
Selective Dual Path Execution Technical Report November 8, 1996 1

Selective Dual Path Execution
Timothy H. Heil James. E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin - Madison

November 8, 1996

Abstract

Selective Dual Path Execution (SDPE) reduces branch misprediction penalties by selec-
tively forking a second path and executing instructions from both paths following a condi-
tional branch instruction. SDPE restricts the number of simultaneously executed paths to
two, and uses a branch prediction confidence mechanism to fork selectively only for
branches that are more likely to be mispredicted. A branch forking policy defines the
behavior of SDPE when a low confidence branch prediction is encountered while two
paths are already being executed.

Trace driven simulation is used to evaluate the effectiveness of SDPE with three different
forking policies. SDPE can reduce the cycles lost to branch mispredictions by 34 to 50%,
resulting in an approximate 10% reduction in overall execution time. However, it is shown
that both branch mispredictions and low confidence predictions tend to occur in clusters,
limiting the effectiveness of SDPE.

A number of design parameters are studied via simulation. These include prediction and
confidence table sizes. Finally, a number of implementation issues are discussed, with
emphasis on instruction fetching mechanisms and register renaming.

1.0 Introduction

Conditional branch instructions disrupt smooth pipeline flow and are widely known to
pose performance problems in modern microprocessors. The method of choice for dealing
with conditional branches is to predict their outcomes and speculatively execute instruc-
tions down the predicted path. If the prediction is correct, useful work is done, and perfor-
mance losses are minimized. If the branch prediction is incorrect, however, cycles are
wasted on instructions that must be discarded. And there may be an additional penalty for
restarting instruction fetches down the correct branch path.

Another approach that is sometimes suggested, but often dismissed, is to fork a second
execution path and execute instructions down both paths following a conditional branch.
When the conditional branch is eventually resolved, one of the two paths is valid and the

Selective Dual Path Execution Technical Report November 8, 1996 2

other must be discarded. Fig. 1 illustrates conventional branch prediction and multiple
path execution.

The perceived problem with this approach is that it implies exponential hardware growth
because each branch path may also contain a conditional branch which leads to another
doubling of paths. In modern processors it is not unusual to have four or five pending con-
ditional branches at any given time -- this would suggest tens of simultaneous execution
paths, and this is too many to be practical.

We consider a more limited approach where hardware resources are provided for at most
two simultaneous execution paths. A second execution path is selectively forked for only
certain conditional branches, not all. Because there are sufficient resources for only one
additional execution path at any given time, the additional path should be chosen very
carefully. In particular, a second path should be forked for branch predictions that have the
greatest likelihood of being incorrect; i.e. where the payoff is likely to be highest. This
process is referred to as Selective Dual Path Execution (SDPE).

An important underlying technology is a mechanism for determining the accuracy of con-
ditional branch predictions. For SDPE it is sufficient to divide conditional branch predic-
tions into two sets: a high confidence set and a low confidence set. A hardware-generated
high/low confidence signal can be used to trigger the forking of a second execution path
when the confidence in the branch prediction is deemed to be low. Recently developed
branch confidence hardware will be used for this purpose and is described in the Section 2.

1.1 Prior Work

Following both paths after every branch is known as Eager Execution. Eager Execution
requires following many tens of paths and is studied using an ideal model in [16]. Disjoint
Eager Execution (DEE) [13] executes the path that is the most likely to be correct out of

{
Branch 1
Mispredicted

Cycles
Wasted

1

In
co

rr
ec

t
P

at
hs

C
or

re
ct

 P
at

h

Branch1
Forked

{Cycles
Reclaimed

1

In
co

rr
ec

t
P

at
hs

C
or

re
ct

 P
at

h

Instruction Path
Followed.

Conditional
Branch

Instruction Path
Not Followed.

FIGURE 1. Multiple path execution eliminates branch misprediction penalties. Branch 1 is
mispredicted, typically resulting wasted cycles. However, multiple path execution reclaims these
cycles by following both paths after each branch simultaneously.

Selective Dual Path Execution Technical Report November 8, 1996 3

all unexecuted possible paths. This involves calculating the probability that all preceding
branches have been correctly predicted. DEE first follows the predicted paths, speculating
past branches. Each branch prediction has some probability of being incorrect, and eventu-
ally the accumulated probability that the current path is correct becomes small. DEE then
returns to the first unresolved branch and begins following not-predicted paths. DEE can
execute multiple paths simultaneously, as long as hardware resources are available. The
implementation studied uses a single fixed prediction probability for all branch predic-
tions, resulting in paths being executed in a fixed pattern.

As part of an instruction level parallelism study, Wall considers branch fanout [15], which
also executes both paths following conditional branches. To avoid an exponential increase
in the number of paths, a fanout limit is placed on the number of paths that are simulta-
neously executed. The branches chosen for fanout are selected using a static prediction
probability assigned through program profiling. Branch fanout is studied with and without
branch prediction up to a fanout limit of four.

Going back in history, the IBM 3168 and 3033 mainframes could fetch instructions from
both paths following a conditional branch, though instructions from only one path could
be decoded and executed [2]. The IBM 3168 could fetch down two paths simultaneously,
and the IBM 3033 could fetch instructions from three paths.

Current processors also fetch instructions from multiple paths in limited ways. For exam-
ple, the MIPS R10000 requires a one cycle delay to decode and predict branches. This
cycle is used to fetch instructions sequentially following the branch. If the branch is pre-
dicted taken, the extra fetched instructions are stored in a Resume Cache [5] in a partially
decoded state. If the branch is discovered to be not taken, then the sequential instructions
are quickly recovered from the Resume Cache, eliminating one cycle from the mispredic-
tion penalty. The IBM POWER1 processor statically predicts all conditional branches not
taken. However, the processor fetches some instructions from the taken path as a hedge,
which results in a single cycle penalty when the branch is taken [17].

1.2 Paper Summary

The rest of the paper is divided into the following sections. Section 2 contains a descrip-
tion of the branch confidence mechanism and describes the forking policies studied. Sec-
tion 3 describes the trace driven model and gives simulation results. Section 4 describes
implementation issues and alternatives. Section 5 concludes the paper.

2.0 Underlying Hardware Mechanisms

To support SDPE, two underlying mechanisms must be considered. The first is a hardware
device for separating high and low confidence branch predictions, and the second is a pol-
icy to be followed when a second low confidence prediction is encountered and there are
already two paths being executed.

