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Abstract 
The activity within a processor following 
a cache miss is studied via a series of 
simulation experiments.  This is a pre-
liminary step toward developing ways of 
mitigating data cache miss penalties, 
especially for long misses. With a mod-
est-sized reorder buffer (ROB) of 64 en-
tries, structural blockages due to a full 
ROB are the major cause of the cache 
miss penalty. For the SpecINT2000 
benchmarks, about 90% of long cache 
misses result in a blocked ROB. After 
structural constraints are removed, data 
dependences are found not to be a major 
cause of performance loss.  In fact, in-
struction issuing can proceed at full 
speed for at least one thousand cycles 
(the length we sampled) beyond a data 
cache miss. In some cases we found con-
trol dependences do pose a problem, 
however. That is, there are many mis-
predicted branches that depend on data 
from a cache miss.  With an 8K gshare 
predictor, 30% or more of data cache 
misses feed into a mispredicted branch 
in 7 of 12 benchmarks.  Finally, we dis-
cuss implications for future processor 
designs.  This includes lengthening 
ROBs (and enlarging physical rename 
locations), coupled with a more modest 
enlarging of instruction issue windows. 

1 Motivation 
The overall performance impact of 

data cache misses is a function of the 

number of misses and the penalty per 
miss.  Most research is aimed at reduc-
ing the number of misses, for example 
by prefetching, using victim buffers, etc. 
To reduce the miss penalty, common 
solutions are focused on the memory 
system, e.g. by adding levels to the 
memory hierarchy. In contrast, we are 
interested in reducing the data cache 
miss penalty by applying methods within 
the processor.  As a first step, we have 
been studying what happens within a 
processor when a data cache miss oc-
curs. 

Before proceeding, we define two 
terms.  First, miss delay is the latency for 
fetching miss data from the lower level 
in the memory hierarchy where it re-
sides.  Second, miss penalty is the per-
formance loss due to a cache miss.  Miss 
penalty is related to miss delay, but in 
some cases all or part of the miss delay 
may be hidden.  In a processor with hi-
erarchical caches, miss delays vary over 
a wide range, from 10 cycles or less (for 
an L1 to L2 miss) to perhaps hundreds of 
cycles (for a miss all the way to main 
memory).   To keep the discussion sim-
ple, we will consider two cases: short 
misses and long misses.  And, most of 
our emphasis is on long misses because 
of their increasing importance due to the 
widening processor/memory perform-
ance gap. 

From the processor perspective, 
there is a penalty following a long miss 
because issuing of useful instructions 
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slows, and eventually stops, when the 
miss occurs.  There are three reasons this 
can happen:  

1) There is a structural blockage.  
For example, the load that misses 
moves to the head of the reorder 
buffer and blocks; waiting to re-
tire.   Then, the reorder buffer 
fills, and/or the processor runs 
out of physical registers, dispatch 
stops, eventually issue stops, and 
nothing more happens until the 
miss data returns from memory 
(or some lower level in the cache 
hierarchy). 

2) There is a data blockage.  That 
is, instructions that depend on the 
load data, either directly or indi-
rectly, begin to pile up in the is-
sue window, eventually the win-
dow is full of data dependent in-
structions, and issue stops.  In a 
sense, this is a structural block-
age, but it is a direct result of 
data dependences.  This is differ-
ent from case 1) because the 
blockage in 1) occurs purely for 
structural reasons; no depend-
ences are necessarily involved. 

3) A control dependence stops issu-
ing of useful instructions.  In par-
ticular, if a mispredicted branch 
is dependent on the load miss 
data, all instructions after the 
branch will eventually be 
flushed. In effect, issuing of use-
ful instructions is blocked by the 
control dependence on the miss 
data. 

 
In the research described here, we 

study the above three causes of the data 
cache miss penalty and discuss the rela-
tive importance of each. We then make 
observations regarding future processor 

microarchitectures that are tolerant of 
data cache miss delays.  

 

2 Methodology 
In order to investigate the three 

causes of performance loss, we per-
formed a number of simulation-based 
experiments.  Because the types of 
blockages, especially the structural 
blockage, depend on a processor’s mi-
croarchitecture, we first describe the 
processor model.  Then we describe the 
simulation model, benchmarks, and the 
general method used. 

