
Statistical Simulation of Symmetric Multiprocessor Systems

Sebastien Nussbaum James E. Smith

Sun Microsystems, Inc. Dept. of Electrical and Computer Engineering
Chelmsford, MA 01824 University of Wisconsin – Madison

sebastien.nussbaum@sun.com Madison, WI 53706
jes@ece.wisc.edu

Abstract

Statistical simulation is driven by a stream of
randomly generated instructions, based on statistics col-
lected during a single detailed simulation. This method
can give accurate performance estimates within minutes,
allowing a large design space to be simulated quickly.
Prior work has applied this technique to superscalar
processors. We evaluate the extension of statistical simu-
lation to Symmetric Multiprocessing (SMP) systems. Key
program parameters are identified, and program statis-
tics are collected during detailed simulations for both
multiprogrammed workloads (SpecInt) and parallel scien-
tific workload (Splash-2). The accuracy of statistical
simulation is evaluated at different levels of model detail,
and it is shown that for multiprogrammed workloads a
10% average error can be achieved, and for parallel
benchmark programs 15% average error can be
achieved.

1. Introduction

For uniprocessor systems, optimizing an architecture
often requires heavy use of simulation tools to evaluate
the performance of a number of different hardware con-
figurations (i.e. reorder buffer size, issue width). Simula-
tion times are many orders of magnitude slower than real
time, making it difficult to evaluate numerous design al-
ternatives. Recently, statistical simulation [1,2,3,4] has
been proposed as an efficient method for modeling uni-
processor performance. After an initial detailed simula-
tion, during which program statistics are collected, it is
possible to evaluate processor design variations two to
three orders of magnitude faster than with conventional
detailed simulation, while only losing a few percent accu-
racy. Consequently, statistical simulation is a useful
technique for narrowing the design space during the early
phases of design.

For multiprocessor systems the simulation problem is
much worse than for uniprocessors. Not only are multi-

processor systems much larger in scale, but they also have
additional design choices. Furthermore, problem sizes
tend to be larger. In this paper, we study the extension of
statistical simulation to symmetric multiprocessor (SMP)
systems. We first consider multiprogrammed workloads,
for which the performance estimation technique is very
similar to uniprocessor systems. We then evaluate statisti-
cal simulation for parallel scientific workloads, which
differ from multiprogrammed workloads by the presence
of software synchronization and accesses to shared mem-
ory pages.

In Section 2, we present the important aspects of sta-
tistical simulation as applied to superscalar processors.
This includes instruction, cache, and branch prediction
statistics used for modeling a single thread of execution.
In section 3 the multiprocessor architecture we have cho-
sen for initial study is described. In Section 4, we describe
the additional set of statistics to collected for accurately
modeling synchronization and cache coherence events in
multiprocessor systems. Section 5 presents simulation
methodology and the accuracy of statistical simulation is
compared with detailed multiprocessor simulation, first
for multi-programmed workloads, then for parallel work-
loads.

2. Statistical Simulation

The overall method we propose is to first develop a
statistical model for individual uniprocessors, then com-
bine them, along with interconnect and memory compo-
nents, into a statistical multiprocessor model. The uni-
processor model is similar to the one developed in [4],
enhanced with additional features necessary for modeling
interprocess synchronization and communication.

2.1. Uniprocessor modeling

Statistical simulation is a two-step process as shown
in Figure 1. First, a benchmark program is simulated with
a detailed execution driven simulator to produce a dy-
namic instruction trace. The program instruction trace is



then analyzed to generate statistical tables of key program
characteristics such as instruction profiles, register de-
pendences, and cache/branch predictor performance.
These statistics represent the program behavior during its
execution on one particular input. This task only needs to
be done once for each benchmark, and creates the pro-
gram’sstatistical image.

To carry out a statistical simulation, the tables are
used to drive the random generation of a synthetic instruc-
tion trace. Branch prediction and cache statistics are then
applied to the synthetic trace. This synthetic instruction
trace contains all information necessary to compute the
timing information for each instruction and is fed into an
out-of-order processor simulator. The processor model is
relatively simple, modeling the major pipeline resources
without ever having to compute values, store results, or
maintain register rename arrays. Using the randomly gen-
erated instruction stream, the statistical simulation quickly
converges (e.g. within 10K to 100K cycles) to a perform-
ance estimate typically within 5% error when compared to
detailed simulation [4].