Selective Dual Path Execution Technical Report November 8, 1996 4

2.1 Branch Confidence Mechanisms

A branch confidence mechanism sorts conditional branch predictions into low and high
confidence sets based on previous predictability. Branch confidence mechanisms are stud-
ied in depth in [6]. Here we provide a description of a mechanism that works effectively
and has a practical implementation. This confidence mechanism is used by the study in
Section 3.

The confidence mechanism (Fig. 2) consists of a table of resetting m-bit counters, and is
indexed by the XOR of a truncated program counter and a global branch history register
(GBHR). The program counter points to a conditional branch instruction that is being pre-

dicted and the GBHR indirectly indicates the control path followed before arriving at the

branch in question. For a table of 2n entries, n-low order program counter bits are XORed
with an n-bit GBHR; this is essentially the same mechanism used by the gshare branch
predictor [8].

For a given conditional branch, the counter at the confidence table entry is incremented if
the branch is predicted correctly, up to a maximum counter value (seven in the implemen-
tation used in this paper). The counter is reset to zero when the branch is mispredicted. If
the counter is less than its maximum value, the prediction is considered to be a low confi-
dence one; if it is equal to its maximum value, the prediction is assigned high confidence.

In [10] it is shown that this algorithm works nearly as well as more complex algorithms
that keep exact histories of branch outcomes. The resetting counters work well because a
mispredicted branch is more likely to be mispredicted in the near future (see section 3.3).
With a 3-bit resetting counter, a branch is considered low confidence for the next six
occurrences following a misprediction.

Ideally, the set of low confidence branch predictions would exactly equal the set of all
mispredictions. Of course, this can not be implemented in practice (or we could solve the

Confidence
History
Table.
2n m-Bit
Counters

Branch PC
(n Bits)

GBHR
(n Bits)

High
Confidence

.
.

.
.

.
.

FIGURE 2. The Resetting Counter Confidence Mechanism consists of an array of
saturating counters indexed by the branch PC XORed with a Global Branch
History Register.

=2m-1

Selective Dual Path Execution Technical Report November 8, 1996 5

branch prediction problem completely by reversing all predictions in the low confidence
set!). Rather, we try to concentrate a large number of the mispredictions into the low con-
fidence set -- realizing that some will be missed and some correct predictions will be
included.

A current superscalar processor can have approximately five conditional branches pending
at any given time, and if only one of the five can fork a second path, intuition suggests a
low confidence set that contains about 20% of all branch predictions. For our selected
benchmark set and branch predictor (described in Section 3), a branch confidence table
with 3-bit resetting counters identifies 20% of the branch predictions as low confidence,
and these contain 75% of all mispredictions.

2.2 Branch Forking Policies

The second underlying mechanism is a policy to be followed when a low confidence pre-
diction is encountered while two branch paths are already being executed. Following sub-
sections describe some alternatives.

2.2.1 Canceled Path Policy

Canceled Path (CP) is the simplest policy. Low confidence branches encountered while a
second path is already being executed are simply ignored. Fig. 3 illustrates the execution
of a hypothetical instruction stream using the CP policy.

The processor predicts conditional branches until Branch 1 is encountered. This branch is
deemed low confidence by the confidence mechanism, so the processor forks a second
path. Before Branch 1 is resolved, however, Branches 2 and 3 are also predicted with low
confidence. Because a second path is already in progress, neither of these two branches
forks a second path. If Branches 2 or 3 are mispredicted, the full penalty for their mispre-
diction will be paid.

Branch 1
Resolved

Branch 1
Forked

Branch 2
Ignored

Branch 3
Ignored

1

2

3

FIGURE 3. The Canceled Path forking policy does not fork
branches when two paths are already being executed. Predictions
for Branches 1, 2, and 3 are all in the low confidence set, but only
Branch 1 can be forked.

Instruction Path
Followed.

High Confidence
Branch

Low Confidence
Branch

Selective Dual Path Execution Technical Report November 8, 1996 6

2.2.2 First Delayed Policy

With the First Delayed (FD) policy, when a second low confidence prediction is encoun-
tered, the processor state at that point is saved. Then, after the preceding low confidence
branch is resolved, the processor can fork a second thread beginning at the saved state.
Fig. 4 illustrates the FD policy. Branch 1 is predicted with low confidence and a second
path is forked. Branch 2 is also predicted with low confidence. Because a second path was

forked by Branch 1, a fork following Branch 2 is delayed until Branch 1 is resolved. If
Branch 2 is mispredicted, the cycles between encountering Branch 2 and resolving Branch
1 are wasted. In the figure, Branch 3 is also predicted with low confidence, but can not be
forked, because Branch 2 has already been selected to be delay forked. If Branch 3 is
mispredicted, it will suffer a full misprediction penalty.

In general, a delayed forked path can occur along either path of the preceding forked
branch. Such delayed forks on the second path are not shown in Fig. 4 for simplicity. Once
the current branch is resolved, it is known which delayed branch is valid. This means state
for two delayed-forks must be kept.

2.2.3 Last Delayed Policy

The Last Delayed (LD) policy is related to the First Delayed policy. However, instead of
saving the state when the first low confidence branch cannot be forked, the processor saves
the state when the latest low confidence branch is encountered and cannot be forked due to
a second path already being executed. In other words, while running in dual path mode,
the saved state is overwritten each time a later low confidence branch is encountered.

Branch 2
Delay
Forked

Branch 1
Resolved
Branch 2
Forked

Branch 1
Forked

Branch 3
Ignored

1

2

3

FIGURE 4. The First Delayed forking policy records the processor
state for the first branch which should be forked while two paths are
being executed. Branch 2 is forked when Branch 1 is resolved.

Instruction Path
Followed.

High Confidence
Branch

Low Confidence
Branch

Delayed Fork.

Selective Dual Path Execution Technical Report November 8, 1996 7

Fig. 5 illustrates the LD policy. Branch 1 is predicted with low confidence and causes the
fork of a second execution path. When Branch 2 is encountered, the processor prepares to

delay fork this branch and saves state. However, when Branch 3 is encountered later, the
processor abandons the delayed fork of Branch 2, and saves state to delay forking after
Branch 3. If Branch 2 is correctly predicted and Branch 3 is mispredicted, the cycles
between encountering Branch 3 and resolving Branch 1 are wasted. This will be fewer
wasted cycles than with the FD policy because the fork following Branch 3 is delayed
fewer cycles. However, there is a also a chance that the last delayed branch is on a mispre-
dicted path. For instance, if Branch 2 is mispredicted, the full misprediction penalty will
occur.

