behavior, the unneeded instruction(s) must be

executed if a misprediction or exception occurs in the middle of a trace.  This can be

implemented by adding a bit to mark these instructions to inhibit their execution, but if a

misprediction or exception occurs the bit is cleared and the instructions must be executed.
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4.5 Performance

The three processor configurations from Section 2.3.4 are considered.  A small

configurations with length 16 traces, 4 processing elements and 2-way issue per processing

element (64 entry instruction window and 8-way issue total).  A medium configuration with

length 16 traces, 8 processing elements and 2-way issue per processing element (128 entry

instruction window and 16-way issue total).  And, a large configuration with length 32 traces,

8 processing elements and 4-way issue per processing element (256 entry instruction window

and 32-way issue total).

The processor configurations modeled all have a 512 entry, 2-way set-associative trace

cache.  For the models with length 16 traces, the trace cache holds 32KB worth of

instructions.  For the model with length 32 traces, the trace cache holds 64KB worth of

instructions.  Pre-construction is initially not considered.  At the end of the chapter, Section

4.6 discusses the integration of pre-construction and pre-processing.

Not all traces dispatched to processing elements for execution have been optimized.

When a trace is dispatched to a processing element there are three possible cases: the trace

was just constructed on the slow path, the trace was in the trace cache in non-optimized form,

or the trace was in the trace cache in optimized form.  The fraction of traces from each of

these cases is shown in Table 4-1 (these results are based on the medium configuration and

the combined scheduling heuristic, there is some variation based on configuration and exact

optimizations performed).  These results are for traces that retire, and do not include traces

for incorrect paths.  Between 63% and 100% of traces dispatched are optimized.  Of the
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traces that are not optimized, most are due to the trace not being in the cache.  Only the

benchmarks gcc and go see a significant number (5% and 11% respectively) of traces

provided by the trace cache in unoptimized form.  This is a large enough number to justify

placing the unoptimized trace in the trace cache until the optimized one become available,

otherwise these cases would become trace cache misses.

Table 4-1 Breakdown of traces dispatched to processing elements.

Benchmark % of traces provide by
slow path

% of traces provided
by trace cache

(non-optimized)

% of traces provided
by trace cache

(optimized)
compress 0 0 100
gcc 20 5 74
go 26 11 63
ijpeg 1 0 99
li 2 1 97
m88ksim 3 0 96
perl 8 2 90
vortex 14 1 85

In the next sections the three main pre-processing optimizations are examined.  First,

each optimization is considered in isolation.  Then the optimizations are studied in

combination to see the full potential of instruction pre-processing.  The SPECint95

benchmarks are used for the results presented in this section.  Corresponding results for the

SPECfp95 benchmarks are presented in Appendix A.

4.5.1 Instruction scheduling

We identified three scheduling heuristics in section 4.3.1.  The scheduling heuristics

were based on branches, memory operations, and inter-trace communication.  Each

scheduling heuristic is tried alone, then in combination.  The speedups from incorporating
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instruction scheduling are shown in Figure 4-4 through Figure 4-11.  The first bar of the

graphs provide upper bounds for instruction scheduling, the next three bars show the speedup

from each of the heuristics in isolation and the last bar shows the speedup from combining all

the heuristics.

The first bar of the graphs shows the performance of a processor with issue width equal

to the window size for both memory and non-memory operations, this is an upper bound on

what scheduling could possibly achieve.  The upper bound ranges from a 3% to 18% speedup

across the different benchmarks and processor configurations (with an average of 12%).
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Figure 4-4 Speedup from scheduling optimization for compress.
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Figure 4-5 Speedup from scheduling optimization for gcc.
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Figure 4-6 Speedup from scheduling optimization for go.
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Figure 4-7 Speedup from scheduling optimization for ijpeg.
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Figure 4-8 Speedup from scheduling optimization for li.
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Figure 4-9 Speedup from scheduling optimization for m88ksim.
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Figure 4-10 Speedup from scheduling optimization for perl.
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Figure 4-11 Speedup from scheduling optimization for vortex.

All the benchmarks see a speedup from the scheduling heuristic for branches and the

scheduling heuristic for memory operations.  The branch heuristic produces a 0% to 9%

speedup, but the harmonic mean of the speedup is only 1%.  The speedup for the memory

heuristic performs comparably, performing better than the branch heuristic for some

benchmarks and worse for others.  The harmonic mean of the speedup from the memory

heuristic is also only 1%.

Of the three heuristics, scheduling for communication has the largest benefit.  The inter-

trace register communication is critical to performance and, because traces are unknown at

compile time, the compiler can not help schedule for this.  Scheduling for inter-trace

communication can produce nearly a 10% speedup in some cases, but in an equal number of

cases the speedup is negligible.  In the case of the benchmark ijpeg there is a slight slowdown
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from the scheduling heuristic.  The average speedup from scheduling for communication is

4%, 5% and just under 2% for the small, medium and large processor configurations

respectively.

The combined scheduling approach uses all three policies, but not with equal priority.

Scheduling for communication is given the most influence on the scheduling, then scheduling

for memory operations, and lastly scheduling for branches.  The combined scheduling is

performed by iteratively rescheduling for each heuristic in increasing order of priority.

In general the combined approach provides the greatest benefit, but the benefit over

scheduling for communication-only is minimal.  Of the eight SPECint95 benchmarks, three

(li, m88ksim and perl) see between a 5% and 10% speedup for the small and medium

configurations, two (gcc and vortex) see smaller speedups and three (compress, go and ijpeg)

see no significant speedups.  The average speedup of the combined scheduling heuristic is

4% and 5% for the small and medium configurations respectively (harmonic mean of 3% and

2%).

The large processor configuration sees minimal benefit from scheduling (average

speedup of less than 2% for the combined scheduling heuristic).  Scheduling is only useful in

cases when there are more instructions ready to issue then there is issue bandwidth available.

By doubling the issue bandwidth per processing element the probability of this happening

decreases, even though the number of instruction competing for the bandwidth is also

doubled.  In general, the more flexibly the issue bandwidth is divided among the instructions,

the less likely that there will be ready instructions that can not issue.  This suggests that there
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would be minimal benefit from instruction scheduling in a large homogenous superscalar

execution engine.

When other optimizations are applied to increase instruction level parallelism, such as

instruction collapsing, the benefit of scheduling increases.  By increasing the number of

instructions that can issue in parallel, the probability that the number of ready instructions

will exceed the issue bandwidth increases.  This is shown in the section on combining

instruction pre-processing optimizations (Section 4.5.4).

The performance benefit of scheduling comes from rearranging the priorities of

instructions within traces.  Two interesting measurements are how much are instructions

rearranged and how many instructions are moved past control transfer instructions.  A

breakdown of how far instructions are moved during scheduling is shown Figure 4-12.  These

results are based on the scheduling for communication heuristic and the medium processor

configuration.  Figure 4-13 shows how often instructions are moved past at least one control

instructions during scheduling.
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Figure 4-12 Average distance instructions are moved during scheduling.
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scheduling.
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4.5.2 Constant propagation

Constant propagation removes computations that do not need to be recomputed each

time a trace is reused.  It is limited in that it can only propagate constants within a trace but

has the advantage of being based on a specific dynamic path and being able to use a more

flexible internal instruction encoding.

 Table 4-2 and Table 4-3 show the percentage of instructions removed by constant

propagation for length 16 and length 32 traces respectively.  As discussed in Section 4.3.2,

two implementations of constant propagation are considered.  The difference between them is

whether instructions can encode word length constant operands.

Table 4-2 Percentage of instructions removed by constant propagation for length 16
traces.

Benchmark % of instructions removed by
constant propagation

with limited size constant operands

% of instructions removed by
constant propagation

with word size constant operands
compress 1.7 4.9
gcc 4.8 7.3
go 2.6 12
ijpeg 3.5 4.2
lisp 3.5 4.0
m88ksim 3.8 9.6
perl 2.9 5.2
vortex 5.9 6.6
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Table 4-3 Percentage of instructions removed by constant propagation for length 32
traces.

Benchmark % of instructions removed by
constant propagation

with limited size constant operands

% of instructions removed by
constant propagation

with word size constant operands
compress 2.9 6.6
gcc 5.5 8.2
go 2.7 12
ijpeg 4.9 5.7
lisp 3.7 4.2
m88ksim 4.3 10
perl 4.0 6.6
vortex 7.7 8.5

A significant number of instructions can be removed by constant propagation.  This

reduces the number of instructions competing for issue bandwidth and also reduces the length

of computation chains in the program.  When word length constant operands are allowed,

from 4% to 12% of instructions can be removed by constant propagation for length 16 traces.

Slightly more can be removed for length 32 traces.  Without changing the instruction

encoding, and only taking advantage of the single dynamic path within a trace, from 3% to

6% of instructions can be removed for length 16 traces.  For length 32 traces the number goes

up to 3% to 8%.  Given the limited scope of this optimization, this is an impressive result.

Although a significant fraction of instructions are removed in some cases by constant

propagation, the speedup is minimal (see Figure 4-14 and Figure 4-15).  With the exception

of the large processor configuration of m88ksim (3% speedup) all the benchmarks see less

than a 2% speedup from constant propagation.  The reason for the minimal speedup is that

with the large instruction window and accurate prediction, computation based only on

constants can usually be computed before the values are needed.  This is especially true in the
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trace processor configuration where execution resources are dedicated to traces.  Constant

propagation would probably have a larger impact if small pools of execution resources were

shared by multiple processing elements.
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Figure 4-14 Speedup from constant propagation for the medium processor
configuration.
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Figure 4-15 Speedup from constant propagation for the large processor configuration.