2.2. Program statistics

2.2.1. Opcode Mixes
Distinguishing major classes of instructions which

use the same resource(s) and have the same latencies is
sufficient for achieving accurate timing simulation.
Therefore we maintain distributions of 13 instruction
types for uniprocessor programs [4], although fewer could
probably be used. Section 4 introduces three additional
instruction types for multiprocessor systems. In earlier
work [4] we identified several methods for modeling in-
struction distributions. In this paper we focus on the sim-
plest, theGlobal Mix, which contains the relative propor-
tion of each opcode type in the program trace. Other,

more advanced mixes used in [4] keep separate distribu-
tions for basic block sizes, different mixes for each basic
block size, and even different mixes depending on the
distance from the beginning the basic block. Such detail
is important for reducing error in uniprocessor simulations
where very high levels of accuracy may be required. For
multiprocessor simulations, however, we have found that
in most cases the simplerGlobal Mix provides the best
tradeoff between accuracy and simulation time.

2.2.2. Register Dependences
Register dependencies are modeled using a depend-

ence table containing the probabilities that an instruction
at distanced in the future will be dependent on the in-
struction currently being generated. Separate statistics are
kept for each synthetic opcode type. Dependence prob-
abilities are kept for all instructions up toN in the future,
where N is the maximum issue window size (e.g. 64 or
128). For instructions farther apart than the window size,
the dependence should not affect performance. Figure 2
shows the dependence distribution for integer alu (In-
tALU) instructions in benchmarkGcc.

2.2.3. Memory Dependences
If the data input register to astore instruction is not

available when the store issues, subsequent loads to the
same address should stall, waiting for possible forward-
ing. Similarly, when multiple outstanding loads target the
same address, only the first one should be sent to the bus
(and main memory), and the others should wait until the
data is forwarded to their reservation stations. Therefore,
we keep a table of memory dependences similar to regis-
ter dependences, i.e. the probability that the Nth following
memory instruction targets an address overlapping (par-
tially or completely) with the memory instruction cur-
rently being generated.

Program
Binary

Fast Simulation for multiple architectures

Cache and
Branch
Prediction
Model

OOO processor core
(Instruction Throughput)

Instruction Trace
Generator

FRONT END
(Statistics collection)

BACK END
(Synthetic simulator)

Load
Branch

Modified
execution-
driven
simulator

Instruction
profiles &
dependences

Cache and
Branch
Predictor
Miss ratios

Statistical image

Cache & bpred
event generator

Figure 1: Statistical simulation process flow



2.3. Locality Statistics

Cache and branch prediction performance are de-
pendent on microarchitecture parameters, unlike instruc-
tion mixes and dependences. Because we found no good
(and simple) architecture-independent locality capturing
model, our statistical simulation is not able to simulate
cache or branch prediction performance for a cache or
predictor size for which no statistics were collected. This
shortcoming may be mitigated if the simulation evaluates
processor performance directly for different cache and
branch prediction miss rates, instead of structure sizes. In
this case, it is possible to collect statistics for two (or
more) cache sizes, interpolate the cache miss ratios be-
tween the two points, and use statistical simulation to ob-
tain an estimate of the processor performance between
these two sample points.

For each of the locality events in Table 1, we keep a
probability conditional on the instruction type and previ-
ous locality events applied to prevent impossible event
combinations.

3. Modeled SMP Architecture

To demonstrate the application of statistical simula-
tion to multiprocessor systems we consider a particular
SMP architecture in detail. The architecture has many of
the features (and complications) of today’s SMP systems
containing superscalar processing elements.

3.1. Memory Architecture

3.1.1. Memory hierarchy
The system we model is built around a split transac-

tion address/data bus. Each processor has separate L1
instruction and data caches, and a unified L2 cache (Fig-
ure 3). All caches follow the write-allocate, write-back
policy. Main memory may be split into multiple banks,

interleaved on a cache block basis. If the target bank is
busy, the request is put into a bank queue.

3.1.2. Cache Coherence
We model caches with a MOESI [5] cache coherence

protocol. Processors queue for bus ownership. If a bus
transaction is a read request, it is forwarded to the mem-
ory if the data is owned by memory, or directly queued to
the data bus if another cache can supply the data. All in-
structions triggering awriteback event on the second
cache level have to queue for the shared address bus first,
and then send the cache line to memory via the data bus.
Instructions responsible for a writeback do not need to
wait for completion of the operation before committing. A
store, acquire, or releaseoperation (further described in
Section 4.2) hitting in a cache informs other caches of the
potential data change (Invalidation) by broadcasting the
data address on the shared bus before issuing the instruc-
tion.