3.0 Trace Driven Performance Study

A trace-driven simulation was used to study the effectiveness of SDPE. In this section we
describe benchmarks used, the simulation model, and performance results.

3.1 Methodology

The selected benchmarks are from the Instruction Benchmark Suite[14]. These traces
were obtained from a MIPS R2000 processor by physically probing the processor during
program execution. IBS traces contain all code executed by the program, including kernel

Branch 1
Resolved
Branch 3
Forked

Branch 1
Forked

Branch 2
Ignored

Branch 3
Delay
Forked

1

2

3

Instruction Path
Followed.

High Confidence
Branch

Low Confidence
Branch

Delayed Fork.

FIGURE 5. The First Delayed forking policy records the processor
state for the last branch which should be forked while two paths are
being executed. Branch 3 is forked when Branch 1 is resolved.

Selective Dual Path Execution Technical Report November 8, 1996 8

code from system calls and TLB miss-handlers. The benchmark characteristics are listed
in Table 1

Fig. 6 shows the processor model, and lists the model characteristics. These parameters
are used for all simulations, unless otherwise stated. Instructions are fetched from a trace

and dispatched into the instruction window. Pipeline stages between fetch and dispatch are
simulated by delaying the instruction's entry into the window by the appropriate number
of cycles. Dependence analysis is used to schedule the issuing of instructions from the

TABLE 1. Instruction Benchmark Suite

Benchmark
Instructions
(Millions)

Conditional
Branches
(Millions)

Branch
Misprediction

Rate
(%)

GCC 126 16.4 17.2

SDET 43 4.1 15.1

MPEG 111 9.5 13.6

GROFF 116 12.5 11.2

GS 120 15.3 9.7

VERILOG 52 6.3 9.5

NROFF 135 22.9 5.0

JPEG 104 15.8 3.4

CUMULATIVE 807 102.8 10.6

• Branc h Prediction
• 8K 2-Bit
• PC XOR Global Branch History

(gshare)
• Speculation Past 7 Branches
• 7 Cycle Minimum Misprediction Penalty

• Confidence Mec hanism
• 8K Entry Resetting Counter
• PC XOR Global Branch History

Fetch

Decode, Reg.
Rename, Dispatch

(5 Cycles)

In
st

ru
ct

io
n

Q
ue

ue

Execution
Units

• Super scalar Pr ocessor
• 8-Way Fetch
• 4-Way Symmetric Out-Of-Order Issue
• 32 Entry Instruction Queue

• L1 I-Cache
• 32K
• 2-Way Set Associative
• LRU Replacement
• 16 Word Lines
• 2-Way Interleaved
• Prefetches 1 Line
• 10 Cycle Miss Penalty

FIGURE 6. The trace driven processor model is a superscalar out-of-order processor.

Selective Dual Path Execution Technical Report November 8, 1996 9

window into the execution units. Instruction latency determines how many cycles after
issue the result of the instruction is available. Realistic instruction latencies are simulated
in the model; instruction latencies are shown in Table 2

The only cache simulated is the Level 1 instruction cache (L1 I-cache). All other caches
are ideal -- they always hit. The L1 I-cache is simulated because SDPE is involved directly
with the instruction fetch mechanism, and SDPE puts additional stress on the instruction
cache. The L1 I-cache is interleaved to provide access to two consecutive cache lines each
cycle [3]. This allows contiguous blocks of instructions to be fetched across cache line
boundaries. Each cycle 32 instructions from two lines are fetched. Of these, up to eight
instructions following the current PC are selected. Only one branch prediction and target
prediction can be performed each cycle, however, and any control transfer instruction ter-
minates the block of fetched instructions. That is, at most one basic block, up to a maxi-
mum of eight instructions, is fetched per cycle.

The L1 I-cache always prefetches the next line after the line containing the current PC.
This is done even if the current line is in the cache. On a cache miss, both the current line
and the next line are brought into the cache.

Conditional branches are predicted using a 16Kbit gshare [8] predictor. This predictor
contains 8K two-bit counters. The array is indexed by XORing the PC of the branch with
the Global Branch History Register (GBHR). The GBHR contains the outcomes of the last
13 conditional branches in order. The Confidence mechanism also has 8K entries, each of
which is a 3-bit resetting counter as described in Section 2.1 These entries are accessed in
the same way as the gshare predictor.

For disambiguation, memory addresses of loads and stores are calculated early, and com-
pared against all other loads and stores. However, values are not forwarded between stores
and loads.

Because this is a trace driven model, speculative instruction paths are not available. When
a branch is mispredicted, the fetch unit merely stops fetching new instructions from the
trace. Once the branch is resolved, instruction fetching continues. If the mispredicted
branch is a low confidence one that causes a forked path, the penalty for the misprediction
is annulled. New instructions are fetched on the next cycle as normal.

Because only the correct path is available this simulation model cannot simulate interfer-
ence that will occur between the correct path and the incorrect path. In particular, instruc-

TABLE 2. Instruction Latencies

Integer
Instructions

Latency
(Cycles) Floating Point Instructions

Latency
(Cycles)

ALU 1 ADD/SUB 3

LOAD/STORE 2 DIV (Single) 11

BRANCH 1 DIV (Double) 18

MULT 3 MULT 3

DIVIDE 11 LOAD/STORE 2

Selective Dual Path Execution Technical Report November 8, 1996 10

tions from the incorrect path do not use any fetch bandwidth, instruction window space, or
issue bandwidth. Cache and predictor pollution effects are also not modeled. These and
other deficiencies of our trace-driven simulation are addressed in Section 3.7.

3.2 Initial Results

Fig. 7 shows performance with different branch forking policies. The base case uses only

branch prediction and speculative execution -- no dual path execution. Three SDPE mod-
els are used, the first uses the cancelled path (CP) policy, the second uses first delayed
(FD), and the third uses last delayed (LD). All eight benchmarks are simulated to comple-
tion. Performance is measured in clock cycles. Cumulative data is calculated by first
weighting each benchmark to contain the same number of conditional branches. The
scaled results are then summed.

In Fig. 7, execution time is broken down according to the way individual cycles are spent
at the fetch unit. Measuring the processor performance at the fetch point is preferred for
this study because SDPE focuses on improving branch performance -- a function per-
formed by the fetch unit. Also, it is conceptually easy to discern what the processor is
doing at the fetch engine on a cycle-by-cycle basis.