4.5.3 Instruction collapsing

Instruction collapsing removes data dependence delays by replacing instructions with

new compound instructions.  I consider three policies for collapsing instructions.  The first

case, labeled “ Aggressive,”  is used to provide an upper bound for the potential of collapsing.

It allows any dependent chain of fixed-point logical and simple arithmetic (addition and

subtraction) operations to be collapsed as long as the total number of register operands is four

or fewer.  Set instructions and memory operations can be replaced by compound instructions.

For memory operations the address computation is collapsed, but the actual memory

operation is performed normally.  Left shifts of immediate amounts of 3 or less are allowed

anywhere in the computation chain.  Instructions no longer needed after collapsing are not

executed unless there is a branch misprediction (because we implement partial squashing of
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traces) or an exception within the trace.  This collapsing policy is likely not practical to

implement as it would require extremely large instruction encoding space, complex and likely

slow ALUs, and drastically increased register bandwidth.

The second case, labeled “ Moderate,”  limits collapsed instructions to

addition/subtraction of up to two register operands and one immediate operand.  Set

instructions and the address computation of memory operations can be collapsed.  Either of

the register operands can be shifted left by an immediate amount of 3 or less.  This restriction

limits the needed hardware support to a relatively simple arithmetic unit and requires no

additional register ports or bypass logic.  This new instruction can encode a number of

possible chains of additions and left shifts.  As before, instructions no longer needed after

collapsing is performed are not executed unless there is a branch misprediction or an

exception within the trace.

The third case, labeled “ Conservative,”  is similar to the moderate case except that

instructions no longer needed after collapsing are still executed.  This simplifies the logic for

branch misprediction recovery and precise exceptions.  This also simplifies the logic for

performing pre-processing because it does not require the determination of instructions that

can be safely removed after collapsing.

There is significant opportunity to employ collapsing within traces.  Figure 4-16 and

Figure 4-17 show the number of instructions replaced by a new compound instruction for

length 16 and length 32 traces respectively.  The results for the length 16 traces are based on

the medium processor configuration, and are not significantly different than those for the
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small processor configuration.  For length 16 traces, from approximately 5% to over 20% of

instructions are replaced by compound instructions.  With length 32 traces, there is slightly

more opportunity for collapsing as there are larger groups of instructions to transform.  For

all the benchmarks except ijpeg and m88ksim, the moderate and conservative collapsing

policies perform nearly as well as the aggressive policy.  This suggests that the single new

arithmetic unit and corresponding instruction are capable of capturing most of the cases of

collapsing.  In the case of ijpeg and m88ksim, most of the missed collapsing opportunities for

the simpler approaches are chains of arithmetic operations that have more than two register

operands.
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Figure 4-16 Percentage of instructions replaced by a compound instruction for length
16 traces.
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Figure 4-17 Percentage of instructions replaced by a compound instruction for length
32 traces.

For the aggressive and moderate policies, collapsing can cause instructions to be

optimized away so that they no longer need to be executed.  Figure 4-18 and Figure 4-19

show the percentage of instructions that are optimized away for length 16 and length 32

traces respectively.  On average each compound instruction causes about two instructions to

be removed.  This leads to a significant percentage of the instructions being optimized away.

One of the ways that collapsing helps performance is by reducing the length of

dependence chains, thereby reducing the latency of the dependence chain.  Not all

occurrences of collapsing achieve this.  If a value needed at the end of the dependence chain

is not available until after all other values are available, the collapsing will not reduce the

latency.  Looking at the example in Figure 4-2, if R2 is not available until much later than
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R1, the compound instruction does not reduce the latency.  In this example, R1 + 0x23 could

be computed in advance and the value would be available when R2 comes available.

Figure 4-20 and Figure 4-21 show the percentage of instructions that issue early due to

collapsing.  These results only consider the cases where the latencies of dependence chains

are reduced.  They do not consider the benefits of optimizing away instructions or whether

the result of a dependent chain is on the critical path.  An instruction is counted as issuing

early if it is a compound instruction and the last operand to come available was not one of the

original input operands to the replaced instruction (the instruction at the end of the

dependence chain).  The majority (64% on average of length 16 traces and 75% on average

for length 32 traces) of instructions replaced by compound instructions do issue early due to

collapsing.
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Figure 4-19 Percentage of instructions optimized away by collapsing for length 32
traces.
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Figure 4-20 Percentage of collapsed instructions that issue early due to collapsing for
length 16 traces.
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Figure 4-21 Percentage of collapsed instructions that issue early due to collapsing for
length 32 traces.

Overall speedup is the true measure of a performance optimization.  The collapsing

optimization effects a significant number of instructions; more importantly it leads to a

significant overall speedup.  Figure 4-22 through Figure 4-29 show the speedup from

collapsing for the eight SPECint95 benchmarks.  The aggressive collapsing policy leads to a

4% to 14% speedup for most of the benchmarks, a significantly higher speedup is seen for the

benchmark m88ksim.  The average speedup from the aggressive collapsing is 10% (with a

harmonic mean of 9%).

The moderate collapsing comes very close to the performance of the aggressive

collapsing, achieving an average speedup of 9% (with a harmonic mean of 8%).  Many of the

benchmarks have comparable degrees of collapsing for aggressive and moderate collapsing,

so comparable performance is expected.  But, even for the benchmark ijpeg and m88ksim
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(where the aggressive collapsing was able to transform significantly more instructions), the

performance difference is much smaller than the difference in the number of instructions

transformed.

Conservative collapsing has on average only a 4% speedup.  Removing the unnecessary

instructions to free up issue bandwidth has a significant impact.  The impact is slightly less

for the large processor configuration, where there is slightly more flexibility in terms of issue

bandwidth.  Scheduling can address the problems of conservative collapsing, as will be seen

in the next section.

Collapsing provides a nearly fixed benefit on top of the existing processor configuration.

In general the smaller processor configurations see a larger percentage speedup from

collapsing.  The difference is roughly proportional to the difference in absolute performance.
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Figure 4-22 Overall speedup from the collapsing optimization for compress.



144

GCC

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Small Medium Large

Processor Configuration

S
p

ee
d

u
p

Aggressive

Moderate

Conservative

Figure 4-23 Overall speedup from the collapsing optimization for gcc.
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Figure 4-24 Overall speedup from the collapsing optimization for go.
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Figure 4-25 Overall speedup from the collapsing optimization for ijpeg.
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Figure 4-26 Overall speedup from the collapsing optimization for the benchmark li.
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Figure 4-27 Overall speedup for the collapsing optimization for m88ksim.
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Figure 4-28 Overall speedup from the collapsing optimization for perl.



147

VORTEX

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Small Medium Large

Processor Configuration

S
p

ee
d

u
p

Aggressive

Moderate

Conservative

Figure 4-29 Overall speedup from the collapsing optimization for vortex.

4.5.4 Combining pre-processing optimizations

In general, interesting things happen when optimizations are combined.  The interactions

can be complicated, with one optimization sometimes diminishing the benefit of another, or

enhancing the benefit of another.  Often, the resulting performance is considerably less than

the sum of the parts, frequently with the result being comparable to the largest part.

Sometimes, the result is equal to or greater than the sum of the parts.  Both cases are seen

when pre-processing optimizations are combined.

Figure 4-30 through Figure 4-37 show the speedup from combining the pre-processing

optimizations for the SPECint95 benchmarks.  For each benchmark, results are given for all

three processor configurations.  For each configuration, two sets of results are given; one
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where the moderate collapsing policy is used and one where the conservative collapsing

policy is used.  Both collapsing policies add a single new compound instruction that uses

only two register source operands.  The moderate policy removes unnecessary instructions

after collapsing while the conservative policy executes all instructions.  The results show the

breakdown for first adding collapsing, then adding the scheduling optimization (the

combined heuristic) and finally adding the limited constant propagation optimization (makes

use of existing constant fields in instructions as opposed to adding word length immediate

operands).

When the moderate collapsing policy is used, there is minimal benefit from

incorporating the other optimizations.  Moderate collapsing removes a significant number of

instructions, reducing the contention for issue bandwidth and thereby reducing the potential

benefit of scheduling.  Moderate collapsing also captures much of the behavior of the

constant propagation optimization.  A chain of computation with immediate operands can be

collapsed into the instruction that uses the result, removing the dependences and unnecessary

instructions in the same way as constant propagation.

The scheduling and constant propagation optimizations show more benefit when applied

with conservative collapsing than when applied alone.  Conservative collapsing increases the

amount of parallelism by breaking dependence chains, this increases the contention for issue

bandwidth.  Scheduling can effectively hide much of the extra contention for issue bandwidth

seen with conservative collapsing as compared to moderate collapsing.  Together,

conservative collapsing and scheduling often perform nearly as well as the case where
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moderate collapsing is used.  The computation removed by constant propagation helps further

to reduce the increased contention for issue bandwidth from conservative collapsing.