3.1.3. Sequential Consistency
For our study, we assume sequentially consistency,

which implies that all memory operations should appear
to all processors as if they had executed at the commit
stage.

Because we model aggressive speculative superscalar
out-of-order processors [6,7],loadsandstoresmissing in
the cache fetch data from memory or the second level
cache speculatively, before they commit. However, if a
processor sees a bus invalidation for one of the cache
lines it has speculatively loaded, it needs to replay the
speculative memory instruction, as well as all subsequent
instructions.

Table 1. Locality events used during statistical
simulation

Event Simulator Action
Branch Target Buffer
Miss rate

Stall Fetch until Dispatch

Branch Misprediction
rate

Stall Fetch until Writeback

L1 Data Cache Miss rate 6 Cycle operation latency
L1 Data Cache Writeback
ratio

Occupies address and data
bus

L2 Data Cache Miss rate 32 cycle operation latency

L2 Data Cache Writeback
ratio

Occupies address and data
bus

Data TLB Miss rate 32 cycle operation latency

L1 Inst. Cache Miss rate Stop and restart Fetch 6
cycles later

L2 Inst. Cache Miss rate Stop and restart Fetch 32
cycles later

Inst. TLB Miss rate Stop and restart Fetch 32
cycles later

Figure 3: Symmetric multiprocessor
architecture modeled

Bank

Bank

Bank

Bank

Address bus

Data bus

C

L2
$

L2
$

L2
$

L2
$

L2
$

L2
$

LLLLL

C C C C C

L1 $

memory

Instruction Cache Data/Unified Cache

C CPU core



3.1.4. Shared And Private Virtual Memory Pages
If a processor issues a store to a cache line that it does

not own, the store only completes when an invalidation
bus transaction is put on the address bus. However,stores
to shared cache lines cannot be put into a write-buffer
because sequential consistency is implemented.
Consecutivestores to private virtual memory pages can
issue (and be sent to memory) if all their input registers
are ready, if there is a cache port available, if all previous
instructions are stores to private pages, and if all of them
are ready to issue. For example, with two general cache
ports, a sequence of four stores to private pages can be
sent to memory at the rate of two per cycle, even if all the
stores miss in the second level cache. On the other hand,
if the four stores access shared pages, eachstorecan only
be sent to memory if the invalidation for the preceding
store has reached the address bus.

3.2. Processor Synchronization

The benchmark programs we model use both critical
sections and barrier synchronizations to coordinate com-
munication and sharing of data. For critical sections, the
architecture implementsload-linkedandstore-conditional
instructions. Theload-linked instruction is retried until it
finds the lock variable is clear (unlocked). It thenac-
quires the lock by via astore-conditionalto the same
memory location. If the memory location has been invali-
dated since the load-linked completed, the store-
conditional will fail, indicating that another processor
entered the critical section first. When the program is fin-
ished with a critical section, it simply releases the lock via
a conventional store instruction.

4. Multiprocessor Statistics

To model the multiprocessor features described in the
previous section, we use statistics for modeling cache
coherence events, sequential consistency events, lock ac-
cesses, and barrier distributions.

4.1. Cache Coherence and Sequential
Consistency

We add to the locality statistics presented in Table 1
the probability that astoredoes not own the cache line it
targets. During statistical simulation, if astore instruction
is randomly marked to access a cache line it does not
own, it will not complete until a bus invalidation transac-
tion has reached the address bus.

Additionally, in order to capture the performance in-
crease of successivestores to private pages, we keep a
distribution of the number of consecutive stores to private
pages, and another distribution of the number of consecu-
tive stores to shared pages. The statistical simulator ran-

domly generates a number N ofsharedstores, and will
mark the next Nstores generated asshared Page Ac-
cesses. It then does the same for privatestores, and so on.

4.2. Modeling Synchronization

In order to statistically simulate synchronization, we
add three new synthetic instructions types:acquire, re-
lease,and barrier. Descriptions and usage of these in-
structions are described in the following subsections.