0

1

2

3

4

5

S
ca

le
d

E
xe

cu
tio

n
T

im
e

B
A

S
E C
P

F
D LD

Cycles lost due to
branch misprediction.

Cycles lost due to max.
outstanding branches.

Cycles lost due to
instruction queue full.

Cycles lost due to BTB
misses.

Cycles lost due to I-
cache misses.

Cycles spent fetching
useful instructions.

FIGURE 7. Execution times for SDPE using each forking policy. SDPE reduces the
cycles lost due to branch misprediction.

Selective Dual Path Execution Technical Report November 8, 1996 11

The bottom segment of the bars in Fig. 7 shows the number of cycles spent fetching valid
instructions. Every cycle in which at least one useful instruction is fetched from the trace
is placed in this category. The next stacked segment shows the number of cycles when no
useful instruction is fetched because of I-cache misses. The next segment shows cycles
lost due to BTB misses. The cross hatched segment shows the number of cycles where the
instruction window is full; this stalls the pipeline, so no new instructions can be fetched.
For a small sliver of cycles just above the cross-hatched bar, the maximum number of out-
standing conditional branches is reached, and the next instruction is a conditional branch -
- this causes instruction fetching to stall. The top bar indicates the cycles lost due to branch
misprediction.

As is typical in such measurements, there is some overlap between various categories.
That is, some fetch cycles are lost for multiple reasons. For example, because two I-cache
lines are fetched each cycle, a miss can occur accessing the second line. When this hap-
pens the instructions that are available in the first line are fetched, and this is recorded as a
useful cycle. Even though a miss also occurs during the cycle, thus limiting the number of
instructions fetched, it is not recorded as a miss cycle.

Returning to Fig. 7, the overall performance improvement is about 10% with the LD pol-
icy. However, SDPE is targeted at saving lost cycles due to branch mispredictions (the top
segment of the bars in Fig. 7). And branch misprediction is the single largest cause of lost
cycles. In the base case, without SDPE, cycles lost due to branch misprediction account
for 22% of execution time on average. Because SDPE reduces only branch misprediction
cycles, the effectiveness of SDPE is limited to 22%. From this perspective, SDPE does its
job well. In particular, cycles lost due to branch misprediction are reduced significantly.
The NC policy reduces misprediction cycles by 34%, the FD policy by 41%, and the LD
policy by 50%.

Although the LD policy appears to be the best performing policy, this may not be the case
in practice. This study simulates the LD policy in a way that tends to be more optimistic
than the other policies. A real processor may have to speculate past several branches to
reach the branch selected by LD. However, in a trace driven study incorrect paths can not
be followed, so during dual path execution a mispredicted branch will be the last instruc-
tion fetched until a preceding forking branch is resolved. According to the simulated LD
policy, if this branch is predicted with low confidence, a delayed fork will occur at this
point. Thus the LD policy optimistically chooses the first mispredicted branch for delayed
forking. Because of this optimism, we use the more conservative FD policy in simulation
studies to follow.

Since SDPE targets cycles lost due to branch mispredictions, SDPE can be expected to
perform better on benchmarks with higher misprediction rates. GCC has the highest
misprediction rate of all the benchmarks, and JPEG has the lowest misprediction rate. Fig.

Selective Dual Path Execution Technical Report November 8, 1996 12

8 shows the results for these two benchmarks. SDPE does very well on GCC, reducing

execution time by 10.0%, 12.1%, and 15.8% for the CP, FD, and LD policies respectively.
At the other extreme, SDPE reduces the execution time of JPEG by 4.9% using LD.

3.3 Limitations on Performance Improvements

During simulations, we measured the accuracy of the confidence mechanism. It is able to
isolate 74.8% of the mispredicted branches in the low confidence set. So, ideally SDPE
should be able to eliminate 74.8% of the branch misprediction penalty. However, SDPE
eliminates at most 50% of the branch misprediction penalty for the LD policy. Two closely
related phenomena account for this apparent discrepancy.

First, mispredicted branches tend to come in clusters. This can best be seen by comparing
the distribution of distances between mispredicted branches in the benchmarks with a
completely random distribution (a geometric distribution). The distance between mispre-
dicted branches is the number of branches that separate them. If a mispredicted branch is
immediately followed by a second, the distance is one.

Fig. 9 contains histograms of the distances between mispredicted branches as they occur
in the benchmarks and the distances if the mispredictions were geometrically distributed.

0

20

40

60

80

M
ill

io
ns

 o
f C

yc
le

s
GCC JPEG

B
A

S
E C
P

F
D LD

B
A

S
E C
P

F
D LD

Cycles lost due to
branch misprediction.

Cycles lost due to max.
outstanding branches.

Cycles lost due to
instruction queue full.

Cycles lost due to BTB
misses.

Cycles lost due to I-
cache misses.

Cycles spent fetching
useful instructions.

FIGURE 8. Execution times for GCC and JPEG using SDPE. Benchmarks with high branch
misprediction rates gain more from SDPE.

Selective Dual Path Execution Technical Report November 8, 1996 13

This graph shows a high degree of clustering of mispredicted branches in the benchmarks.

For the benchmarks 10.9% of branches are mispredicted, so with a geometric distribution
the percentage of distance one mispredictions is 10.9%. On the other hand, in the bench-
mark traces, 29% of the mispredicted branches are distance one. And 58% of mispredicted
branches are within 3 branches of the previous mispredicted branch.

0 5 10 15 20 25 300

10

20

30 29

18

11

 7

 5
 4

 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Distance Between Mispredicted Branches

P
er

ce
nt

ag
e

of
 M

is
pr

ed
ic

te
d

B
ra

nc
he

s

Clustering of Mispredicted Branches

Mispredicted Branches

Geometric Distribution

FIGURE 9. Distribution of branch mispredictions. Mispredictions tend to arrive in clusters.

Selective Dual Path Execution Technical Report November 8, 1996 14

.Second, branch predictions assigned low confidence also occur in clusters. Fig. 10 shows
histograms for low confidence branch predictions, similar to Fig. 9.

This clustering increases the likelihood of the following two scenarios, both of which
diminish the gains from SDPE. If a branch is mispredicted, but not forked, any closely fol-
lowing low confidence branch gains no benefit from forking, it is already on an incorrectly
speculated path and will be discarded. And, if a low confidence branch is forked, any
closely following low confidence branch cannot be forked.

