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Abstract 

It is proposed that a co-designed Virtual Machine Monitor (VMM) can be used for saving and 

restoring implementation state when context switches occur in a manner that is completely transparent to all 

conventional software.   As an extended case study, we use the VMM to save and restore branch predictor 

contents.  For an 8kbit gshare predictor and a context switch interval of 100K instructions, the performance 

benefit is 4% over initializing the predictor to weakly taken following context switches (the best alternative 

we could find). 

1 Introduction 

For many years a dominant trend in processor microarchitecture has been toward increasing 

amounts of dynamic adaptation based on program behavior.  A very early example is cache memory: the 

instructions or data held in a cache reflect dynamic program behavior and change as the program changes.  

Other examples are branch prediction and prefetch algorithms based on prior program behavior [1]. More 

recently, dynamically configurable hardware has been proposed for enhancing performance or power 

efficiency [2-5].  These latter schemes typically record dynamic program performance information in order 

to guide the hardware configuration.  Virtually all the dynamic methods “learn” program behavior by 

maintaining tables of implementation state, and in some cases the total amount of implementation state may 

be quite large.  The implementation state, by definition, is not specified as part of the architecture and is not 

needed for correct program operation.  Whenever there is a program context switch much of this 

implementation state (and learned program behavior) may be lost and must be re-learned when the program 

resumes execution. 

Our overall research is targeted at co-designed virtual machines where hidden, implementation-

specific software is designed in conjunction with the hardware and is used to optimize performance and/or 

power.  Virtual machine software provides an important means for shifting complexity from hardware to 

software.  It can perform a number of functions, including binary translation and optimization [6-7], 

implementation of complex instructions [8], and management of configurable hardware. We propose that an 

important additional function is saving and restoring implementation state when context switches occur. 
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This incurs some time overhead, but it is more than offset by substantially reduced learning times required 

by adaptive performance techniques. 

In following sections, we describe a simple microarchitecture that underlies a co-designed virtual 

machine, and illustrate the ability to save/restore implementation state by using a branch predictor as a 

detailed case study. 

2 Co-Designed Virtual Machines 

The base technology is co-designed virtual machines. Here, the processor implementers have access to 

a region of memory completely hidden from conventional software. The hidden memory is a portion of real 

memory that is concealed from the conventional software at boot time and is used only by the virtual 

machine. Virtual machine software is stored in ROM and copied to a portion of hidden memory as the first 

step of the boot sequence.  The remainder of hidden memory is used as a VMM-managed software cache for 

translated code. 

The VMM, co-designed with the hardware, provides implementers with an important mechanism for 

shifting complexity from hardware to software. The two best-known systems using this approach are the 

Transmeta Crusoe [6] and IBM Daisy [7], where the primary function is code translation and dynamic 

optimization. In these systems, a binary translator/optimizer converts instructions from a virtual instruction 

set (e.g. x86 or PowerPC) onto an implementation instruction set (VLIW for both Crusoe and Daisy).  A 

virtual machine monitor (VMM) manages translation and optimization functions.  

 Because the Crusoe and Daisy processors both translate conventional instruction sets onto VLIW 

architectures, binary translation is a major portion of their VM implementations.  In general, however, one 

could use a more conventional superscalar implementation, with less aggressive translation and 

optimization, and/or one could perform no binary translation at all, and use the VMM only for managing 

hardware resources (Fig. 1). In this latter scheme, the virtual instruction set and implementation set are 

essentially the same. However, the implementation instruction set may have a few additional instructions to 

allow it to interact directly with the hardware implementation.  As shown in the figure, the VMM can use 

these instructions to read hardware monitoring information (for example, branch prediction accuracies), and 

write hardware configuration information.  Also, the VMM can be given the capability of reading and 

writing implementation state.  This information can be used for collecting additional dynamic program 

information or for putting software into the dynamic optimization loop (for example with a software-

directed trace optimization [9]).   This feature can also be used for saving and restoring parts of the 

implementation state, as we consider in this paper. 
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2.1 Microarchitecture 

The microarchitecture of a VMM implementation is in Fig. 2.  In the figure, co-designed VM 

hardware has been integrated into a generic pipeline.  The pipeline consists of a program counter, the 

instruction cache, decode logic, and the remainder of the pipeline(s) simply labeled as such.  The added VM 

logic is primarily located around the MUX that feeds the PC.  This MUX normally has inputs for performing 

the PC increment, branches, vectored interrupts, etc.  To this MUX has been added two inputs, one for a 

VMM entry point (the place in hidden memory where the VMM starts executing) and for restoring the 

original PC after VM software is finished executing.   The VMM takes control of the processor by saving 

the current PC value in a special PC save register and switching the MUX to select the VMM entry point. 
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Figure 1: A Co-Designed Virtual Machine. Conventional software is in visible memory and the Virtual 

Machine Monitor (VMM) is in hidden memory.  The VMM can access profiling hardware, adjust 

configuration hardware, and read/write implementation state.  In the Transmeta Crusoe and IBM Daisy, the 

VMM also manages binary translation (not shown in the figure). 