2.1 Processor Model 
The relevant components of the 

processors we study are listed below.  
They have been chosen to be consistent 
with the characteristics of modern super-
scalar processors.  Key components are:  

1) Modest issue width – 4-way.  It 
appears that the trend toward 
wider issue widths may have 
topped out, with emphasis shift-
ing to deeper pipelining as a way 
of increasing parallelism. 

2) Renaming in physical register 
file.  The physical register file is 
larger than the logical file, and 
all renamed values are held in the 
physical file. This has become 
the standard method for imple-
menting dynamic superscalar 
processors. 

3) The issue window and reorder 
buffer are separate and may be 
sized independently.  All in-
flight instructions have a ROB 
entry, but only instruction wait-
ing for data and/or functional 
units wait in the window.  After 
they issue, instructions are re-
moved immediately from the 
window, making room for others. 
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4) The issue window “collapses”; 
that is, the holes due to issued in-
structions may be re-filled.  This 
maximizes the issue opportuni-

ties following a cache miss and 
reduces the likelihood that a full 
window will eventually cause a 
structural blockage. 

 

Table 1: Processor Configuration 

ROB size 64 entries 
Issue Window Size 32 entries 
LSQ size 64 entries 
IF, ID, IS, IC Width 4 instructions/cycle 
Branch Predictor gshare: 8K entries, 13 bit GHR 
Return Address Stack 64 entries 
Branch Target Buffer 4K sets, 4 way 
Functional Units 4 Int. ALUs, 1 Int. MULT/DIV 
 4 FP ALUs, 1 FP MULT/DIV 
L1 I and D Caches 512 sets, 4-way SA, 16 byte block size, 

LRU 
L2 Unified Cache N/A; all L1 misses are 1000 cycles 
Pipeline Depth 5 stages before the issue stage 

2.2 Simulation Model 
To evaluate performance, we used 

a modified version of the SimpleScalar 
simulator [1]. The main modification is 
that the register update unit (RUU) is 
replaced with a separate issue window 

and re-order buffer.   Up to four inde-
pendent instructions per clock cycle may 
issue out-of-order from the issue win-
dow. Table 1 summarizes the processor 
parameters used in all simulations. 

2.3 Workload 
We simulated SPEC 2000 INT 

benchmarks compiled with base optimi-
zation level (-arch ev6 –non_shared –
fast). The reference inputs were used and 
all benchmarks were fast forwarded 400 
million instructions before being simu-
lated for 800 million committed instruc-
tions. 

2.4 Simulation Approach 
We perform simulation experiments 

intended to highlight the above-listed 
causes of data cache miss penalties.  To 
do this, we remove other events that dis-
rupt smooth instruction issue. In particu-
lar, we assume an ideal instruction 
cache, and, for some experiments, we 

assume the branch predictor is ideal as 
well.  A typical simulation experiment 
does the following: 

1) Simulate until the data cache is 
warmed up.  After warmup, wait 
for the first data cache miss. 

2) When the miss occurs, disable all 
additional data cache misses so 
that the effects of the single miss 
can be monitored.   

3) Wait a very long time (1000 
clock cycles) and monitor the in-
struction window, ROB, and in-
struction issue, observing the ef-
fects of the miss. 

4) During (and immediately after) 
the 1000 clock cycles, collect 
relevant data, then let the proces-
sor settle back to normal issuing 
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Table 2: Structural Blockage Statistics 

Benchmark Avg. # insns issued 
after the miss 

Avg. #Insns in 
window after 1000 
cycles 

Fraction of 
samples where  
ROB fills 

bzip2 44.1 13.1 1.0 
crafty 44.6 9.6 0.8 
eon 55.2 6.0 1.0 
gap 56.8 10.7 1.0 
gcc 51.7 8.2 0.9 
gzip 42.0 8.7 0.9 
mcf 55.8 5.5 0.9 
parser 44.2 7.4 1.0 
perl 49.6 6.6 0.8 
twolf 49.6 12.9 0.8 
vortex 49.7 3.5 1.0 
vpr 27.0 16.9 0.6 

and re-enable data cache misses to moni-
tor the next miss. 