Together, the pre-processing optimizations lead to a 5% to 20% speedup in performance,

with an average speedup of 11% for moderate collapsing and 9% for conservative collapsing

(with harmonic means of 9% and 8%).  The collapsing feature of removing unnecessary

computation offers some benefit, but it is small and depending on the implementation

complexity it may not be worth implementing.  There are also significant opportunities to

incorporate additional optimizations into the pre-processing mechanism to produce even

greater performance benefits.
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Figure 4-30 Speedup from combined pre-processing optimizations for compress.
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Figure 4-31 Speedup from combined pre-processing optimizations for gcc.
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Figure 4-32 Speedup from combined pre-processing optimizations for go.
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Figure 4-33 Speedup from combined pre-processing optimizations for ijpeg.
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Figure 4-34 Speedup from combined pre-processing optimizations for li.



152

M88KSIM

0%

5%

10%

15%

20%

25%

Mod Con Mod Con Mod Con

Processor Configuration

S
p

ee
d

u
p

Constant Prop (short immediates)

Scheduling (Combined)

Collapsing (MODerate/CONservative)

Small                                                 Medium                                                  
Large

Figure 4-35 Speedup from combined pre-processing optimizations for m88ksim.
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Figure 4-36 Speedup from combined pre-processing optimizations for perl.
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Figure 4-37 Speedup from combined pre-processing optimizations for vortex.

4.6 Combining Pre-Construction and Pre-Processing

Pre-construction and pre-processing both take advantage of larger units of work, traces,

to increase the performance of different parts of the processor.  Pre-construction attempts to

increase the instruction supply bandwidth while pre-processing attempts to increase the

instruction execution bandwidth.  I have shown that pre-construction and pre-processing both

offer performance improvements individually.  In this section I explore what happens when

they are applied together.

There are two ways that pre-construction and pre-processing can be integrated.  First, the

mechanisms can both be added to the processor with no special interaction.  As long as the

trace cache can hold unoptimized traces, the two mechanisms can be incorporated without
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any interference.  Second, the mechanisms can be integrated in such a way that the traces

produced by the pre-construction engine are immediately fed to the pre-processing engine to

be optimized.

4.6.1 Conservative integration

Incorporating both pre-construction and pre-processing without any interaction between

the mechanisms will be referred to as conservative integration.  Implementing this design is

straightforward.  Both mechanisms are incorporated exactly as they were described in early

sections.  The pre-construction engine produces traces that are placed into a pre-construction

buffer.  Whenever an unoptimized trace is executed, the task of pre-processing it is started

during the execution and completed afterwards by the pre-processing engine, which places

the optimized trace into the trace cache.  When an optimized trace is placed into the trace

cache, it overwrites an unoptimized version in the cache if present, and invalidates any

corresponding entry in the pre-construction buffer if present.

4.6.2 Aggressive integration

Incorporating both pre-construction and pre-processing with the traces generated from

pre-construction being pre-processed will be referred to as aggressive integration.  There are

a number of issues involved in implementing this design.  Much of the work of pre-

processing is integrated into the execution engine and performed during the execution of the

trace.  If traces from the pre-construction engine are to be pre-processed, this approach will

not work; separate execution resources are necessary to perform the computational

component of pre-processing.  Then there are the issues of the bandwidth and latency of these
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resources as well as the bandwidth and latency of the logic to actually transform the

instructions within a trace.

In order to determine the potential of the aggressive integration approach, an ideal

implementation is considered.  For this implementation, all traces placed in the pre-

construction buffer are pre-processed with zero latency.  This establishes an upper bound on

how much performance can be achieved by pre-processing the traces created by the pre-

construction engine.  The actual performance achieved would be somewhere between the

performance of the conservative integration and this ideal aggressive integration.

The results (given in the next section) show that there is negligible benefit in going from

the conservative approach to the aggressive approach.  Therefore, it does not make sense to

apply any extra resources to perform the pre-processing of traces generated by the pre-

construction engine.

4.6.3 Performance of integrated frontend

In this section I consider the overall speedup from applying pre-construction and pre-

processing together.  I only consider the four benchmarks that saw the most significant

benefit from pre-construction: gcc, go, perl and vortex.  Either a 512 entry trace cache is used

alone, or a 256 entry trace cache and a pre-construction engine with a 256 entry pre-

construction buffer are used.  For pre-processing, the conservative collapsing policy is used

in conjunction with instruction scheduling and constant propagation.  Constant propagation is

limited to immediate fields that fit within the normal instruction encoding.
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Figure 4-38 through Figure 4-41 show the speedup from pre-construction and pre-

processing.  Results are shown for pre-construction and pre-processing in isolation, then

results are presented for pre-construction and pre-processing integrated with both the

conservative and aggressive approaches.  A reference value, showing the simple sum of the

speedups from pre-construction and pre-processing optimizations in isolation, is given for

comparison.

The individual speedups from the optimizations are in line with the results seen earlier.

With a large trace cache and the relatively small benchmarks, the speedup from pre-

construction is relatively small (1% to 5% with an average of 2%).  Pre-processing leads to

more substantial speedups, from 4% to 15% speedup, with an average of 9%.

The speedup from applying pre-construction and pre-processing together is consistently

above the sum of the individual speedups.  The average speedup achieved is 12% (with a

harmonic mean of 9%).  Considering only the small and medium processor configurations,

the average speedup goes up to 14% (with a harmonic mean of 13%).  This speedup is not

surprising, as one optimization helps the frontend of the processor and the other helps the

backend of the processor.  Either optimization alone increases the potential bandwidth of one

of the pipelines, but the benefit is limited by the other pipeline becoming more of a

bottleneck.  Increasing the potential bandwidth of both the frontend and backend pipelines

together leads to a more substantial increase in overall bandwidth of the processor.

The additional benefit from applying the optimizations together makes the pre-

construction optimization more appealing.  Pre-processing offers sufficient speedup alone to
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warrant the complexity of implementing it.  Pre-construction offers less speedup alone,

although it does help robustness to deal with events like context switches.  When combined

with pre-processing the benefit of pre-construction is more substantial.  This coupled with the

added robustness makes pre-construction appealing.

The benefit of the aggressive combination of pre-construction and pre-processing over

the conservative combination is insignificant (as shown in Figure 4-38 through Figure 4-41).

The extra complexity to pre-process the traces produced by the pre-construction engine is not

warranted.
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Figure 4-38 Speedup from pre-construction and pre-processing for gcc.
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Figure 4-39 Speedup from pre-construction and pre-processing for go.
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Figure 4-40 Speedup from pre-construction and pre-processing for perl.
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VORTEX
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Figure 4-41 Speedup from pre-construction and pre-processing for vortex.
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Chapter 5
Next-Trace Prediction

In pipelined processors, instructions are fetched, decoded and executed over a series of

pipeline stages.  In order to keep the pipeline full it is necessary to predict the behavior of

branch instructions before they are even decoded.  This involves learning the location and

target of branch instructions and predicting the behavior of conditional branch instructions.

Using prediction, the instruction fetch unit can continue feeding instructions into the pipeline

even though branch instructions are identified and executed later in the pipeline.  Later stages

of the pipeline, where the decoding and execution of branches is performed, provide

information to the fetch unit to recover from incorrect predictions and provide information to

aid in making future predictions.  In trace processors the task of predicting the behavior of

branches is even more complicated than normal processors because the fetch mechanism

attempts to sustain much higher bandwidth.

Associated with the trace cache is a trace fetch unit, which fetches a trace from the cache

each cycle.  To do this in a timely fashion, it is necessary to predict what the next trace will

be.  A straightforward method, and the one used for initial work with trace caches [40][48], is

to predict simultaneously the multiple branches within a trace.  Then, armed with the last PC

of the preceding trace and the multiple predictions, the fetch unit can access the next trace.  In

the example CFG shown in Figure 5-1, if trace 1 -- ABD -- is the most recently fetched trace,
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and a multiple branch predictor predicts that the next three branch outcomes will be T,T,N,

then the next trace will implicitly be ACD.

N
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B C

D

E
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TN

N

N

T  N

 T

Possible Traces:
1. ABD
2. ACD
3. EFG
4. EG

Figure 5-1 Example CFG

I propose a different approach to next-trace prediction — traces are treated as the basic

unit and the processor explicitly predicts sequences of traces.  For example, referring to the

above list of traces, if the most recent trace is trace 1, then a next-trace predictor might

explicitly output “ trace 2.”   The individual branch predictions T,T,N, are implicit.

I propose and study next-trace predictors that collect histories of trace sequences and

make predictions based on these histories.  This is similar to conditional branch prediction

where predictions are made using histories of branch outcomes.  However, each trace

typically has more than two successors, and often has many more.  Consequently, the next-

trace predictor keeps track of sequences of trace identifiers, each identifier containing

multiple bits.  I propose a basic predictor and then add enhancements to reduce performance

losses due to cold starts, procedure call/return pairs, and interference due to aliasing in the

prediction table.
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5.1 Incorporating Next-Trace Prediction

5.1.1 The predictor drives the pipeline

The next-trace predictor observes the sequence of traces and attempts to learn the

behavior so that it can make accurate predictions.  It provides a stream of predictions that

drive the fetching of traces from the trace cache, which in turn drives the rest of the processor

(see Figure 5-2).  The predictor contains a tight feedback loop: based on the last prediction, it

makes the next prediction.  The predictor receives information from the other frontend

mechanisms to throttle it when the frontend pipeline is stalled or when the instruction

window is full.  The predictor also receives information from the backend pipeline regarding

whether or not a prediction was correct.