 

The VMM can take control in any number of situations determined by the designers, as illustrated in 

the figure.  For example, performance monitor conditions can initiate transfers to the VMM, as can 

temperature sensor values.  The VMM can also manage an implementation timer to take control after a 

period of time that it selects.  Certain opcodes can cause the VMM to be entered, as can trap conditions.   

The VMM can save any or all of the processor’s register context into hidden memory and/or it can use its 

own dedicated implementation registers.  Then, VMM software can read performance and temperature 

information, and reconfigure the hardware if needed.  In effect, the VMM is a micro-operating system 

developed specifically to manage the implementation.  It is completely hidden from conventional software 

(just as binary translation is completely hidden in Crusoe and Daisy). 
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2.2 Saving and Restoring Implementation Context 

As stated in the introduction, many of the techniques for dynamic performance enhancement use a 

large amount of implementation state that reflects the history of the current program. It takes some time to 

accumulate this information, and whenever there is a context switch, some or all of this information may be 

lost.  Consequently, performance is reduced when the program eventually resumes execution. This can be 

avoided, however, if the VMM can read the implementation state and save it to a data area in hidden 

memory.  Then, when the program context is restored, the implementation context can also be restored. 
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Figure 2 Co-Designed VM microarchitecture. 

 

An important issue is the ability to identify the implementation contexts without relying directly on 

conventional software.  This can be done in at least two ways.  One way is to rely on architected control 

registers that contain context-specific information.  For example, different contexts will typically use 

different page tables, so an architected control register that points to a process’s page table can often be used 

to distinguish the context.  Another approach is for the VMM to hash the PC and some of the architected 

register values to provide a context identifier at the time a context is switched out.  Then, this hash value can 

be used by the VMM as a way of identifying saved implementation contexts when a new context is loaded.  

A key point is that the implementation state does not have to be correct for correct architected operation.  

That is, if the VMM occasionally loads the wrong implementation context the worst thing that can happen is 

performance loss.  
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As an extended example, we consider the implementation state contained in branch prediction 

tables.  We assume the branch predictor table contents can be read and written via special implementation-

dependent instructions [10] available to the VMM. Whenever the operating system is about to switch to a 

new context, the VMM can save the branch predictor contents, and load the predictor contents for the new 

context. 

3 Context Switches and Conditional Branch Prediction 

Previously, researchers have observed that context switches can affect branch prediction accuracy 

[11-13].   Many real systems execute a multi-programmed workload and may experience a large number of 

context switches. Context switch frequency depends on a number of factors such as the number of 

applications active on the system, the types of applications, and OS scheduling. For example, we performed 

some simple measurements on a 800MHz Pentium III based workstation running Linux, and the context 

switch frequency varied from around 300/sec to 5000/sec depending on the load and types of applications 

running. If we assume one instruction is executed per clock cycle, the higher end corresponds to a context 

switch every 150K instructions. Keeping these numbers in mind, we conducted our experiments over 

context switch intervals ranging from 100K to 1000K instructions.   These numbers are also in line with 

other studies that consider the effect of context switches on branch prediction [11-13]. 

3.1 Estimating Performance Losses 

First we estimate the predictor-related performance losses due to context switches. For this study, 

we model a processor along lines of a modern superscalar processor having an 8Kbit gshare predictor [14] 

and a 10-bit global history register.  A more complete description of the processor configuration is shown in 

Table 1. All simulations were performed on a modified version of SimpleScalar 3.0b [15] running Alpha 

ISA binaries. We used integer benchmarks from the SPEC 2000 suite, and chose Gcc, Eon, Gzip, Perl, Gap 

and Mcf in order to cover a wide range of predictor performance. The branch prediction miss rates for these 

benchmarks ranged from 0.9% to 14%.  All the simulations were run for 400 million instructions. 

We first evaluated branch predictor performance with no context switches, and then estimated the 

performance loss with context switches at intervals of 100K, 200K, 500K and 1000K instructions.  At each 

context switch interval, the predictor is re-initialized to model the effect of the context switch.  The 

following methods were used for initializing the predictor after a context switch. 

1) Random – The branch predictor contents are initialized to random values. 