4.2.1. Lock Distributions
As explained earlier, when a processor successfully

executes astore-conditionalon the lock variable of a
critical section, it effectively enters the critical section.
During the statistics-gathering phase, we record all the
associated instructions leading up to the successfulstore-
conditional as a singleacquire operation, even if the
processor retries the lock many times. For eachacquire,
or successfulstore-conditional, we look at the memory
address to which it was issued. If this memory address has
not been seen on any processor for an earlieracquire, we
create a newlock numberfor this address. When anac-
quire operation is later issued to this address, the corre-
spondinglock numberis fetched and updates data being
maintained for eachacquired-lock number. Each proces-
sor keeps its ownacquired-lock numberdistribution.
When the processor exits the critical section it releases the
lock by simply storing a zero to the lock address. We re-
cord this event as onereleaseoperation in the statistical
architecture.

We maintain two statistical images for each proces-
sor: one updated when the processor executes outside any
critical section, the other updated when the processor is
inside a critical section. During statistical simulation,
when a processor reaches anacquire operation, the tar-
geted critical section is randomly computed based on the
distribution of acquiredlock numbers, collected during
the detailed simulation. The processor will spin on the
acquireoperation, until the section is free (no other proc-
essor is executing inside). After entering the critical sec-
tion, instructions are generated based on the critical statis-
tical image until anacquire is generated. Therefore, the
average length of a statistical critical section and a critical
section from the real execution are the same.

When a processor tries to acquire a lock the first time
after other processors successfully enter that critical sec-
tion, it incurs a cache miss, since the lock content has
changed. We model this feature by marking the critical
section as a‘future miss’to all other processors. Likewise,
when the processor exits the critical section, after are-
leaseis generated, it will mark this critical section as gen-
erating onefuture missto all other processors. No mecha-
nism prevents starvation, though the original program
may do so.



4.2.2. Nested Locks
Some programs may acquire nested locks, i.e. they

acquire a second lock when they already hold one. We do
not model this situation and record it as sequence of two
independentacquires and releases. At least for the
benchmarks considered, this does not have a significant
performance effect.

4.2.3. Counters
Updating a global counter appears as a successful

store-conditionalthat is not followed by arelease, since
the critical section operation is actually performed by the
store-conditional. In our statistical model, we identify
lock-numbers, with no correspondingrelease, and mark
them as counters. This informs the statistical simulator
that no release instruction should be issued on this lock.

4.3. Barriers

There are two problems with synchronization barri-
ers. First, they often occur at coarse granularity involving
thousands or tens of thousands of instructions. For some
benchmarks barriers are few in number, but cover a long
time period. This is in contrast to ordinary instructions
and other common statistical events that are large in num-
ber but require a brief period of time to complete. The
second problem is that barriers typically involve all the
processors, so they cannot be modeled in a statistically
independent way in each processor. To deal with these
problems, we scale down the proportion of execution be-
tween barriers in the detailed execution relative to the
length of the statistical simulation. During the statistics-
gathering phase, every time a processor is the first to
reach a particular barrier, a new system-wide barrier
number is assigned to it, so that all other processors know
which barrier number they reached. We record the num-
ber of instructions each processor commits since it passed
the previous barrier. At the end of the program execution
the instruction counts are scaled to the total number of
instructions each processor executed. The statistical simu-
lator is then configured to generate a fixed number of
committed statistical instructions, which it compares to
the total number of instructions committed by the system
during statistics gathering. The purpose is to scale down
the amount of work done between barriers in proportion
to the length of the statistical simulation.

Generating barriers has several disadvantages when it
comes to simulation time. Since we in fact split the execu-
tion in multiple program phases, we should wait for each
phase of statistical simulation to converge to a perform-
ance level before generating new barriers. However, it is
necessary to know ahead of time the total number of
committed synthetic instructions to execute in order to
scale the barrier rates accordingly. To maintain accuracy,
it then becomes necessary to overestimate the number of
statistical instructions to generate and verify whether con-

vergence has been reached during each phase. We used
this technique to simulate barriers, and apart from a few
benchmarks described in later sections, performance con-
vergence was usually achieved within 1 million statistical
instructions per processor.

5. Evaluation

In this section we compare statistical simulation of
SMP systems with detailed, clock-level simulation using
SimpleMP [8], a parallel, superscalar out-of-order simula-
tor, which is based on SimpleScalar [9] core model.

5.1. System Model

The statistical simulator is used to simulate systems
with 1 to 16 processors. The processors each use a statis-
tical model of a superscalar processor as formulated in [4]

and summarized earlier. The memory architecture de-
scribed in the previous section is implemented as a queu-
ing system, with a queue for the shared bus, for the data
bus, and for each memory bank. The statistical simulator
uses the same parameter values used in Simple MP. The
baseline parameters for the memory hierarchy configura-
tion are summarized in Table 2. The baseline core proces-
sor parameters are given in Table 3.