Instruction WindowTrace Cache

INSTRUCTION
FETCH/DECODE

PIPELINE

INSTRUCTION
EXECUTION

PIPELINE

Re-Order Buffer

INSTRUCTION
RETIREMENT

PIPELINE

NEXT-
TRACE

PREDICTOR Branch Mispredict
Recovery Path

Figure 5-2 Incorporating next-trace prediction.

Next-trace prediction (working with the trace cache) implicitly takes care of the

functions of identifying where control-transfer instructions are, what the targets of the

instructions are, and the direction of conditional branches.  In traditional processors there are

often two mechanisms, a predictor of conditional branches and a branch target buffer (BTB)

[54] for identifying branches and remembering their targets.
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5.1.2 Trace granularity vs. instruction granularity

Using trace-level granularity for control prediction affects the processor in a number of

ways.  Three of the most significant impacts are discussed in this section.  First, it matches

the control prediction bandwidth with the fetch bandwidth.  Second, it makes transitioning to

and from instruction granularity and trace granularity more difficult.  Finally, the control

prediction accuracy becomes dependent on trace selection heuristics.

Having the predictor work in the same units as the fetch mechanism matches the

bandwidth of the two steps.  If a multiple branch predictor is used, traces must be restricted to

containing a maximum number of branch instructions in order to guarantee that the predictor

can keep up with the fetching of traces.  This restriction is no longer needed if the predictor

uses traces.

A liability of the predictor working at trace granularity is that it increases the complexity

of transitioning between trace granularity and instruction granularity in the frontend.  The

frontend primarily works at trace granularity, but there are two circumstances when it needs

to transition to instruction granularity.  First, if the next-trace predictor can not generate a

valid prediction for the next trace, a trace must be generated at an instruction granularity.

Second, when a branch misprediction is detected in the middle of a trace, a valid alternate

trace with the same beginning must be generated at an instruction granularity.  The latter can

be mostly, but not completely, avoided with alternate trace prediction (see Section 5.7).  The

next-trace predictor does not provide information about individual branches, so a separate

branch predictor is needed to provide predictions for instruction granularity sequencing.
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There is no clean interface between the trace granularity predictor and instruction granularity

predictor to allow them to share information.  Transitioning back to the trace granularity

prediction can occur only at trace boundaries.

The performance of a predictor based on trace granularity sequencing is dependent on

the trace selection heuristic.  The average size of traces, determined by the selection heuristic,

affects the unit size of the predictor, which in turn affects its performance.  Less obvious, but

at least as important, is the issue of trace alignment.  As discussed in Section 2.2.1.1, there

can be multiple trace sequences for the same dynamic sequence of code depending on the

starting point of the first trace.  The alignment is a function of the code executed prior to the

region of code in question.  The alignment therefore contains some information about past

program behavior.  This information can potentially be useful to prediction, if there is a

correlation between the behavior that determined the alignment and the behavior of later

branches.  An example of useful alignment information is the case of a loop where the trace

alignment can implicitly encode some information regarding the iteration count of the loop.

This information can also be detrimental however, as the predictor must learn the same

dynamic path based on different alignments.

5.2 The Basics of Control Prediction

5.2.1 Fundamentals of prediction

Control predictors work by observing how branches have behaved in the past to predict

how they will behave in the future.  The simplest predictor maintains a table that records a
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branch’ s behavior the last time it was encountered and predicts that a branch will perform

similarly in the future.  There are two fundamental techniques to increase the accuracy of

prediction: hysteresis and correlation.

5.2.1.1 Hysteresis

Hysteresis is applied to mask rare or anomalous behavior.  If a branch has been

consistently behaving a certain way and is then observed behaving differently once, it may be

better to continue predicting the original behavior until it is clear that the branch is changing

its behavior.  Hysteresis is implemented by incorporating a saturating counter along with each

of the entries remembering previous branch behavior. When the prediction is correct the

counter is incremented.  When the prediction is not correct, the saturating counter is

decremented (it need not be incremented and decremented by the same amount).  In the case

that the prediction is not correct and the counter is at zero, the prediction is replaced.  The

degree of hysteresis is important.  Too much hysteresis and the predictor is slow to adapt to

new behavior; too little and the predictor gets confused by anomalous behavior.  A 1-bit or 2-

bit counter is often appropriate.  For predicting the direction of branches, the functionality of

having one bit to encode the direction of the branch and a 1-bit hysteresis counter are

combined into a single 2-bit saturating counter that counts the number of times a branch is

taken.

5.2.1.2 Correlation

Correlation increases prediction accuracy by making predictions based on more program

information, most commonly other branch information.  The predictor learns how a branch
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behaves for a number of different contexts and makes predictions specific to a context.  The

two most common types of correlation are local history and global history.  With local

history, the outcomes of the past few executions of an individual branch (or a small group of

branches) are remembered.  Predictions are based on how a branch has previously behaved

following the same specific sequence of outcomes.  Local history tends to exploit repetitive,

cyclical behavior.  With global history, the behavior of control instructions that occurred

previously in the dynamic instruction stream are remembered, and predictions are based on

the history observed for the same dynamic sequence.

There are many forms of correlation possible, but I will focus on global history.  Global

history predictors have been shown to have very good performance and have become the

standard approach for current high performance control predictors.

Correlation can significantly increase performance, as there are often recognizable

patterns in the behavior of programs.  In some cases though, correlation hurts performance.

The predictor must learn the behavior of a branch in many different contexts independently.

If the predictor has not seen a branch in a given context before, it can not make an informed

prediction, even though it may have seen the same branch in many other contexts.  This is a

significant liability, but there are ways around it.  Hybrid implementations, discussed later,

address the problem by reverting back to a simpler predictor when the correlated predictor

can not make an informed prediction.

A major issue in developing correlated predictors is the amount of information on which

to correlate.  In the case of local and global history predictors, this is the history length of
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previous branch outcomes.  Using more history increases the chances of including some

previous information with which the branch behavior is correlated.  But, using more history

also increases the number of cases the predictor must learn.  In the extreme case of infinitely

long histories, each case would be unique and the predictor would never have any prior

occurrences on which to base a prediction.  Determining the best overall history length

involves carefully balancing this tradeoff.

5.2.2 Implementing a predictor

Most work on predictors has focused on branch prediction.  In branch prediction the

predictor guesses if a conditional branch will be taken or not.  Consider a global history

branch predictor.  Ideally the predictor would be able to keep information for every branch,

based on every possible preceding dynamic path that led to the branch (considering dynamic

paths of some fixed distance).  This is obviously not practical as a predictor must be

implemented with limited resources and must use algorithms that can be implemented with

fast logic (one prediction per clock cycle).

There are a number of implementations of global history used for branch prediction

based on a common approach described by McFarling [31] (see Figure 5-3).  Like most

branch predictors they are built around a table of 2-bit counters (that implement the

functionality of encoding a prediction and one bit of hysteresis).  They keep the outcomes of

the previous N branches in a shift register and use this information along with the PC of the

current branch instruction to index a table and make a prediction.  The approaches use

different hash functions to combine the PC and the global branch outcomes to produce a
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fixed size index.  The hash function usually consists of some variation of concatenating and

combining (using an exclusive-or function) of the information, using a limited number of bits

from either source.
T

able of 2-bit countersHistory (Shift Register)
Hash
Funct

PREDICTION

PREVIOUS BRANCH OUTCOME

CURRENT BRANCH PC

Figure 5-3 Example global history branch predictor.

The history of previous branch outcomes is a good approximation of the dynamic

instruction sequence that led to the current branch.  It is a good approximation in that

different dynamic sequences tend to generate different history values.  It is not sufficient to

fully distinguish between all sequences.  If two taken branches have the same branch history

value at the time they are encountered and they have the same target, it is not possible to

differentiate which path was taken from the perspective of the next branch.  To be able to

uniquely distinguish paths, it would be necessary to record at least some intermediate

addresses along with, or instead of, branch outcomes.  This approach is referred to as a path-

based history scheme [36].  Even if all addresses were recorded in the history, the

information would have to be compacted down to form an index, and some information

would be lost.  This aliasing or interference problem is a significant problem for all

predictors.
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5.2.2.1 Aliasing

Predictors are built around limited sized tables that store information of past behavior.

These tables are usually in the range of 210 to 216 entries, which means they are indexed with

a 10- to 16-bit index.  The information used to identify the current branch and the history to

correlate on is usually many more bits (it takes more bits to even uniquely identify a branch).

The information is heavily compacted to form the index, and some information is lost.  This

leads to aliasing.

Aliasing occurs when two unrelated cases (branch and history combinations) reference

the same entry in the predictor table, because of the hashing function used to form the index.

This causes two problems.  First, predictions are made for a current branch based on

unrelated information on one or more other branches.  Second, the current branch updates the

information in the table, reducing the usefulness of the entry for other branch(es).

The more history that is used to correlate predictions, the more aliasing problems there

will be.  By using more history, each branch uses more entries in the table to differentiate

between different contexts.  The more total cases there are, the higher probability that any

two (or more) will reference the same entry.

5.3 Implementing Next-Trace Prediction

I consider predictors designed specifically to work with trace caches.  They predict traces

explicitly, and in doing so, implicitly predict the control instructions within the trace.  Next-

trace predictors replace the conventional branch predictor, branch target buffer (BTB) [54]
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and return address stack (RAS) [25].  They have low latency, and are capable of making a

trace prediction every cycle.  Next-trace predictors also offer accuracy comparable to the best

conventional correlated branch predictors.