The above is repeated, data is accu-
mulated, and then is summarized.  In 
effect, we collect data from a number of 
isolated samples.  Intentionally, this 
method avoids the complications of mul-
tiple overlapping data cache misses.  The 
advantage is that it provides clearer in-
sight into the first-order phenomena that 
take place.  Toward the end of the paper 
we briefly discuss multiple cache misses. 

3 Experiments  

3.1 Structural Blockage 
The first set of experiments is fo-

cused on determining the nature of the 
structural blockage caused by a finite 
ROB and physical register set.  We also 
study the transient behavior as the miss 
occurs and instruction issue eventually 
blocks. 

For these initial experiments, we 
set the window to 32 entries, the ROB to 
64 entries and use 64 physical registers.  
These numbers are typical of what one 
might find in a current superscalar proc-
essor.  Also, the Load/Store queues are 

sized large enough (64 entries) that they 
will not be the initial cause of a struc-
tural blockage. We assume ideal branch 
prediction. 

As described above, after warmup, 
the simulator takes the first data cache 
miss and does not return the data for 
1000 cycles.  In the meantime, other 
loads and stores are forced to hit in the 
cache.  

Table 2 contains statistics for each 
of the benchmarks (listed in column 1).  
The second column is the average num-
ber of instructions that issue after the 
miss is detected. These instructions are 
all independent of the load data. The 
third column is the number of instruc-
tions left in the window after issuing 
eventually stops.  In general, these 
instructions are dependent, either 
directly or indirectly, on the cache miss 
data.  The fourth column is the fraction 
of the samples where instruction issue 
blocks because the ROB fills (as 
opposed to data dependences filling the 
window).  Because the ROB and issue win-
dow are relatively small compared with 
the long miss delay (1000 cycles), in-



 

 5 

struction issue always blocks because either the ROB fills or the window fills. 

Table 3: Data Dependence Blockage Average Statistics 

Benchmark Avg. # insns issued 
after the miss 

Avg. #insns de-
pendent on load 
miss data 

bzip2 3950.1 17.8 
crafty 3746.9 20.1 
eon 3922.9 22.4 
gap 3292.9 31.6 
gcc 3678.4 17.2 
gzip 3501.6 96.2 
mcf 3862.7 11.5 
parser 3648.8 32.6 
perl 3518.8 30.3 
twolf 3672.8 44.7 
vortex 3606.5 7.8 
vpr 2371.8 24.0 

As shown in column four, about 
90% of the time, the ROB usually fills 
first and causes dispatch (and issue) to 
stop.  This indicates that the purely 
structural (ROB) blockage eventually 
leads to the miss penalty.  Or, conversely 
data dependences are usually not the 
problem; there are enough instructions 
independent of the load so that issue 
could have kept going if it were not for 
the ROB.  In columns two and three we 
see this reflected in the large number of 
issuing instructions after the cache miss 
occurs (typically over 40), and the small 
number of dependent instructions left in 
the window (about 9 on average) waiting 
for the load to return.  This highlights 
the fact that data dependences on the 
missing load are not the bottleneck.  The 
bottleneck occurs for purely structural 
reasons.  The only exception is bench-
mark vpr, where a significant number of 
dependent instructions do pile up and 
block issue because of a full window 
about 40% of the time. 

3.2 Data Dependences 
Because the previous section 

shows that structural blockage caused by 
the ROB (and physical register file) is 
the major performance impediment, the 
next set of experiments remove these 
limitations by making the ROB, physical 
register file, and load/store queues very 
large (4K entries each).  The latency to 
main memory is set at 1000 cycles, and 
statistics are given in Table 3. The main 
difference is that now a large number of 
instructions can issue after the miss oc-
curs (column 2).  Because the maximum 
issue width is four and the miss delay is 
1000 cycles, at most 4000 instructions 
can issue under ideal conditions.  For 
most benchmarks, over 3500 actually do 
issue.  This indicates that the vast major-
ity of instructions following the miss are 
independent of the miss data.  Mean-
while, after the 1000 cycle interval, we 
measure only a few tens of dependent 
instructions left in the window; the aver-
age is about 30, with the largest number 
being 96 for bzip. 
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To get additional insight, we 
studied the average number of dependent 
instructions each clock period after the 
data cache miss occurs.  These graphs 

indicate that in most cases, the depend-
ent instructions follow the load fairly 
closely, after which all remaining in-
structions are independent.  Representa