5.2. Benchmarks

We consider main workload types: multiprogrammed
workloads consisting of independent programs, and paral-
lel, synchronized workloads. Multiprogrammed work-
loads are collections of SpecInt [10] benchmark pro-
grams. The performance of SpecInt benchmark programs
is dictated by the CPU core performance, as well as the
memory hierarchy performance. The performance of
SpecFP benchmark programs are generally limited more

Table 2: Modeled memory architecture
Memory
Architecture

Description

L1 cache Instruction: 64K, 2-way
Data: 64K 2-way
64 bytes cache lines

L2 cache Unified 512K, 4-way associative
64 bytes cache lines

Shared
Memory

1 to 4 banks, 68 cycles latency

Address Bus Shared, FCFS
12 cycles latency before request sent
to main memory

Data network Shared, FCFS
16 bytes wide
20 cycles access latency(first chunk)
2 cycles for additional chunks



by the memory hierarchy performance and are less inter-
esting for study. The synchronized multiprocessor
benchmarks from the Splash-2 benchmark [11] suite have
inter-processor communication via shared variables and
are synchronized via critical sections and barriers. Our
benchmarks are all compiled using GCC with –O3 opti-
mization. For initial statistics gathering, SimpleMP [8]
was used and each benchmark was simulated with its ref-
erence input for 12 hours, which corresponds to approxi-
mately one billion total instructions.

5.3. Results

We evaluated statistical simulation on Splash-2 parallel
benchmarks (for 1,2,4,8,12, and 16 processors), and a
multiprogrammed workload of SpecInt95 (for 1,2,4, and 8
processors). Since detailed timing simulation of
multiprocessor programs is very slow, it seemed practical
to gather as many sets of statistics as possible during one
single simulation run. However, this significantly
increased the amount of memory required to execute the
SimpleMP timing simulation. For multi-programmed
workloads memory usage increases linearly with the
number of processors, so we had to limit the study of
multi-programmed workloads to 8 processors (1GB).
Also, due to input requirements of some parallel
benchmarks programs (again, because of SimpleMP

detailed simulation; not the statistical simulator), some
benchmarks could not be run for all configurations.

5.3.1. Multiprogrammed Workloads
For reasons that are not inherent to statistical simula-

tion, but rather due to our modified version of the detailed
SimpleMP implementation, each workload consisted of
multiple copies of the same SpecInt95 program. Each
processor runs its own independent process, each having
its own copy of the code segment and its own copy of the
data segment. All memory references therefore access
only private virtual pages. For these benchmarks, a single
shared main memory bank is used. SpecInt benchmarks
are targeted towards uniprocessors, and thus use the
shared bus and shared memory less frequently than the
parallel workloads.

Statistical simulation performance (total instructions
per cycle or IPC) was measured at ten thousand cycle
intervals. Performance was considered to have converged
when the performance difference between two consecu-
tive intervals was within 1%. Convergence occurred
within 150K cycles for a single processor, and within
200K cycles for 8 processors. This translates into one and
a half to two minutes on a 900Mhz Pentium when simu-
lating an eight processor system. The corresponding de-
tailed simulation takes 12 hours to complete -- a two order
of magnitude speedup. Figure 4 shows performance re-
sults (measured as aggregate IPC) for the detailed Sim-
pleMP simulation and for statistical simulation.

In general, the performance estimates of the statistical
model for multiprogrammed workloads are very accurate
(less than 10% error) forIjpeg, Perl andGcc, GoandLi,
but it does show significant errors at 8 processors for
Compress (underestimated by 17%). On the benchmark
reference input,Compressspends most of its execution
time in one tight loop, which has been shown in [4] to be
a cause of discrepancies between statistical and exact
simulation for uniprocessors.

5.3.2. Scientific Parallel Workload Results
For parallel workloads, SPLASH-2 benchmarks were

used. Initial simulations were performed with a single
main memory bank system (which would create signifi-
cant contention for larger systems), and follow up simula-
tions use a four-bank system.