5.3.1 Correlated predictor

The core of the next-trace predictor uses correlation based on the history of the previous

traces.  The identifiers of the previous few traces represent a path history that is used to form

an index into a prediction table (see Figure 5-4).  Each entry in the table consists of the

identifier of the predicted trace (PC and branch outcomes), and a 1-bit counter for hysteresis.

When a prediction is correct the counter is set to one.  When a prediction is incorrect and the

counter is zero, the predicted trace will be replaced with the actual trace.  Otherwise, the

counter is set to zero.

HISTORY REGISTER

TABLE

Predicted
Trace ID

Index
Trace ID cnt

Hashed ID Hashed ID Hashed ID Hashed ID

Index
Generation

Hashing
Function

Figure 5-4 Correlated predictor.

Path history is maintained as a shift register that contains 16-bit hashed trace identifiers

(Figure 5-4).  The hashing function combines the trace starting address and branch outcomes

(both encoded in the trace identifier) into a condensed encoding (see Figure 5-5).  The



171

hashing function uses the outcome of the first two conditional branches in the trace identifier

as the least significant two bits, the two least significant bits of the starting PC as the next

two bits, the upper bits are formed by taking the outcomes of additional conditional branch

outcomes and exclusive-oring them with the next least significant bits of the starting PC.

Beyond the last conditional branch a value of zero is used for any remaining branch outcome

bits.

STARTING ADDRESS

BRANCH OUTCOMES

6 5 4 3 2 1lsbmsb

XOR

TRACE CACHE INDEX

Figure 5-5 Hashing function.

The history register is updated speculatively with each new prediction.  In the case of an

incorrect prediction, the history is backed up to the state before the bad prediction.  The

prediction table is updated only after the last instruction of a trace is retired (it is not

speculatively updated).

Ideally the index generation mechanism would simply concatenate the hashed identifiers

from the history register to form the index.  This is not practical because the prediction table

is relatively small so the index must be restricted to a limited number of bits.

The index generation mechanism is based on the method developed by Bennett, Sharma,

Smith and myself to do inter-task prediction for multiscalar processors [22].  The index
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generation mechanism uses a few bits from each of the hashed trace identifiers to form an

index.  The low order bits of the hashed trace identifiers are used.  More bits are used from

more recent traces.  The collection of selected bits from all the traces may be longer than the

allowable index, in which case the collection of bits is folded over onto itself using an

exclusive-or function to form the index.  The “ DOLC”  naming convention [22] was

developed for specifying the specific parameters of the index generation mechanism.  The

first variable, ‘D’ epth, is the number of traces besides the last trace that are used for forming

the index.  The other three variables are: number of bits from ‘O’ lder traces, number of bits

from the ‘L’ ast trace and the number of bits from the ‘C’ urrent trace.  In the example shown

in Figure 5-6 the collection of bits from the trace identifiers is twice as long as the index, so it

is folded in half and the two halves are combined with an exclusive-or.  In other cases the bits

may be folded into three parts, or may not need to be folded at all.

D

INDEX

Current ID

C bits

1 back ID

L bits

2 back ID

O bits

3 back ID

O bits

D back ID

O bits

XOR

Width bits

Width bits

Width bits

Figure 5-6 Index generation mechanism.

Choosing an appropriate DOLC configuration is a combination of “ art and science.”   I

have discovered a few heuristics through experimentation and experience.  There are a couple

important, but not immediately obvious, requirements of a good configuration.  Values
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should be chosen so that when the folding is done, none of the trace identifiers line up in the

same bit position.  That is, when the index is folded the least significant bit of one ID should

never be combined with a non-least significant bit of another ID.  Values should be chosen so

that an ID is never folded with itself.  There is always the tradeoff of wanting more bits from

each ID and wanting to use as little folding as possible.  Determining a good tradeoff point is

basically trial and error directed by some intuitive feel.  I will present some good

configurations in the results sections which show trends in their organization.

5.3.2 Hybrid predictor

If the index into the prediction table addresses an entry that is unrelated to the current

path history the prediction will almost certainly be incorrect.  This can occur when the

particular path has never occurred before, or because the table entry has been overwritten by

unrelated path history due to aliasing.  We have observed that both are significant, but for

realistically sized tables aliasing is usually more important.  In branch prediction, even a

randomly selected table entry typically has about a 50% chance of being correct, but in the

case of next-trace prediction the chances of being correct with a random table entry is very

low.

To address this issue we operate a second, simpler predictor in parallel with the first

(Figure 5-7).  The secondary predictor requires a shorter learning time and suffers less

aliasing pressure.  The secondary predictor uses only the hashed identifier of the last trace to

index its table.  The prediction table entry is similar to the one for the correlated predictor
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except a 4-bit saturating counter is used.  The counter is incremented by one for correct

predictions and decremented by 8 for incorrect predictions.

CORRELATING TABLE

HISTORY REGISTER

SECONDARY TABLE

Prediction

Trace ID cnt

Hashed ID Hashed ID Hashed ID Hashed ID

Index
Generation Trace ID cnt Tag

Hashing
Function

==

Figure 5-7 Hybrid predictor.

The larger counter is used to enable the detection of very consistent behavior.

Identifying very consistent behavior is used for an optimization to reduce aliasing in the

correlated predictor discussed at the end of this section.  If the counter saturates, the same

behavior must have been observed at least 15 times.  Decrementing by 8 means that for the

counter to saturate the same behavior must have been observed for at least 8 consecutive

times.  Decrementing by 8 also allows the predictor to adjust to changing behavior quickly, at

least as quickly as a 2-bit hysteresis counter with normal increment and decrement.

To decide which predictor to use for any given prediction, a tag is added to the table

entry in the correlated predictor.  The tag is set with the low 10 bits of the hashed identifier of
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the immediately preceding trace at the time the entry is updated.  A 10-bit tag is sufficient to

eliminate practically all unintended aliasing (the longer the tag the less likely undetected

aliasing will occur, but the more space that is required by the predictor).  When a prediction

is being made, the tag is checked against the hashed identifier of the preceding trace, if they

match, the correlated predictor is used; otherwise the secondary predictor is used.  This

method increases the likelihood that the correlated predictor corresponds to the correct

context when it is used.  This method also allows the secondary table to make a prediction

when the context is very limited, i.e., under startup conditions.

The hybrid configuration enables the processor to tolerate aliasing pressure, and by

modifying it slightly, the configuration can actually reduce aliasing pressure.  If the 4-bit

counter of the secondary predictor is saturated, its prediction is used, and more importantly,

when it is correct the correlated predictor is not updated.  This means if a trace is always

followed by the same successor, the secondary predictor captures this behavior and the

correlated predictor is not polluted.  This reduces the number of updates to the correlated

predictor and therefore the chances of aliasing.  The relatively large counter, 4-bits, is used to

avoid giving up the opportunity to use the correlated predictor unless there is high probability

that a trace always has the same successor.

5.3.3 Return history stack (RHS)

The accuracy of the predictor is further increased by a new mechanism, the return history

stack (RHS).  A field is added to each trace indicating the number of calls it contains.  If the

trace ends in a return, the number of calls is decremented by one.  After the path history is
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updated, if there are any calls in the new trace, a copy of the most recent history is made for

each call and these copies are pushed onto a special hardware stack.  When there is a trace

that ends in a return and contains no calls, the top of the stack is popped and is substituted for

part of the history.  The most recent entries from the current history within the subroutine are

preserved, and the entries from the stack replace the remaining older entries of the history.

HISTORY STACK

HISTORY REGISTER
hashed ID hashed ID hashed ID hashed ID

PUSHPOP

Figure 5-8 Return history stack implementation.

With the RHS, after a subroutine is called and has returned, the history contains

information about what happened before the call, as well as knowledge of the last trace of the

subroutine (see Figure 5-9).  The RHS can significantly increase overall predictor accuracy.

The reason for the increased accuracy is that control flow in a program after a subroutine is

often tightly correlated to behavior before the call.  Without the RHS the information before

the call is often overwritten by the control flow within a subroutine.  There is a tradeoff of

how much information to use from before the call versus how much information to use from

within the call.  For different benchmarks the optimal point varies.  I found that

configurations using one entry from the subroutine provide consistently good behavior.
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Figure 5-9 Examples of how a RHS works.

The next-trace predictor does not use a return address stack (RAS) [25], because it would

require information on an instruction level granularity (individual target addresses), which the

trace predictor is trying to avoid.  The RHS can partly compensate for the absence of the RAS

by helping in the initial prediction after a return.  If a subroutine is significantly long it will

force any pre-call information out of the history register.  Hence, determining the calling

routine, and therefore where to return, would be much harder without the RHS.

5.4 Performance with Unbounded Tables

This section presents quantitative results to demonstrate the potential performance of

next-trace prediction.  The SPECint95 benchmarks are used for the quantitative analysis.

Corresponding results for the SPECfp95 benchmarks are given in Appendix A.
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5.4.1 Performance potential of next-trace prediction without RHS

To determine the potential of next-trace prediction, an ideal implementation is

considered.  This is an implementation with unbounded storage and no aliasing, where each

unique sequence of traces has its own entry to remember pervious occurrences.  Each entry of

the predictor consists of a prediction and a one-bit counter for hysteresis.  Three different

configurations of predictors are studied:

1. A predictor that always uses the maximum history length.  If the exact sequence of traces
has not been observed before, the predictor will have a compulsory miss.