3.4 Varying Branch Misprediction Penalty

There is a trend toward deeper processor pipelining; for example, the latest generation
DEC processor, the 21264 [7], and the latest Intel processor, the Pentium Pro [4], are both
more deeply pipelined than their predecessors. As levels of processor pipelining increases,
it is likely that the cycles lost for each mispredicted branch will also increase. Wider
instruction fetching, register renaming and larger register files will also contribute to
higher branch misprediction penalties when the instruction fetch pipeline must be refilled.

Intuitively, as branch misprediction becomes worse, SDPE should become more effective.
This is illustrated in Fig. 11 where the simulated branch misprediction penalty is increased
from seven to ten cycles by adding extra pipeline stages between instruction fetch and dis-

0 5 10
0.0

20.0

40.0

60.0

80.0

65

17

 6
 3 2 1 1 1 1 0

Distance Between Low-Confident Branches

P
er

ce
nt

ag
e

of
 L

ow
-C

on
fid

en
t B

ra
nc

he
s

Low-Confidence Branches

Geometric Distribution

FIGURE 10. Distribution of low confidence branch
predictions. Low confidence branch predictions tend to arrive
in clusters.

Selective Dual Path Execution Technical Report November 8, 1996 15

patch. The overall speedup obtained with SDPE using the FD policy increases from 9.0%

to 9.9%. The percentage of execution cycles lost due to branch misprediction increases
from 22.2% with a seven cycle branch misprediction penalty, to 25.1% with a ten cycle
branch misprediction penalty. On the other hand as the pipeline depth is increased more
branches overlap in execution. This increases the effect of clustering, which counteracts
the increase in SDPE effectiveness.

3.5 Varying Confidence Mechanism Size

The performance of SDPE depends on the ability of the confidence mechanism to concen-
trate branch mispredictions in the low confidence set. By reducing aliasing a larger confi-
dence table may improve performance. On the other hand, a smaller table would lead to
reduced cost -- the confidence table is 50% larger than a branch prediction table with the
same number of entries, owing to the use of 3-bit resetting counters versus 2-bit saturating
counters. Consequently, we study performance for a range of confidence table sizes.

7 8 9 10
Branch Misprediction Penalty

5%

6%

7%

8%

9%

S
pe

ed
 U

p

SDPE Effectiveness vs. Branch Misprediction Penalty
First Delayed Forking Policy

FIGURE 11. SDPE provides increasing speedups, as branch
misprediction penalties increase.

Selective Dual Path Execution Technical Report November 8, 1996 16

For the IBS benchmarks, SDPE appears to be insensitive to the size of the confidence his-
tory table. Fig. 12 shows the behavior of SDPE with the FD policy for confidence tables
varying from 512 entries to 32K entries. The difference is negligible.

The size of the confidence table does have some effect on the accuracy of the confidence
mechanism, however. Fig. 13 plots the fraction of forked branches that are predicted and

512 2K 8K 32K
Confidence Table Size (Entries)

0

1

2

3

4

5
S

ca
le

d
E

xe
cu

tio
n

T
im

e

FIGURE 12. Varying Confidence History Table size has little effect of SDPE performance.

Cycles lost due to
branch misprediction.

Cycles lost due to max.
outstanding branches.

Cycles lost due to
instruction queue full.

Cycles lost due to BTB
misses.

Cycles lost due to I-
cache misses.

Cycles spent fetching
useful instructions.

Selective Dual Path Execution Technical Report November 8, 1996 17

mispredicted. Larger confidence tables isolate more mispredicted branches in a smaller

low confidence set. However, most misprediction cycles are not lost because the confi-
dence mechanism fails to recognize branches that will be mispredicted, but because of
clustering of mispredicted branches and low confidence branches. The small decrease in
the accuracy of the confidence mechanism does not have much effect on the percentage of
mispredicted branches that fork a second path, or on the total cycles lost due to mispredic-
tion.

3.6 Varying Branch Predictor Size

Another way of decreasing the branch misprediction penalty is to increase prediction
accuracy by using larger branch predictors. Consequently, we explored the performance
benefit of using larger branch predictors. Fig. 14 shows the results.

0

10

20

25

P
er

ce
nt

ag
e

of
 B

ra
nc

h
P

re
di

ct
io

ns

Low-Confidence,
Correctly Predicted

Low-Confidence,
Mispredicted

512 2K 8K 32K

Confidence Table Size (Entries)

FIGURE 13. Larger Confidence History Tables capture more branch mispredictions in a smaller
set of predictions.

15

5

Selective Dual Path Execution Technical Report November 8, 1996 18

Fig. 14 compares SDPE using an 8K entry branch predictor with a processor using 32K
and 64K entry branch predictors and no SDPE. The figure shows that SDPE reduces

branch misprediction penalty more effectively than a larger branch prediction table. Per-
formance gains from larger branch predictors tend to level off as aliasing effects are
reduced. Furthermore, SDPE is a fundamentally different solution to the branching prob-
lem. Adding SDPE to branch prediction results in improved performance.

3.7 Deficiencies of Simulation Model

Our simulation study represents an initial effort at determining the performance potential
of selective dual path execution. Although it allowed a quick exploration of the design
space, the simulation model used a number of simplifications -- the most significant being
its trace-driven structure. In this section, we identify some of the deficiencies of the simu-
lation model and qualitatively discuss their performance impact.

3.7.1 Data Cache

The simulated execution engine uses an ideal D-cache that always hits. Adding a realistic
D-cache will cause instructions that depend on load data to be blocked from issuing while

0

1

2

3

4

5

S
ca

le
d

E
xe

cu
tio

n
T

im
e

8K 32K 64K 8K 8K 8KPredictor Size

Forking Alg.

N
O

N
E

N
O

N
E

N
O

N
E C
P

F
D LD

FIGURE 14. SDPE reduces cycles lost to branch mispredictions more than larger branch
predictors alone.

Cycles lost due to
branch misprediction.

Cycles lost due to max.
outstanding branches.

Cycles lost due to
instruction queue full.

Cycles lost due to BTB
misses.

Cycles lost due to I-
cache misses.

Cycles spent fetching
useful instructions.

Selective Dual Path Execution Technical Report November 8, 1996 19

a cache miss is handled. From the fetch-centric viewpoint taken in this paper, this will
cause the instruction window to fill more often, leading to more fetch engine stalls.
Because overall program execution time will tend to rise, the percentage of total cycles
wasted due to branch misprediction will decrease. This will reduce the relative effective-
ness of SDPE.