Figure 5 illustrates overall modeling accuracy as well
as the importance of modeling cache coherence events
when using one memory bank. The figure shows the base-
line instruction throughput as given by detailed SimpleMP
simulation; it also gives results with statistical simulation
1) assuming all memory requests require cache coherence
actions (all interventions), 2) all requests are served by
main memory (No interventions), and 3) cache coherence
events are randomly distributed based on the program
statistics (statistical interventions). We can see significant
accuracy improvements with statistical cache event mod-

Table 3: Modeled processor architecture
Processor node Description
Register Update
Unit

64 entries

load / store Queue 32 entries
Fetch Fetch 4 instructions per cycle

8 entry Instruction fetch Queue
Issue 4 instructions per cycle
Decode / Dispatch 4 instructions per cycle
Commit 4 instructions per cycle

Figure 4: Real and estimated instruction throughputs
for a simple Mix, on multi-programmed workloads,

with 1 memory bank

0

5

10

15

20

25

ijpeg1
2 4 8 com

press1
2 4 8 perl1
2 4 8 gcc1
2 4 8 go1
2 4 8 li1 2 4 8

Benchmark

IP
C

SimpleMP
Statistical



eling (up to 100% change in IPC forRaytraceor Radios-
ity with 16 processors). This workload characteristic is
therefore important to model, and all following results
statistically model cache interventions.

When interventions are statistically modeled,Bar-
nes-Hutand Oceanaccurately follow the exact perform-
ance curve when the number of processors is increased.
Raytraceand Radiosityfollow the trend accurately up to
12 processors, but the statistical simulation ofFmm sig-
nificantly overestimates the performance speedup for con-
figurations with four and more processors. The overall
error across configurations is 29%, or 19% excluding
Fmm. Statistical simulation converged within two to ten
minutes for all programs and configurations, exceptRadi-
osityandRaytraceusing 16 processors.

Because of the need to execute, on average, as many
instructions inside statistical critical sections as the pro-
gram does, we cannot scale down the length of critical
sections to the total number of instructions necessary to
reach convergence. Both benchmarks,RadiosityandRay-

trace, make intensive use of lock synchronization, which
considerably increases their convergence time to 25 and
45 minutes at 12 and 16 processors. This convergence
time is independent of the number of instructions for
which statistical data has initially been collected; it is only
function of the contention for critical sections and their
abundance.

Parallel programs share data most often by writing to
shared pages. As explained earlier in Section 4, writing to
a private page allows the processor to benefit from ag-
gressive speculative execution of store instructions. To
evaluate the impact of modeling this feature, we statisti-
cally simulated the workload assuming 1) all pages are
shared (all shared Vpages), 2) all pages are private (all
private Vpages), and 3) that their status is randomly dis-
tributed (statistical Vpages sharing) when the trace is
created. As Figure 6 shows, the performance levels pre-
dicted by the statistical simulator do not change signifi-
cantly. In the rest of this study, we randomly distribute the
page sharing status, based on the distribution of consecu-
tive accesses to a private page, as described in Section
4.1.

An important source of performance losses in parallel
programs is synchronization and barriers. Results thus far
have includedacquiresand releasesas part of the basic
mix; we now consider the importance of barriers, which
are more difficult to model due to the granularity issues
described earlier. Figure 7 compares the performance pre-
dicted by detailed SimpleMP simulations, with perform-
ance predicted by statistical simulation using 1) the basic
instruction distribution, but with no barrier instructions
(Statistical), and 2) a statistical simulation with randomly
generated barrier instructions in the program trace (Statis-
tical+Barriers), according to the technique described in
Section 4.3. For these simulationsFmm is the only
benchmark to show improved accuracy from adding sta-
tistical barriers, reducing the error to 32% from 150%
with 16 processors. Other benchmarks are not affected

Figure 5: Real and estimated instruction throughputs
with different approximations of cache interventions

rates, for parallel workloads, on a system with 1
memory bank

0

5

10

15

20

25

30

35

barnes4
8 12 16 fm

m
2

4 8 16 ocean1
2 4 8 ray1
2 4 8 12 16 radiosity1
2 4 8 16

Benchmark

IP
C

SimpleMP
No Intervention
All Interventions
Statis tical Interventions

Figure 6: Real and estimated instruction throughputs
with different approximations of access rates to shared
and private pages, for parallel workloads, on a system

with 1 memory bank

0

5

10

15

20

25

30

barnes4
8 12 16 fm

m
2

4 8 12 ocean1
2 4 8 ray1
2 4 8 12 16 radiosity1
2 4

Benchmark

IP
C

SimpleMP
Mix, All Private Vpages
Mix, All Shared Vpages
Mix, Statis tical Vpage sharing

Figure 7: Real and estimated instruction throughputs
with and without generating statistical barriers, for

parallel workloads, an a system with 1 memory bank

0

5

10

15

20

25

30

barnes4
8 12 16 fm

m
2

4 8 12 ocean1
2 4 8 ray1
2 4 8 12 16 radiosity1
2 4 8 16

Benchmark

IP
C

SimpleMP
Statistical
Base = Statistical + Barriers



because the barriers issued by their processors are tightly
grouped in time; i.e. they tend to reach the barrier at about
the same time. This improvement brings the average er-
ror for configurations with 12 processors or less to 15%.