2. A predictor that uses an optimal history length.  It will match the longest history length it
can, up to the maximum length, to provide a valid prediction.  It only has compulsory
misses after a new trace is observed.

3. A hybrid predictor that chooses between using the maximum history length or a history
length of one.  The maximum history length is used if it is valid and otherwise the short
history length is used.  This is a more realistic predictor to implement than the optimal
history length, but provides much of the same benefit.

The prediction accuracy of the ideal predictors for length 16 traces is shown in Figure

5-10 through Figure 5-17.  The graphs show the overall prediction accuracy, given in

mispredictions per 1000 instructions for each of the three predictor configurations as a

function of the maximum history length.  The number of compulsory mispredictions

observed for each configuration is also given (the optimal length and hybrid configurations

have the same compulsory misprediction rate).

For all the benchmarks except gcc, go and ijpeg, the three predictor configurations

perform comparably.  For these benchmarks the number of compulsory mispredictions are

insignificant.  The prediction accuracy tends to increase (the number of mispredictions
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decrease) for longer history lengths.  This suggests that the path taken next is correlated with

the path taken previously.  The benefit of increasing the history length tends to decrease for

longer history lengths.

For the benchmarks gcc and go, and to a lesser extent ijpeg, the number of compulsory

mispredictions is significant for the predictor that always uses the maximum history length.

The number of compulsory mispredictions grows substantially for longer history lengths, as

there are more potential sequences.  This causes the overall prediction accuracy of the

maximum history length predictor to decrease (the number of mispredictions increase) after

some history length.  This demonstrates the tradeoff of correlation, where more information

can be useful to make a prediction, but also leads to more unique cases to learn.  The

tradeoffs for correlation are even more pronounced when finite table sizes are used and

aliasing becomes a significant issue.

The optimal history length configuration and the hybrid configuration enable the

predictor to avoid most of the compulsory mispredictions for the benchmarks gcc, go and

ijpeg. The benefit of these configurations becomes more important for longer maximum

history lengths.  By using these configurations, the overall prediction accuracy continues to

go down as the maximum history length is increased.  The hybrid configuration is able to

perform nearly as well as the optimal history length configuration, although some deviation is

seen for long maximum history lengths.
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Figure 5-10 Prediction accuracy without RHS for compress with length 16 traces.
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Figure 5-11 Prediction accuracy without RHS for gcc with length 16 traces.
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GO (Trace16 Predictor) 
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Figure 5-12 Prediction accuracy without RHS for go with length 16 traces.

IJPEG (Trace16 Predictor) 
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Figure 5-13 Prediction accuracy without RHS for ijpeg with length 16 traces.
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LI (Trace16 Predictor) 
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Figure 5-14 Prediction accuracy without RHS for li with length 16 traces.

M88KSIM (Trace16 Predictor) 
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Figure 5-15 Prediction accuracy without RHS for m88ksim with length 16 traces.
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PERL (Trace16 Predictor) 
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Figure 5-16 Prediction accuracy without RHS for perl with length 16 traces.

VORTEX (Trace16 Predictor) 
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Figure 5-17 Prediction accuracy without RHS for vortex with length 16 traces.
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Similar behavior is seen for length 32 traces as compared with length 16 traces (refer to

Figure 5-18 through Figure 5-25).  Length 32 traces are on average longer than length 16

traces, however they are approximately 50% longer rather than twice as long due to the trace

selection heuristics.  With length 32 traces there is more path information encoded in each

trace, so there is more information in a history with the same number of traces as compared

with length 16 traces.  For very long histories, some of the benchmarks that did not observe

significant compulsory mispredictions for length 16 traces see an increase for length 32

traces.
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Figure 5-18 Prediction accuracy without RHS for compress with length 32 traces.
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Figure 5-19 Prediction accuracy without RHS for gcc with length 32 traces.
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Figure 5-20 Prediction accuracy without RHS for go with length 32 traces.
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IJPEG (Trace32 Predictor) 
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Figure 5-21 Prediction accuracy without RHS for ijpeg with length 32 traces.
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Figure 5-22 Prediction accuracy without RHS for li with length 32 traces.
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M88KSIM (Trace32 Predictor) 
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Figure 5-23 Prediction accuracy without RHS for m88ksim with length 32 traces.
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Figure 5-24 Prediction accuracy without RHS for perl with length 32 traces.
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VORTEX (Trace32 Predictor) 
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Figure 5-25 Prediction accuracy without RHS for vortex with length 32 traces.

5.4.2 Performance potential of next-trace prediction with RHS

A return history stack (RHS) can increase the performance of a correlated predictor

based on global history if conditional branches after a subroutine are better correlated on

history before the subroutine call than history within the subroutine.  Individual branches

within an application behave differently and are correlated on different information and the

distribution of branches is different between applications.  But, in general, a RHS increases

prediction accuracy.

Figure 5-26 through Figure 5-33 show the performance of different RHS configurations

for each of the benchmarks for length 16 traces.  The configurations correspond to how much

history from the subroutine (in terms of the number of traces) is preserved; the rest of the

information from the subroutine is discarded so that more history from before the subroutine
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call can be used.  The predictor used is a hybrid predictor (one correlated predictor and one

simple predictor) with the RHS applied to the history of the correlated predictor.  The results

for length 32 traces are very similar and were therefore not included.

Most of the benchmarks see a notable benefit from the RHS.  vortex in particular sees a

very substantial reduction in mispredictions, up to 90%, from the RHS.  Other benchmarks

see smaller but still significant reduction in mispredictions, with an overall average reduction

in mispredict rate of 13% (with a harmonic mean of 4%).  The benchmarks compress and li

experience very small increases in mispredictions at longer history depths from the RHS.  In

general a RHS that preserves only the last trace from the subroutine (RHS 1) performs as well

or better than other RHS configurations.
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Figure 5-26 Effect of adding a RHS for compress.
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Figure 5-27 Effect of adding a RHS for gcc.
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Figure 5-28 Effect of adding a RHS for go.
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IJPEG (Hybrid Trace16 Predictor)
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Figure 5-29 Effect of adding a RHS for ijpeg.

LI (Hybrid Trace16 Predictor)

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

History Depth (Traces)

M
is

p
re

d
ic

ts
 p

er
 1

00
0 

In
sn

s

No RHS RHS (1)

RHS (2) RHS (3)

RHS (4) RHS (5)

RHS (6) RHS (7)

Figure 5-30 Effect of adding a RHS for li.
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M88KSIM (Hybrid Trace16 Predictor)
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Figure 5-31 Effect of adding a RHS for m88ksim.
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Figure 5-32 Effect of adding a RHS for perl.
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VORTEX (Hybrid Trace16 Predictor)
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Figure 5-33 Effect of adding a RHS for vortex.

The RHS can improve performance for any global history predictor.  The performance

improvement is more substantial for the next-trace predictor because it helps compensate for

the absence of an RAS (see Section 5.3.3).  Even for a conventional branch predictor, the

RHS increases the prediction accuracy notably.  Figure 5-34 and Figure 5-35 show the benefit

of adding a RHS to an ideal (no aliasing) correlated branch predictor for the benchmarks gcc

and vortex respectively (two of the benchmarks that see the most benefit from a RHS).  The

behavior for the branch predictor is similar to the behavior of the next-trace predictor, with

the difference being the magnitude of the penalty for not using a RHS.
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Figure 5-34 Branch prediction with a RHS for gcc.

VORTEX (Hybrid Branch Predictor)
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Figure 5-35 Branch prediction with a RHS for vortex.
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5.4.3 Comparison of next-trace prediction with branch prediction

An important issue is how next-trace prediction compares to multiple-branch prediction.

In the previous section I demonstrated the performance potential of the next-trace predictor.

But, how does it compare with what a more traditional branch predictor can achieve?  In this

section I address this issue and discuss why the performance differs.

To avoid having implementation decisions overshadow the fundamental differences,

ideal implementations are considered for the next-trace predictor and the branch predictor.

The next-trace predictor is the hybrid (a correlated predictor and a simple predictor)

discussed in the previous section.  The branch predictor is a similar predictor that uses a

history of the previous few conditional branches, the address and outcome of the branch,

along with the address of the current branch to reference a unique entry that consists of a 2-

bit counter.  This is the most ideal branch predictor that can be constructed based on global

history.  The branch predictor is also a hybrid configuration that uses a correlated predictor

and a simple predictor that is used when the correlated predictor does not have a valid entry.

Both the next-trace predictor and the branch predictor have a RHS for the correlated

predictor.  The results for the best RHS configuration are given for each history depth.

The branch predictor is assumed to have a perfect branch target predictor, even for the

targets of indirect branches and returns, which is optimistic.  The next-trace predictor

implements the true target prediction as part of its operation.

A comparison of a branch predictor, a next-trace predictor for length 16 traces and a

next-trace predictor for length 32 traces is given in Figure 5-36 through Figure 5-43.  The
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results are presented in mispredictions per 1000 instructions as a function of the average

history length.  The average history length is the number of branches in the history multiplied

by the average distance between branches, or the number of traces in the history multiplied by

the average trace length.