2) “Worst Case”  (or at least an extremely bad case) – The predictor entries are reversed; that is, if a 

predictor entry was either strongly or weakly not taken prior to the context switch, it is initialized to 

strongly taken after the switch.  Similarly the taken branch entries are re-initialized to strongly not 

taken. 
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3) Fixed – All the predictor entries are initialized to the same fixed value after a context switch. There 

are four sub-cases:  strongly not taken, weakly not taken, weakly taken, and strongly taken. 

 

           Parameter                   Value 
RUU size 64 entries 
LSQ size 32 entries 
Fetch queue size 4 instructions/cycle 
Decode, Issue, Commit width 4 instructions/cycle 
Branch Predictor ghsare: 4K entries, 10-bit GHR 
Return Address Stack 32 entry 
Branch Target Buffer 1K entry, 4 way 
Functional Units 4 Integer ALUs 
 1 Integer Multiply/divide 
 4 Floating point ALUs 
 1 Floating point Multiply/divide 
L1 Instruction and Data caches 1K sets, 2-way, 32 byte block size 
L2 Unified cache 2K sets, 4-way, 64 byte block size 

 

Table 1: Processor configuration used in simulations. 

 

Predictor performance was measured using the number of mispredictions per 1000 instructions (Fig. 

3), and overall processor performance is measured in clock cycles per 1000 instructions (Fig. 4). The 

baseline case is nada -- the one with no context switches.  

When the predictor state is randomized at a context switch point, there are approximately 300-600 

additional mispredictions as the predictor re-learns the branch history.  This is reflected in Fig. 3 where there 

are 3-6 additional mispredictions per 1K instructions with a context switch interval of 100K instructions.  

Because the branch misprediction penalty is approximately 9 cycles on average, the performance loss is on 

the order of 30-50 cycles per 1K instructions as shown in Fig. 4.   For larger context switch intervals, the 

total number of additional mispredictions does not change much, but because of the larger context switch 

intervals, the average per 1K instructions diminishes.   At 1000K intervals, the number of additional 

mispredictions per 1K instructions is slightly less than 1, and the performance loss is less than 10 cycles per 

1K instructions.  Percentage-wise, the performance degradation for randomizing predictor state was as high 

as 11%, with and average of 8.4% for context switch intervals of 100K instructions.  For 1000K instruction 

intervals, the maximum degradation was 2% while the average was 1.5%. 

 As expected, the performance loss for the “worst case” initialization was very bad.  The maximum 

performance loss ranged from around 18% for intervals of 100K instructions to 4.7% for 1000k instructions, 

while averages varied from 13.8% to 3.3%. In practice, there could be pathological cases, due to a complete 

mismatch of two contexts, which could lead to performance degradations this severe. 
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Figure 3: Mispredictions/1K instructions for various initialization schemes. nada:  no context switches; 

rand: randomize predictor; sntaken: set to strongly not taken; wntaken: set to weakly not taken; wtaken: set 

to weakly taken; staken: set to strongly taken; worst: worst case initialization.  

 
 

 

 
Figure 4: Performance in terms of Cycles/1K instructions for various initialization strategies. 
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random case and actually approaches the “worst-case” performance for some benchmarks. In typical 

programs more of the branches are taken, and hence by setting all predictions to strongly not taken, we get 

very high performance degradation.  On the other hand, setting all the predictor entries to strongly taken 

gives better performance, but there still are cases like Eon and Gzip, where this strategy results in worse 

performance than the random case. Both these strategies initialize the predictor to strongly biased values, 

causing two mispredictions for the branches that are predominantly biased the other way. This would 

suggest that initialization to weak states will lead to a significant improvement in performance. The results 

in Figs. 3 and 4 confirm this intuition. Initializing to weakly not taken gives a significant performance 

advantage compared with the random case and the strongly biased cases.  With initialization to weakly taken 

at context switches, the number of mispredictions is cut roughly in half, i.e. to 150 to 300 total additional 

mispredictions per context switch.  The  maximum performance loss goes down to about 6.5% for 100K 

instruction context switch intervals and to 1.1% for 1000K instruction intervals.   Hence, this performance 

loss will serve as a baseline upon which a VMM-based method for saving and restoring branch predictor 

state will improve. 

4 VMM Approach 

With a co-designed virtual machine, the entire predictor state can be saved and restored, so that 

context switches do not affect the number of mispredictions at all.  However, the saving and restoring of 

predictor contents can lead to performance losses.   For this study, we assume that all performance losses are 

due to code execution by the VMM, and leave other overhead effects, (e.g. pollution of the caches by the 

VMM) for future study, although we touch on the cache issue in the conclusions. 