On the other hand, conditional branches are often dependent on data loaded from memory
[12]. If a branch instruction depends on a load that misses in the cache, the branch will
stall in the instruction window. And, if the branch is mispredicted, this could significantly
lengthen the potential branch misprediction penalty. In this case, SDPE may be more
effective with a real D-cache.

3.7.2 Cache Pollution

Cache pollution occurs when cache line replacements occur because of mispeculated
instructions. Speculated load instructions may bring in lines that replace lines that would
otherwise be used by non-speculative loads. Speculative stores are buffered and do not
modify the D-cache until the appropriate branch outcome is known.

Similarly, instruction fetches down a mispredicted path can pollute the instruction cache.
However, this is not necessarily detrimental. In fact, fetching down the wrong branch path
has been put forward as an effective instruction prefetching strategy [9]. While there could
also be some prefetching benefit to D-cache pollution, it is more likely that D-cache pollu-
tion will degrade performance.

3.7.3 Stale Branch Predictor State

In a real implementation, the branch predictor is updated when a conditional branch is
resolved, and branch predictors tend to rely heavily on recent branch history. However, at
any given time there are often several pending branches whose outcome is not known, and
which are unable to update the predictor. Consequently, the predictor state being used to
predict new branches can be stale and prediction accuracy may be reduced.

The presence of stale predictor state was not simulated in our model. This effect tends to
make branch prediction worse in reality than in the simulation. However, this will lead to
increased benefits from SDPE because SDPE will tend to eliminate more misprediction
penalty when there are more mispredictions.

3.7.4 Stale Confidence State

This problem is similar to the stale branch predictor state problem. The confidence mecha-
nism can not be updated until a conditional branch is resolved. Our earlier results on clus-
tering of mispredictions showed that if a conditional branch is mispredicted, the branches
immediately following it are more likely to be mispredicted. However, because it takes
some time to resolve a branch, a mispredicted branch may not have been recorded when a
following branch mapping to the same confidence table entry is predicted. Consequently,
the confidence mechanism may indicate that the second branch prediction has high confi-

Selective Dual Path Execution Technical Report November 8, 1996 20

dence, when in fact it should have low confidence. Hence, stale state in the confidence
mechanism may degrade SDPE performance.

4.0 Implementation

Thus far we have discussed the performance potential of SDPE using a simple processor
model that does not directly address many implementation issues. In this section an over-
all implementation for SDPE is proposed, and certain key aspects are being discussed in
more detail. The proposed implementation tends to conform to the simulation model, but
areas where the implementations departs from the simulated model, or where a departure
seems justifiable, are mentioned.

4.1 Overview

The basic pipeline of the proposed implementation, shown in Fig. 15, is be similar to that
used in current superscalar microprocessors, for example the MIPS R10000 or DEC
21264 [5, 7]. Instructions from both paths are fetched in the first pipeline stage. Next

instructions are decoded. Buffers are added before the decode stage to allow temporary
separation of the two instruction paths. Each cycle, instructions from only one path are
released from the decode stage to the register rename stage. Instructions from the other
path remain buffered. Instructions are renamed and then dispatched into the instruction
window. At the same time, reorder buffer (ROB) entries are reserved. Instructions wait in
the instruction window until their operands are ready, and then issue to the appropriate
execution units. Operand registers are read, and execution begins on the following cycle.
When instruction execution completes, results are written back to the physical register file.
The ROB is notified of instruction completion, and completed instructions in the ROB are
committed in order.

I-Fetch

I-Fetch

D
ec

od
e

R
en

am
e

Floating Instr. Window

Integer Instr. Window

ROB

Store Queue

Exec
Units

Exec
Units

FIGURE 15. The proposed SDPE implementation is patterned after current superscalar processors
supporting out-of-order execution.

Instr. Buffers

Selective Dual Path Execution Technical Report November 8, 1996 21

4.2 Instruction Fetch Mechanisms

Initially, we considered the simple approach of time interleaving instruction fetching from
the two paths, fetching from only one path during any given clock cycle. Using the trace
driven simulator this alternating fetching method was studied. However, this study indi-
cated that the alternating fetch method is not very effective. Following is a brief summary
of that study.

Because the predicted path is more likely to be correct than the forked second path, there
could be some benefit to giving more of the available fetch bandwidth to the predicted
path. Consequently, we controlled the division of fetch bandwidth in two ways. First, the
ratio of cycles devoted to the two paths can be varied. The forked fetch duty cycle deter-
mines the fraction of cycles during which the predicted path is fetched. A duty cycle of 1/
2 fetches from each path every other cycle. A duty cycle of 2/3 fetches from the predicted
path two out of three cycles. Second, the amount of fetching that occurs on the second
forked path can be limited by constraining the number of cycles that can be spent fetching
instructions from the forked path. As usual, the trace driven model simulates fetching from
the wrong path by fetching no new instructions from the trace. When fetching alternates
between the two paths, the simulator fetches no instructions during cycles when the incor-
rect path would be being fetched.

Selective Dual Path Execution Technical Report November 8, 1996 22

Fig. 16 shows the results of using alternating fetching with SDPE and the FD policy. A

new segment has been added at the top of the bars to represent cycles lost due to alternat-
ing instruction fetching. In some cases SDPE with alternating instruction fetching results
in a performance loss versus no SDPE, and only a slight performance gain of 2.5% is seen
in the best case. The reason for this loss is fairly simple. When alternate fetching with the
single instruction fetch unit we have been assuming, at most one basic block per cycle can
be fetched. This is not enough to support two execution paths at an adequate level. And
when more bandwidth is given to the predicted path, the forked second path does not get
enough bandwidth in those cases where it is needed.

The shortcomings of alternate fetching with a single fetch unit led to a more complex
method where two fetch units are used, one for each path. To support this, the I-cache,
BTB, branch predictor, and confidence mechanisms are dual ported in some fashion. This
can be done through duplication, interleaving to allow multiple accesses, or truly dual
porting the arrays. The confidence mechanism only needs to be dual ported if a policy is
used where delayed forking can occur on the forked second path. With this method, two
basic blocks per cycle can be fetched during dual path execution, one from each path.

An alternative, which we did not study, is to use a single fetch unit that can fetch multiple
basic blocks in a single cycle. Such units are proposed in [1, 10, 17].

FIGURE 16. Alternating fetching of paths in SDPE reduces most of performance improvement
obtained through SDPE.

Cycles lost due to
branch misprediction.