Table 4: Load-to-Mispredicted Branch Statistics 

Benchmark Fraction of 
load misses 

which drive a 
mispredicted 

branch 

Avg. dis-
tance to 

mispredicted 
branch 

Bzip2 0.01 33.5 
Crafty 0.30 20.3 
Eon 0.18 30.6 
Gap 0.33 27.0 
Gcc 0.35 32.4 
Gzip 0.01 27.7 
Mcf 0.44 32.4 
Parser 0.08 35.9 
Perl 0.40 30.2 
Twolf 0.37 65.6 
Vortex 0.16 41.2 
Vpr 0.47 31.3 

tive graphs for SpecINT2000 bench-
marks are in Fig 1.  In some bench-
marks, like mcf, dependent instructions 
come immediately after the missed load.  
Other benchmarks such as gcc show a 
growing number of dependent instruc-
tions through the entire 1000 clock pe-
riod interval. 

3.3 Control Dependences 
If a mispredicted branch is de-

pendent on the load miss, either directly 
or indirectly, all speculative instructions 
following the branch perform no useful 
work.  In effect, useful instruction issue 
stops immediately after the mispredicted 
branch.  To determine the importance of 
these control dependences on the data 
cache miss penalty, we performed ex-
periments as in the previous section, but 
branch prediction is no longer ideal.  We 
collect data to determine how often a 
dependent misprediction follows the 

load miss, and how far from the load it 
occurs.  Note that mispredictions inde-
pendent of the load are still properly 
handled because they can be resolved 
and fetch/issue can continue “under” the 
miss. 

Results are in Table 4.  In column 
2 we see that for many of the bench-
marks, a significant fraction of load 
misses feed branches that are mispre-
dicted.  Overall, about 25% of the miss 
loads lead to a mispredicted branch, but 
there is a lot of variance across bench-
marks.  For 7 of the 12 benchmarks 30% 
or more of the miss loads provide data 
that eventually resolves a mispredicted 
branch. This makes some intuitive sense, 
because tests of data loaded from mem-
ory are more likely to be mispredicted 
than branches based on an internally 
generated value like a loop count, for 
example.  Furthermore, load miss data is 
data that has not been accessed for a 
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long period of time (and consequently 
has not been used to decide a branch for 

a long period of time).  

Column 3 shows the number of in-
structions that separate the load from the 
mispredicted branch (i.e. averaged over 

those cases where there is a dependent 
mispredicted branch). This number is 
typically about 30, with a range from 20 
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Figure 1: Accumulation of dependencies on a missed load 

to 65.  This indicates relatively little use-
ful work is done in the control dependent 
case. 

Our conclusion is that these con-
trol dependences may be a major cause 
of performance loss when there is a long 
data cache miss.  Furthermore, this loss 
is a property of the program and the 
quality of the branch predictor.  A larger 
window or ROB will not help in this 
case. 

4 Implications for Proc-
essor Design 
Assuming extremely long miss de-

lays was an experimental device for col-
lecting basic data.  As stated earlier, in 
reality, misses will vary in length from 
about ten cycles to hundreds of cycles 
(for a miss all the way to main memory).   

For short misses, we can conclude 
that a 10-cycle miss delay is likely hid-
den with windows and ROBs about the 
same size as are currently being used.  
From Table 2, we see that about 40 in-
structions can issue after the miss is de-

tected, and at the rate of four per cycle, 
this is ten cycles worth of instructions. 
For multiple outstanding misses to the 
L2 cache, a slightly larger ROB may be 
called for, but in most cases a window of 
32-48 instructions is probably enough, 
because the miss load has a relatively 
small number of nearby dependent in-
structions that take up window space. 