4.1 Simple Method 

We first consider the most straightforward implementation where the entire content of the branch 

predictor is saved and restored.  The time overhead for this save/restore is an important performance 

consideration.  We have written assembly code and performed timing estimates for the predictor save/restore 

functions.   We assume that one instruction can read or write 64 bits of predictor contents. The main code 

subsequences are 1) about 35 instructions to do initial setup and save/restore architected register values that 

will be used by the VMM; 2) 6 instructions to setup the save/restore loop 3) (n/64)*2 instructions to read the 

predictor and write the contents to memory (for a save; similar counts for a restore); n is the number of bits 

in the predictor. 3) (n/(64*8))*5 loop bookkeeping instructions assuming the save/restore code is unrolled 8 

times.   For the 8Kbit gshare predictor we have been assuming, this is 35+6+256+80=377 instructions.  The 

inner loop can proceed at 2 instructions per cycle, but if we assume 1.5 instructions per cycle overall, this is 

about 250 cycles per save or restore.  Consequently, a save/restore pair is 500 cycles.    Compare this cost 
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with the estimated savings of 1000 to 3000 cycles per context switch; i.e. 150 to 300 mispredictions per 

context switch are eliminated and the misprediction penalty for each is about 9 cycles. 

In order to more accurately determine performance benefits, we compare the VMM save/restore 

method with the best alternative option we have identified: initializing the predictor state to "weakly taken".  

We have (perhaps optimistically) assumed that this initialization can be done in a single cycle.  

As mentioned earlier, the save/restore scheme is essentially equivalent to the case where there are no 

context switches. However, the VMM does have an overhead of about 500 cycles, which must be accounted 

for. This “adjusted performance” for the complete save/restore scheme is shown as simple (Fig. 5). As 

evident from the figure, this scheme gives performance improvements as high as 5% for 100K instruction 

intervals and 1% for 1000K instruction intervals, when compared with the baseline of initialize to weakly 

taken. The average numbers over the same intervals are 3.7% and 0.7% respectively. This indicates that a lot 

more cycles can be gained by eliminating context-switch-induced mispredictions than in saving and 

restoring the predictor contents with the VMM.  In the next section we try to reduce the VMM overhead 

further with simple compression.    

4.2 Compression Method 

As just estimated, the save/restore overhead in the VMM approach is the roughly 500 cycles. One 

way of reducing this overhead is to compress the branch predictor contents (in a simple manner).  One such 

approach that gives an immediate 2:1 compression is to save and restore only the direction of the prediction 

(and the strong/weak information).  When restoring the predictor values, all entries are made “weak”.  This 

reduces the VMM overhead to about 420 instructions or ~280 cycles. It also leads to slight branch predictor 

performance degradation, however. 

 Figure 5: The bars show the performance in terms of cycles/1000 instructions for three cases - simple: no 
compression (VMM overhead 500 cycles); compress: 2:1 compression (VMM overhead 250 cycles); 
wtaken: weakly taken initialization (no VMM overhead) 
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Overall, there is a relatively small difference between the compressed and uncompressed methods 

(Fig. 5).  The loss in performance due to increased miss prediction more or less balances the lower overhead 

of the VMM.  The conclusion is that other engineering considerations and second order effects may 

determine whether compression is preferable; for example by considering the amount of hidden memory 

required for saving the contexts or the complexity of the branch predictor.  With larger branch predictors, the 

balance may shift toward the compressed method. 

5 Conclusions 

Co-designed virtual machines provide a means for reducing overall hardware complexity by moving 

some of the implementation complexity into software.  The VMM is in effect a micro-operating system that 

manages aspects of the hardware implementation.  An interesting side effect is that the VMM can also be 

used for saving and restoring implementation state to reduce or eliminate learning times following context 

switches.  In this paper we use the VMM to save/restore branch predictor state on context switches.  When 

taking VMM overhead into account, there is significant performance benefit.  The VMM approach leads to a 

4% improvement in performance (for 100K instruction context switch intervals) when compared with 

initializing all entries to weakly taken.   

 In this study, we did not flush the caches and BTB on context switches; a preliminary study (not 

given here) showed that the relative performance improvement remains the same when the caches and BTB 

are flushed, mainly because the predictor takes longer to train compared with the BTB, and the caches have 

a lot of spatial locality.  In any case, we did not pursue this further because we feel a better approach is to 

“warm up” the BTB and caches by using the VMM.  In future work we plan to have the VMM record and 

save a number of recently used BTB entries and cache lines, and initialize/prefetch these when a context is 

restored.   
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