Cycles lost due to max.
outstanding branches.

Cycles lost due to
instruction queue full.

Cycles lost due to BTB
misses.

Cycles lost due to I-
cache misses.

Cycles spent fetching
useful instructions.

Cycles lost due to
alternating fetching.

0

2

4
S

ca
le

d
E

xe
cu

tio
n

T
im

e

B
A

S
E

First Delayed Branch Forking

1/2 1/2

2 2

2/3 2/3

∞∞

Alternating Duty Cycle

Forked Fetch Limit

5

3

1

Selective Dual Path Execution Technical Report November 8, 1996 23

One section of the fetch mechanism is detailed in Fig. 17. Each cycle the current PC for

the path is used to index into the I-cache. The I-cache provides eight instructions follow-
ing the given PC. In parallel, the BTB, Branch Prediction History Table, and Confidence
History Table are accessed. Along with instructions from the I-cache, predecode bits are
read. Predecode bits indicate if an instruction is a control transfer instruction (CTI), and if
it is a conditional branch. The predecode bits are used to find the first CTI in the fetched
instructions. Once the first CTI is known, instructions following it can be discarded. The
predecode bits are used to select the correct jump target address from the BTB, the correct
branch prediction from the predictor, and the correct confidence value from the confidence
table. This information is used to generate the predicted PC for the next cycle.

Confidence
History
Table

BTB

I-Cache

Predictor
History
Table S

el
ec

t

Pri.
Encode

+

GBHR

PC

Predicted
PC

Instructions

Forked
PC

Confidence

Targ. Addr (x8)

Br. Pred. (x8)

Confidence (x8)

Predecode

FIGURE 17. One half of the fetch mechanism is capable of fetching instructions from one path each
cycle. The fetch mechanism must be duplicated to fetch from both paths each cycle.

Selective Dual Path Execution Technical Report November 8, 1996 24

4.3 Buffer and Decode Logic

Fig. 18 illustrates the Buffer and Decode pipeline stages. In any given cycle, instructions
from either the predicted path or the forked path are allowed to proceed through the decod-
ers. Meanwhile, instructions from the other path are buffered.

Alternating paths for the register rename and the dispatch stages simplifies logic because
instructions from only one path must be dealt with each cycle. However, in order to avoid
the same kind of bandwidth problem observed in the alternating instruction fetch unit,
instructions from multiple basic blocks must be handled in the rename and dispatch
stages. With dual fetch units, and alternating between buffers, a buffer will typically accu-
mulate two cycles' worth (i.e. two basic blocks) of fetched instructions before passing
them up the pipeline.

Another option is to duplicate the register rename logic and the dispatch logic so instruc-
tions from both paths can be renamed and dispatched each cycle. This would cause a large
increase in complexity because both paths are renamed from the same physical register
file.

4.4 Register Renaming

Register renaming allows instructions from both paths to coexist in the instruction window
and execution units. Values produced by instructions proceeding the forked branch can be
used by instructions on either path. Values produced by instructions after the forked
branch can only be used by instructions on the same path. Simultaneous Multi-Threading

SH
IF

T
E

R

B
U

FF
E

R

M
E

R
G

E

SH
IF

T
E

R

B
U

FF
E

R

M
E

R
G

E

M
U

X

DECODERS

Forked
Instructions

Predicted
Instructions

Decoded
Instructions

FIGURE 18. Buffering in the Decode stage allows later
stages to handle instructions from only one path each cycle,
without sacrificing instructions throughput.

Selective Dual Path Execution Technical Report November 8, 1996 25

(SMT) uses a similar technique to separate register values produced by multiple threads
[11]. A register renaming mechanism is illustrated in Fig. 19.

Conceptually, each instruction selects a physical register from the free pool to hold its
result. It then looks up the physical register used for each logical operand register in the
current register map. Then the register map is updated to include the new mapping from
the logical result register to the physical register. The following instruction can then be
processed. Of course a real implementation must rename a number of instructions in par-
allel.

Dual path execution requires two current register maps be maintained, one for each path.
When a second path is forked, the current register map is copied into the forked register
map. Thus, the maps used for each path are the same at the point of the branch fork. This
allows values produced above the fork to propagate to receiving instructions on both
paths. As instructions are renamed on each path, different physical registers are mapped to
the instructions on each path, and the separate maps are used. This keeps values produced
on each path separate.

For recovering from mispredictions and selecting the correct path after branch resolution,
an adaptation of the method used in the MIPS R10000 [5] can be used. This method stores
a shadow copy of the register map as it exists at the time a conditional branch is predicted.
Rolling back to the branch in the case of a misprediction involves replacing the current
register map with the appropriate shadow map. After a forked branch is resolved, the reg-

MUXMUX

DEMUX

ASSOCIATIVE
COMPARE

DECODED
INSTRUCTIONS

SHADOW
REGISTER
MAPS

CURRENT
REGISTER
MAPS

RENAMED
INSTRUCTIONS

FREELIST
REGISTER

P
R

E
D

IC
T

E
D

 P
A

T
H

F
O

R
K

E
D

 P
A

T
H

FIGURE 19. Register renaming renames several instructions in
parallel, and saves register maps for predicted branches in shadow
register maps.

Selective Dual Path Execution Technical Report November 8, 1996 26

ister map for the incorrect path can be discarded. The register map for the correct path
must be placed into the current register map for the predicted path, which is used when
only one path is being executed.

4.5 Physical Registers

Supporting two paths simultaneously will require more physical registers than for a con-
ventional processor. SDPE essentially increases the number of instructions in flight, and
extra physical registers are needed to support these in-flight registers.

If the number of physical registers is a problem, it is possible to reduce the required phys-
ical registers by limiting the number of instructions that can be fetched from the forked
path, as was done in Section 4.2. The forked path can not use more registers then the num-
ber of instructions fetched. Thus, if the number of instructions on the forked path is lim-
ited to 16 instructions, and the base processor has 64 physical registers, the SDPE
processor will need 80. Sixteen instructions will support 3 to 4 fetch cycles.

4.6 Branch Path Squashing

When a forked conditional branch is resolved, in addition to recovery of the rename map
discussed as in the preceding subsection, several other actions must take place.