The most important thing to observe from the results is that the performance is very

comparable for branch prediction and next-trace prediction.  Next-trace prediction offers the

advantages of providing the bandwidth of control predictions needed for the trace cache with

a low latency.  If there are no significant penalties for using it, as compared with branch

prediction, these benefits make it attractive to use with a trace cache.
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Figure 5-36 Comparisons of predictors for compress.
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Figure 5-37 Comparisons of predictors for gcc.
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Figure 5-38 Comparisons of predictors for go.
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IJPEG
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Figure 5-39 Comparisons of predictors for ijpeg.
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Figure 5-40 Comparisons of predictors for li.
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M88KSIM
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Figure 5-41 Comparisons of predictors for m88ksim.
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Figure 5-42 Comparisons of predictors for perl.
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Figure 5-43 Comparisons of predictors for vortex.

The difference in performance between next-trace prediction and branch prediction is

due to three reasons.  First, trace granularity prediction is affected by trace alignment.  The

trace alignment provides some implicit information about what may have occurred prior to

the region of code currently encoded in the history register (see Section 5.1.2).  Second, the

next-trace predictor implements target prediction for all control-transfer instructions as part

of its normal operation, while the branch predictor is modeled with perfect branch target

prediction.  Finally, there is the issue of comparing statistics that are not entirely equivalent.

A trace may include multiple conditional branches and if any or all of these conditional

branches are mispredicted it counts as a single trace misprediction.  This means that a single

trace misprediction may correspond to multiple branch mispredictions in some cases.
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Only in one benchmark, vortex, does next-trace prediction perform substantially worse

than branch prediction.  The performance of real branch target predictors tends to be very

good, so the impact of real versus ideal target prediction is most likely minimal.  This means

that the reason for the lower performance of next-trace prediction is that the implicit

information from trace alignment is detrimental to the predictor’ s performance for this

benchmark.

For four of the benchmarks, gcc, li, m88ksim and perl, the performance of the next-trace

predictors and branch predictor are all similar.  We see that in these cases, trace granularity

prediction is roughly equivalent to branch granularity prediction.

For the three other benchmarks, compress, go and ijpeg, the next-trace predictors

perform significantly better than branch prediction.  Also, for these benchmarks the next-

trace predictor performs significantly better for length 32 traces than for length 16 traces.

The differences between the predictors for these benchmarks are likely due to both the

implicit information of the trace alignment and the difference in statistics, with the latter

being more important.  The extra information provided by trace alignment can be helpful, but

there should not be a substantial difference in the amount of alignment information encoded

in length 16 and length 32 traces.  Trace selection includes a heuristic to limit traces to one of

four alignments  (for either 16 or 32 length traces) when entering a subroutine, entering a new

loop iteration or exiting a loop.  This trace selection will limit the amount of information that

exists in the trace alignment, and make the amount of information comparable regardless of

the trace length.  The larger factor in the difference in performance is most likely that

unpredictable branches are clustered and a single trace misprediction is occasionally
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encompassing multiple branch mispredictions, with the longer traces encompassing more

branches on average.

5.5 Performance for Realistic Implementations

This section quantitatively examines the performance of realistic implementations of

next-trace prediction.  Results are presented for all of the SPECint95 benchmarks.

Corresponding results for the SEPCfp95 benchmarks are presented in Appendix A.

5.5.1 Prediction accuracy of next-trace prediction

In this section the performance of realistic implementations of next-trace predictors are

explored.  These implementations are based on the design proposed in Section 5.3.  The

realistic implementations are compared against the performance of the ideal implementation

discussed in the previous section (section 5.4).

The realistic predictor is a hybrid predictor with a correlated predictor and a simple

predictor.  Various table sizes are considered for the correlated predictor, from 214 entries to

216 entries.  The table of the simple predictor is 215 entries (enough to nearly hold all the

traces for any of the benchmarks).  This table could be significantly smaller and still give

comparable performance due to temporal locality.  The predictor has a RHS that preserves

the last trace from a subroutine when restoring the history.

The index generation functions used to implement the realistic predictor configurations

are configurations that have been observed to perform well, but are not necessarily optimal.

The configurations used are listed in Table 5-1.
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The performance of the realistic predictor configurations is shown in Figure 5-44

through Figure 5-50 for length 16 traces and Figure 5-51 through Figure 5-59 for length 32

traces.  In most cases the realistic implementations perform nearly identically to the

corresponding ideal implementations.  There are a few points with unexpected degradation as

compared to the ideal implementation that are likely due to aliasing problems caused by the

specific index generation function for that benchmark.

The two benchmarks gcc and go see consistent degradation of the realistic

implementations as compared with the corresponding ideal implementations.  There are also

significant differences between the different sizes of correlated predictors.  These two

benchmarks have significantly more unique traces and more combinations of traces (as can

be seen in the number of compulsory misses for the max length predictor in Figure 5-19 and

Figure 5-20) than the other benchmarks.  The table of the correlated predictor is therefore too

small to remember all the cases and aliasing becomes a significant problem.  The smaller the

predictor the worse the problem.  The competition for space in the table causes the

performance to degrade for history lengths beyond eight.
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Figure 5-44 Performance of realistic predictor for compress with length 16 traces.

GCC (Length 16 Traces) 

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

History Depth (Traces)

M
is

p
re

d
ic

ts
 p

er
 1

00
0 

In
sn

s

Ideal

2^14 entry

2^15 entry

2^16 entry

Figure 5-45 Performance of realistic predictor for gcc with length 16 traces.
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Figure 5-46 Performance of realistic predictor for go with length 16 traces.
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Figure 5-47 Performance of realistic predictor for ijpeg with length 16 traces.
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Figure 5-48 Performance of realistic predictor for li with length 16 traces.
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Figure 5-49 Performance of realistic predictor for m88ksim with length 16 traces.
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Figure 5-50 Performance of realistic predictor for perl with length 16 traces.
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Figure 5-51 Performance of realistic predictor for vortex with length 16 traces.
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Figure 5-52 Performance of realistic predictor for compress with length 32 traces.
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Figure 5-53 Performance of realistic predictor for gcc with length 32 traces.
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Figure 5-54 Performance of realistic predictor for go with length 32 traces.
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Figure 5-55 Performance of realistic predictor for ijpeg with length 32 traces.
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Figure 5-56 Performance of realistic predictor for li with length 32 traces.
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Figure 5-57 Performance of realistic predictor for m88ksim with length 32 traces.



211

PERL (Length 32 Traces) 

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

History Depth (Traces)

M
is

p
re

d
ic

ts
 p

er
 1

00
0 

In
sn

s

Ideal

2^14 entry

2^15 entry

2^16 entry

Figure 5-58 Performance of realistic predictor for perl with length 32 traces.
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Figure 5-59 Performance of realistic predictor for vortex with length 32 traces.
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Table 5-1 Index generation configurations used

Configuration given as: D-O-L-C (number of parts for folding)
Depth 14-bit Index 15-bit Index 16-bit Index

0 0-0-0-14 (1 part) 0-0-0-15 (1 part) 0-0-0-16 (1 part)
1 1-0-6-8 (1 part) 1-0-7-8 (1 part) 1-0-7-9 (1 part)
3 3-5-7-11 (2 parts) 3-5-8-12 (2 parts) 3-5-9-13 (2 parts)
5 5-3-6-10 (2 parts) 5-4-5-9 (2 parts) 5-5-5-7 (2 parts)
7 7-4-7-11 (3 parts) 7-4-9-12 (3 parts) 7-5-7-11 (3 parts)
9 9-3-7-11 (3 parts) 9-3-9-12 (3 parts) 9-4-7-9 (3 parts)

5.5.2 Impact of delayed updates

Thus far simulation results have used immediate updates.  In a real processor the history

register will be updated with each predicted trace, and the history will be corrected when the

predictor backs up due to a misprediction.  The table entry will not be updated until the last

instruction of a trace has retired.

To make sure this does not make a significant impact on prediction accuracy, I ran a set

of simulations with the detailed cycle simulator.  The predictor being modeled has 216 entries

and a 7-3-6-8 DOLC configuration (the configuration used for all the timing results in this

thesis).  Table 4 shows the impact of delayed updates, and it is apparent that delayed updates

are not significant to the performance of the predictor.  For all the benchmark except

compress the difference was less than 1%.  compress suffers the largest degradation for real

updates, but the difference is only 4% as compared to ideal updates.  For compress, small

loops cause the same sequences to be seen in close proximity, leading to this sensitivity.  In

one case, li, the delayed updates actually increase prediction accuracy a small amount.

Delayed updates have the effect of increasing the hysteresis in the prediction table which in

some cases can increase performance.
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Table 5-2 Impact of real updates

Benchmark Mispredicts
with ideal updates

(per 1000 instructions)

Mispredicts
with real update

(per 1000 instructions)

Difference

compress 11.8 12.3 4%
gcc 6.08 6.12 0.7%
go 10.9 10.9 0%

ijpeg 8.08 8.10 0.3%
li 6.50 6.49 -0.2%

m88ksim 0.07 0.07 0%
perl 3.85 4.04 5%

vortex 0.83 0.83 0%

5.6 A Cost-Reduced  Predictor

The cost of the proposed predictor is primarily a function of the predictor’ s table sizes

(most likely the correlated prediction table will be much larger than the simple prediction

table).  The size of each table is the number of entries multiplied by the size of an entry.  The

entry size of the correlated predictor is 47 bits: 36 bits to encode a trace identifier, one bit for

the counter plus 10 bits for the tag.  A smaller tag can be used with minimal degradation in

performance, however area savings are minimal as long as the trace identifier is large.