Moreover, the statistical performance trends of all
benchmark programs precisely follows the performance
trends of execution-driven simulations. The performance
of Barnes-Hutdegrades by 18% between 8 and 16 proces-
sors, while statistical simulation suggests a performance
degradation of 24% between the same configurations
(Figure 7). The statistical performance curve ofRaytrace,
accurately follows the performance curve given by Sim-
pleMP up to 12 processors. It shows between 12 and 16
processors a performance loss (-20%) with statistical
simulation while SimpleMP shows a low performance
increase (+9%). The statistical and execution-driven per-
formance curves ofFmmandOceanare comparable up to
8 processors after which they start diverging. Additional
results show that this discrepancy can be partly reduced
by using more complex instruction profiles, as shown in
[4].

5.3.3. Quad-Memory Bank Systems
The preceding set of experiments used one memory

bank, which puts high pressure on the shared memory.
We relax this condition here and study which statistical
models are most accurate for 4 memory banks. Results
are given in Figures 8 and 9.

For this system configuration, the lower memory
utilization does not require the addition of cache interven-
tions to improve accuracy significantly (Figure 8). How-
ever, as with a single-bank system, the widely dispersed
barriers inFmm require the modeling of barrier genera-
tion to achieve good accuracies (Figure 9). Overall,
statistical modeling of barriers, synchronization, and the
simple mix give accurate performance estimates forBar-
nes-Hut(11% average error),Raytrace(9% average error)
and Radiosity(up to 8 processors with 4% error). How-
ever it shows less accuracy onFmm (25% average error)

andOcean(70% average error).
This simple model is sufficient to identify the number

of processors after which there is a diminishing
performance return. For eight and more processors,
execution-driven simulation ofBarnes-Hut shows a
strong performance degradation (19%) from 8 to 16
processors (time-constrained simulations), which
correlates very well with the statistical simulation results
(15% performance loss). Likewise, statistical simulation
clearly identifies the point of diminishing performance
return forOceanafter eight processors, andRaytraceafter
twelve processors. ForRadiosityand Fmm, which have
more consistent speedups with respect to the number of
processors, statistical simulation results accurately follow
their performance trend up to 8 processors. We did
perform additional simulations withOcean and Fmm
using more detailed instruction mix modeling as described
in [4]; these more accurate instruction mixes can reduce
the error inOceanby half, andFmmby 15%.

6. Conclusions

Recent proposals investigated the applicability of
statistical simulation for microprocessor design. Program
statistics are collected during an initial execution-driven
simulation of a benchmark, and later used to predict
performance trends for a wide variety of architecture
changes, one to two orders of magnitude faster than
conventional simulation. In this paper, we extended the
method to symmetric multiprocessor systems. We first
described the set of statistics that enable statistical
simulation of multiprogrammed multiprocessor systems,
running workloads made of SpecInt95 benchmark
programs. Their statistical simulation converged within
one to two minutes with a small 10% average error, for
configurations of 1 to 8 processors, and can be run over a
wide range of architecture parameters.

In order to accurately simulate synchronized parallel

Figure 8: Real and estimated instruction throughputs with
different approximations of access rates to shared and

private virtual pages - for parallel workloads, on a system
with 4 memory banks.