The forked PC and forked GBHR must be copied from the forked path fetch unit to the
predicted path fetch unit. The physical registers used by the incorrect path, but not used by
the correct path must be placed back in the free list. Instructions in the instruction window,
the store queue, and the ROB must be marked invalid. This can lead to complications
because the ROB and store queue intermix blocks of instructions from both paths, so the
ROB and store queue may contain holes. These can be ignored, which results in tempo-
rarily unused ROB and store queue slots. The holes may be reclaimed if some kind of
compaction mechanism is implemented. Another possible solution is implement separate
store queues and ROBs for each path.

5.0 Conclusions

Trying to solve the conditional branch problem by building more-and-more accurate pre-
dictors will no doubt reach a point of diminished returns. Selective Dual Path Execution
provides a way of further reducing branch misprediction penalties by accepting that there
will be mispredictions, and then dealing with the situation by executing instructions on
both branch paths when there is a relatively high likelihood that the prediction will be
wrong.

The initial study presented here indicates that SDPE can potentially reduce branch mispre-
diction penalties by 34% to 50%, depending on the forking policy used. This amounts to
an approximately 10% overall performance improvement. An improvement of this size is
certainly worthwhile. As issue widths widen and pipeline lengths increase, however,

Selective Dual Path Execution Technical Report November 8, 1996 27

branch misprediction penalties, as a fraction of total execution time, will rise substantially.
Consequently, the payoff for SDPE should rise as well.

A possible problem that we have identified is that improvements are limited somewhat by
the statistical properties of conditional branches. Specifically, clustering of mispredicted
branches and low confidence branches reduce the fraction of branch mispredictions that
SDPE can capture. A partial solution may be to consider additional forked paths beyond
two.

We have also observed that an implementation of SDPE must have careful attention paid
to supporting sufficient instruction fetch bandwidth. One straightforward approach is to
duplicate the instruction fetch unit, although other approaches could be used. In an imple-
mentation, register renaming naturally extends to support multiple instruction paths. Some
minor complications occur when squashing instructions after a forked branch has been
resolved, however.

Finally, we observe that in many respects the implementation of SDPE is similar to simul-
taneous multithreading (SMT) in that it must support multiple concurrent instruction
streams. In fact, SDPE may complement SMT very well. If an SMT processor were given
SDPE capabilities, then more processor resources could be directed toward high perfor-
mance for a single architected thread. An SMT processor might provide a good way to
support more than two forked paths, and would provide a good context for investigating
trade-offs involving multiple forked paths.

Acknowledgments

This work was supported in part by NSF Grant MIP-9505853 and by the U.S. Army Intel-
ligence Center and Fort Huachuca under Contract DABT63-95-C-0127 and ARPA order
no. D346. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U. S. Army Intelligence Center and Fort Huachuca, or the
U.S. Government.

We would like to thank Eric Rotenberg for the original source for the trace driven simula-
tor, and for numerous helpful suggestions and discussions. We also want to thank Erik
Jacobsen for useful information regarding the branch confidence mechanism.

Selective Dual Path Execution Technical Report November 8, 1996 28

References

[1] T. Conte, K. Menozoa, P. Mills, and R. Patel. Optimization of instruction fetch mech-
anisms for high issue rates. In22nd Intl. Symp. on Computer Architecture, pages 333-
344, June 1995.

[2] W. D. Connors, J. Florkowski and S. K. Patton. The IBM 3033: An Inside Look. In
Datamation, pages 198-218, May 1979.

[3] G.F. Grohoski, J.A. Kahle, L.E. Thatcher, and C.R. Moore. Branch and Fixed-Point
Instruction Execution Units. InIBM RISC System/6000 Technology. Publication
Number SA23-2619. IBM Corp, 1990.

[4] L. Gwennap. Intel’s P6 Uses Decoupled Superscalar Design. Microprocessor Report,
pages 9-15, February 1995.

[5] L. Gwennap. MIPS R10000 Uses Decoupled Architecture. Microprocessor Report,
pages 18-22, October 1994. 1993.

[6] E. Jacobsen, E. Rotenberg, J. E. Smith. Assigning Confidence to Conditional Branch
Predictions. To appear inProc. 29th Annual Symp. and Workshop on Microprogram-
ming and Microarchitecture (MICRO-29), 1996.

[7] J. Keller. The 21264: A Superscalar Alpha Processor with Out-of-Order Execution.
Presented atMicroprocessor Forum, October 1996.

[8] S. McFarling. Combining Branch Predictors. InDigital Western Research Lab Tech-
nical Note TN-36, June 1993

[9] J. Pierce, Intel and T. Mudge. Wrong-Path Instruction Prefetching. To appear inProc.
29th Annual Symp. and Workshop on Microprogramming and Microarchitecture
(MICRO-29), 1996.

[10]E. Rotenberg, S. Bennett and J. E. Smith. Trace Cache: a Low Latency Approach to
High Bandwidth Instruction Fetching. To appear inProc. 29th Annual Symp. and
Workshop on Microprogramming and Microarchitecture (MICRO-29), December
1996.

[11]D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm. Exploiting Choice: Instruc-
tion Fetch and Issue on an Implementable simultaneous Multithreading Processor. In
23rd Annual Intl. Symp. on Computer Architecture, pages 191-202, May 1996.

[12]D. Tullsen, S. Eggers, H. Levy. Simultaneous Multithreading: Maximizing On-Chip
Parallelism. InACM, pages 392 - 403, 1995.

[13]A. Uht, V. Sindagi. Disjoint Eager Execution: An Optimal Form of Speculative Exe-
cution. InProc. 22nd Annual Symp. on Computer Architecture, pages 313-325,
November 1995.

Selective Dual Path Execution Technical Report November 8, 1996 29

[14] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest and J. Emer. Instruction Fetching: Coping
with Code Bloat. In Proc. 22nd Annual Symp. on Computer Architecture, pages 345-
356, June 1995.

[15] D. Wall. Limits of Instruction-Level Parallelism. Digital Western Research Labora-
tory Research Report 93/6, November 1993.

[16] S. S. H. Wang and A. K. Uht. Ideograph/Ideogram:Framework/Architecture for Eager
Execution. In Proc. 23rd Annual Symp. and Workshop on Microprogramming and
Microarchitecture (MICRO-23), pages 125-134, November 1990.

[17] S. Weiss, J. Smith. POWER and PowerPC. Morgan Kaufmann Publishers, Inc., pages
100 - 104, 188 - 192, 1994.

[18] T.-Y. Yeh and Y.N. Patt. Increasing the instruction fetch rate via multiple branch pre-
diction and a branch address cache. In 7th Intl. Symp. on Supercomputing. pages 67-
76, July 1993.