For long misses, implications are 
more interesting, and in many respects 
this is a more important case for future 
designs.  Relatively speaking, main 
memory latencies continue to grow; they 
now consume over 100 cycles and may 
reach many hundreds of cycles in the 
near future.  Although they are less 
common than the short misses, the pen-
alty is much higher.  The remainder of 
this section focuses on the long miss 
case. 

The first conclusion is that data de-
pendences do not inhibit performance in 
a major way.  If the structural resources 
are available, instructions can continue 
issuing and can overlap even very long 
miss latencies. 
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A second conclusion is that control 
dependences are significant in some 
cases.  In these cases, even if structural 
blockages are removed, mispredicted 
branches will inhibit performance.  Con-
sequently, we have one more reason to 
use highly accurate branch predictors.  
In this study, we used a relatively mod-
est predictor by today’s standards (8K 
gshare). 

A third conclusion is that if the win-
dow and ROB are somehow enlarged to 
cover long misses, they should be scaled 
up in different ways.  As future research 
we plan to investigate this further, but 
we can make some rough estimates of 
how they may scale.  First, the ROB 
must be large enough to sustain a high 
rate of instruction issue during the miss 
delay.  For example, if the issue width is 
n and the miss delay is D cycles, then a 
ROB of size nD should be adequate.  In 
other words, to cover a miss delay of 
200 cycles with a four-issue machine 
would require a ROB of about 800 en-
tries.  Of course, the number of rename 
locations, store queue entries, etc. for 
uncommitted values must be commensu-
rately sized. 

On the other hand, the window must 
be enlarged to hold the dependent in-
structions that back up behind each out-
standing long miss.  If the original win-
dow size is W, if there are m outstanding 
long misses, and if each has d dependent 
instructions, then the window should be 
enlarged to about W� :�GP.  For ex-
ample, if m is 6 and d is 30, then the 
window should be enlarged by 180 slots, 
for a total of slightly more than 200.  
That is, it is significantly smaller than 
the ROB. 

Others have noted that when there is 
a long data cache miss, resources may sit 
idle for long periods of time.  Conse-
quently, it has been proposed that the 

processor should use the resources by 
context switching to a different thread 
(in a fine-grained multi-threaded para-
digm) [2], or execute speculative threads 
to perform pre-fetching or pre-execution 
[3,4].  Our results show that, in fact, 
many blockages are not inherent, but are 
structural.  By providing additional win-
dow and ROB resources (which may be 
needed by the aforementioned methods, 
also) the otherwise idle resources can be 
used for real execution of the main 
thread.  

Of course, enlarging the window, 
ROB (and load/store queues and physi-
cal registers) is not a simple matter, al-
though proposals have been put forward 
for each.  Ways of building more scal-
able windows have been proposed in 
[5,6], and these may provide adequate 
window sizes.  Recently, a proposal for 
extremely large windows [7] has been 
put forward, with the same objective as 
we are studying – covering long cache 
miss latencies. For large physical regis-
ter files, using a hierarchy as in [8,9,10] 
may be a good approach.  The IBM 
Power4 [12] has ROB entries composed 
of blocks of instructions rather than sin-
gle instructions. Consequently, the 
Power4 can maintain 200 in-flight in-
structions.  This coarser granularity ap-
proach could be used to expand the ROB 
even larger.  Increasing the ROB also 
entails increasing the number of physical 
registers.  Schemes such as speculative 
retirement and large history buffers 
[13,14] may be useful as alternatives to 
increasing the number of physical regis-
ters. 

5 Conclusions and Fu-
ture Research 
The main conclusion is that in cur-

rent superscalar processors, data and 
control dependences are typically not the 
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main performance limiter when there is a 
long cache miss – rather structural fea-
tures are often the limiters (e.g. ROB 
size and window size).  If the ROB and 
window size are separated (i.e. not an 
RUU), then it appears that the ROB 
needs to be enlarged significantly more 
than the window size in order to cover 
long misses.  

Future research should be directed 
at ways of covering cache misses by im-
plementing structural resources that al-
low the covering of longer latency 
misses.  The work in [7, 13] are interest-
ing steps in that direction, but we feel 
that the design space is large and a vari-
ety of other solutions should be studied 
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