A much less expensive predictor can be constructed, however, by observing that before

the trace cache can be accessed, the trace identifier read from the prediction table must be

hashed to form a trace cache index.  For practical sized trace caches this index will be in the

range of 10 bits.  Rather than storing the full trace identifier, the hashed cache index can be

stored in the predictor’ s tables, instead.  That is, the hashing function can be moved to the

input side of the prediction table to hash the trace identifier before it is placed into the table.

This modification should not affect prediction accuracy significantly and reduces the size of
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the trace identifier field from 36 bits to 10 bits.  The full trace identifier is still stored in the

trace cache as part of its entry and is read out as part of the trace cache access.  The full trace

identifier is used during execution to validate that the control flow implied by the trace is

correct.  This cost-reduced implementation is comparable in size to the multi-branch

predictor proposed by Patel et al. [40].

The cost-reduced predictor should perform nearly as well as the full implementation.  As

long as the needed traces are in the trace cache, the behavior of the cost-reduced predictor is

functionally equivalent to the full implementation.  There are three problems with the cost-

reduced predictor in the event that trace it references has been replaced in the trace cache.

First, the cost-reduced predictor may delay the processor from recognizing the event until it is

detected as a control misprediction.  Second, the prediction will be incorrect if a trace is

evicted from a set-associative trace cache and brought back to a different way in the set.

Third, if the processor can detect that the trace is not in the trace cache, the predictor can not

provide branch predictions to the slow path for generating the trace.  All three of these

problems can be addressed with some minor changes to the cost-reduced predictor, discussed

below.

An improved implementation of the cost-reduced predictor stores the outcome of the

trace’ s embedded branches along with the trace cache index (this only increases the size of

the entry by a few bits).  The outcomes can be used as a partial tag to detect most cases of the

predictor referencing a trace that had been replaced in the trace cache.  The outcomes can be

used to perform the way select for a set-associative trace cache.  The outcomes can also be

used to direct the fetching of the slow path in the case of a trace cache miss.
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Another enhancement of the cost-reduced predictor can help in detecting trace cache

misses and performing way selection.  This enhancement can be applied in addition to, or

instead of, adding the outcome of embedded branches to the predictor entries.  The

enhancement is to add two fields to each entry of the trace cache, to hold valid starting

addresses for subsequent traces (this would have a small impact on the overall size of the

trace cache).  Two fields would be sufficient for traces that end in any instruction other than

an indirect jump (in the case of indirect jumps, any address would be considered valid).  The

valid starting address information can be used for both detecting most cases of the predictor

referencing a trace that had been replaced in the trace cache, and for performing way

selection.

With these optimizations, the cost-reduced implementation should perform almost

identically to the full implementation, while still requiring considerably less area.  Additional

enhancements to the cost-reduced predictor could further help the performance.  This is an

area for future work.

5.7 Predicting an Alternate Trace

Along with predicting the next trace, an alternate trace can be predicted at the same time.

This alternate trace can simplify and reduce the latency for recovering when a primary

prediction is incorrect.  In some implementations, this may allow the processor to find and

fetch an alternate trace instead of resorting to building a trace from scratch.
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Alternate trace prediction is implemented by adding another field to the correlated

predictor.  The new field contains the identifier of the alternate prediction.  When the

prediction of the correlated predictor is incorrect the alternate prediction field is updated, as

follows.  If the saturating counter is zero the identifier in the prediction field is moved to the

alternate field and the prediction field is updated with the actual outcome.  If the saturating

counter is non-zero the identifier of the actual outcome is written into the alternate field.

Figure 5-60 and Figure 5-61 show the performance of the alternate trace prediction for

the two representative benchmarks compress and gcc.  The graphs show the misprediction

rate of the primary prediction as well as the rate at which both the primary and alternate are

incorrect.  The results presented are for length 16 traces using a hybrid predictor with a 216

entry correlated predictor based on the configurations in Table 5-1.  A large percent of the

mispredictions by the primary prediction are caught by the alternate prediction.  For

compress, two thirds of the mispredictions are caught by the alternate, for gcc it is slightly

less than half.  It is notable that for alternate prediction the aliasing effect quickly dominates

the benefit of more history because it does not require as much history to make a prediction

of the two most likely traces, so the benefit of more history is significantly smaller.

There are two reasons alternate trace prediction works well.  First, there are cases where

some branch is not heavily biased; there may be two traces with similar likelihood.  Second,

when there are two sequences of traces aliased to the same prediction entry, as one sequence

displaces the other, it moves the other’ s likely prediction to the alternate slot.  When a

prediction is made for the displaced sequence of traces, and the secondary predictor is wrong,

the alternate is likely to be correct.
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Figure 5-60 Performance of alternate trace prediction for compress.
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Figure 5-61 Performance of alternate trace prediction for gcc.
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Chapter 6
Conclusion

The trace processor microarchitecture addresses a number of factors that are likely to

become limitations for traditional superscalar architectures.  The trace cache enables the

processor to work in units of traces of instructions, instead of individual instructions or basic

blocks of instructions.  This enables high bandwidth frontends and backends to be

constructed with a minimal amount of complexity and latency.

In this thesis I have proposed three mechanisms (trace pre-construction, instruction pre-

processing and next-trace prediction) that work with the trace cache.  Together with the trace

cache, these mechanisms produce a high-performance frontend for trace processors.  This

frontend provides high instruction fetch bandwidth and also enables dynamic optimization of

the instruction stream to expose more parallelism to the backend.  The trace cache is used to

decouple most of the complexity of these new mechanisms from the main processor core, in

an extended pipeline organization.

This thesis introduces the concept of trace pre-construction to increase the performance

of trace caches.  The pre-construction mechanism sequences ahead of the processor and

constructs potentially useful traces from the static program representation.  Pre-construction

reduced the trace cache miss rate for all of the SPECint95 benchmarks except compress

(which sees a slight increase in miss rate).  The average reduction in trace cache miss rate
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was 39% (excluding compress).  An important side effect of pre-construction is that it also

prefetches lines in the instruction cache.  By reducing trace cache and instruction cache

misses, pre-construction produces an average speedup of 3%, and individual speedups up to

10% for applications with poor trace cache performance.  The performance improvement is

more substantial when pre-construction is applied in conjunction with pre-processing or other

optimizations that increase the performance of the execution engine.

Pre-construction addresses the weakness of the trace cache to compulsory and capacity

misses caused by the dynamic nature of traces.  This thesis has shown that the more an

application stresses the trace cache, the more benefits pre-construction can provide.  I believe

that pre-construction is necessary to enable the trace cache to scale to large real world

applications that are often much larger than the SPEC benchmarks and stress the instruction

fetch mechanism much more.

The implementation of pre-construction presented in this thesis represents a first attempt

to perform this task.  There are many ways in which pre-construction could potentially be

improved (from fundamentally changing the heuristics used to stay ahead of the processor to

minor changes in the way highly-biased branches are identified).  I expect that future work,

by myself and others, will continue to refine pre-construction.  In the future, pre-construction

may cease to augment the trace cache and instead replace it as the primary source for

providing instructions to the processor’ s fetch mechanism.  This would enable a small pre-

construction buffer to replace the trace cache, significantly reducing the area required to

implement a trace processor frontend.
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This thesis has shown how the trace cache can enable a new range of dynamic

optimizations.  These optimizations take advantage of the intermediate program

representation encoded in traces.  The instructions within traces are pre-processed to optimize

them for execution as a group and to optimize for implementation-specific hardware.  Three

specific optimizations are studied: instruction scheduling, constant propagation and

instruction collapsing.  Together, these optimizations produced an average speedup of 11%.

The specific pre-processing optimizations presented in this thesis are secondary in

importance to the general framework that was used to implement them.  This framework

enables sophisticated optimizations to be incorporated with minimal impact on the main

processor core.  Potential future work includes developing new optimizations within this

framework, as well as using this framework to implement previously proposed optimizations

more efficiently.  Another area of future work is explicitly getting an optimizing compiler

and the pre-processing mechanism to work cooperatively to implement optimizations.

This thesis has shown that a predictor can be constructed that treats traces as basic units

and explicitly predicts sequences of traces.  A next-trace predictor collects histories of trace

sequences and makes predictions based on these histories.  The basic predictor can be

enhanced to reduce performance losses due to cold starts, procedure call/return pairs, and

interference in the predictor table.  The predictor can achieve performance comparable to the

best performance a traditional branch predictor can achieve, and significantly better than

previous multiple-branch predictors have been able to achieve.  The throughput of the next-

trace predictor is also matched with the high fetch bandwidth of a trace cache.
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The next-trace predictor is appealing, but the size of the predictor structures may be

prohibitive.  A cost-reduced implementation is proposed in this thesis that address this issue.

Future work is needed to evaluate the performance of the cost-reduced implementation and to

determine how to enable it to achieve performance comparable to the full implementation.

The future of the trace cache looks promising, but is not certain.  Before final

determination can be made, it is important to study the potential benefits offered by trace

caches.  Pre-construction and pre-processing together produce average speedup of 14%.

With the introduction of pre-construction, pre-processing and other optimizations that take

advantage of the trace cache, the trace cache becomes a more compelling microarchitectural

feature.
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