0

5

10

15

20

25

30

barnes1
2 4 8 12 16 fm

m
2

4 8 12 16 ocean1
2 4 8 16 ray1
2 4 8 12 16 radiosity1
2 4 8 16Benchmark

IP
C

SimpleMP
Mix, All Private Vpages
Mix, All Shared Vpages
Mix, Statistical Vpage sharing

Figure 9: Real and estimated instruction throughputs, with
and without generating statistical barriers - for parallel

workloads, on a system with 4 memory banks

0

5

10

15

20

25

30

barnes1
2 4 8 12 16 fm

m
2

4 8 12 16 ocean1
2 4 8 16 ray1
2 4 8 12 16 radiosity1
2 4 8 16Benchmark

IP
C

SimpleMP
Statistical
Base = Statis tical + Barriers



scientific workloads, statistics on cache interventions,
barriers distributions, lock accesses, and critical section
mixes are added to the uniprocessor statistics. Our results
show that it is possible to achieve accurate performance
estimates on parallel programs from the Splash-2 bench-
mark suite within two to ten minutes of simulation. On a
single-bank system statistical simulation of parallel
benchmarks leads to 15% average error for configurations
with 1 to 12 processors, and 25% average error for all
configuration with 16 processors but Ocean. On a quad-
bank system, statistical simulation leads to 12% average
error on configurations with 1 to 16 processors running
Splash-2 benchmarks programs, apart from Ocean. Statis-
tical simulation also very accurately predicts the speedup
(i.e. the trend) for Ocean with increasing number of proc-
essors, but has a higher absolute error (up to 85%) on in-
dividual configurations.

Perhaps more important than the absolute errors is the
ability to predict performance trends as shown in the per-
formance curves. The trend predictions are sufficient to
get initial performance estimates in a few minutes in most
cases. For the cases with larger errors, using more de-
tailed modeling of instruction distributions does some-
times help (at the cost of longer convergence time) and
almost halves the error on Ocean.

Overall, we conclude that statistical simulation for
SMP systems is a useful tool for investigating design op-
tions quickly. The simulation technique usually converges
to a performance estimate within minutes, can be easily
used to evaluate a wide range of system design tradeoffs.

Acknowledgements

This work was supported in part by National Science
Foundation grant CCR-9900610, by IBM Corporation,
and Intel Corporation. The authors would also like to
thank Ho-Seop Kim for his help with early versions of the
statistical simulator and Timothy Heil for his valuable
comments on this work.

References

[1] R. Carl and J. E. Smith, “Modeling Superscalar Processors
via Statistical Simulation,”Workshop on Performance Analysis
and Its Impact on Design,” June 1998.
[2] L. Eeckhout, K. DeBousschere, and H. Neefs, “Performance
Analysis Through Synthetic Trace Generation,”Inernational
Symposium on Performance Analysis of Systems and Software
[3] M. Oskin, F. T. Chong, and M. Farrens, “HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor
Design,” Proc. 27th International Symposium on Computer
Architecture, June 2000.
[4] S. Nussbaum and J. E. Smith, “Modeling Superscalar
Processors via Statistical Simulation”, May 2001
[5] P. Sweazy and A. J. Smith. “A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE

Futurebus”, In the 13th International Symposium on Computer
Architecture, 1986, pp. 414- 423.
[6] Chris Gniady, Babak Falsafi, and T.N. Vijaykumar “ Is SC +
ILP = RC ?“, In Proceedings of the 26th Annual International
Symposium on Computer Architecture, May 1999.
[7] C. Scheurich and M. Dubois, "The Design of a Lockup-Free
Cache for High-Performance Multiprocessors," Proceedings of
Supercomputing '88, pp. 352-359, 1988
[8] Ravi Rajwar, Personal communication, SimpleMP,
multiprocessor simulator developed as part of the Galileo
project. http://www.cs.wisc.edu/~galileo
[9] Doug Burger and Todd Austin, “The SimpleScalar Tool Set,
Version 2.0,Computer Architecture News, pp. 13-25, June 1997.
[10] “Standard Performance Evaluation Corporation (SPEC2000
CPU benchmark)". http://www.spec.org/osg/cpu2000/.
[11] Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., and Gupta,
A.,"The SPLASH-2 Programs: Characterization and
Methodological Considerations", Proc. 25th International
Symposium on Computer Architecture (ISCA '98), Barcelona,
July 1998, pp. 180-191.
[12] P. Bose and T. M. Conte, “Performance Analysis and Its
Impact on Design,”IEEE Computer, pp. 41-49, May 1998.
[13] Rajagopalan Desikan, Doug Burger, and Stephen W
Keckler, “Measuring Experimental Error in Microprocessor
Simulation”, In Proceedings of the 8th Annual International
Symposium on Computer Architecture, July 2001.
[14] Y. Yan, X. Zhang and Z. Zhang, "Cacheminer: a runtime
approach to exploit cache locality on SMP",IEEE Transactions
on Parallel and Distributed Systems, Vol. 11, No. 4, 2000, pp.
357-374.


