

 1

A Day in the Life of a Data Cache Miss

Tejas Karkhanis and J. E. Smith

Dept. of Electrical and Computer Engineering
University of Wisconsin-Madison

Abstract
The activity within a processor following
a cache miss is studied via a series of
simulation experiments. This is a pre-
liminary step toward developing ways of
mitigating data cache miss penalties,
especially for long misses. With a mod-
est-sized reorder buffer (ROB) of 64 en-
tries, structural blockages due to a full
ROB are the major cause of the cache
miss penalty. For the SpecINT2000
benchmarks, about 90% of long cache
misses result in a blocked ROB. After
structural constraints are removed, data
dependences are found not to be a major
cause of performance loss. In fact, in-
struction issuing can proceed at full
speed for at least one thousand cycles
(the length we sampled) beyond a data
cache miss. In some cases we found con-
trol dependences do pose a problem,
however. That is, there are many mis-
predicted branches that depend on data
from a cache miss. With an 8K gshare
predictor, 30% or more of data cache
misses feed into a mispredicted branch
in 7 of 12 benchmarks. Finally, we dis-
cuss implications for future processor
designs. This includes lengthening
ROBs (and enlarging physical rename
locations), coupled with a more modest
enlarging of instruction issue windows.

1 Motivation
The overall performance impact of

data cache misses is a function of the

number of misses and the penalty per
miss. Most research is aimed at reduc-
ing the number of misses, for example
by prefetching, using victim buffers, etc.
To reduce the miss penalty, common
solutions are focused on the memory
system, e.g. by adding levels to the
memory hierarchy. In contrast, we are
interested in reducing the data cache
miss penalty by applying methods within
the processor. As a first step, we have
been studying what happens within a
processor when a data cache miss oc-
curs.

Before proceeding, we define two
terms. First, miss delay is the latency for
fetching miss data from the lower level
in the memory hierarchy where it re-
sides. Second, miss penalty is the per-
formance loss due to a cache miss. Miss
penalty is related to miss delay, but in
some cases all or part of the miss delay
may be hidden. In a processor with hi-
erarchical caches, miss delays vary over
a wide range, from 10 cycles or less (for
an L1 to L2 miss) to perhaps hundreds of
cycles (for a miss all the way to main
memory). To keep the discussion sim-
ple, we will consider two cases: short
misses and long misses. And, most of
our emphasis is on long misses because
of their increasing importance due to the
widening processor/memory perform-
ance gap.

From the processor perspective,
there is a penalty following a long miss
because issuing of useful instructions

 2

slows, and eventually stops, when the
miss occurs. There are three reasons this
can happen:

1) There is a structural blockage.
For example, the load that misses
moves to the head of the reorder
buffer and blocks; waiting to re-
tire. Then, the reorder buffer
fills, and/or the processor runs
out of physical registers, dispatch
stops, eventually issue stops, and
nothing more happens until the
miss data returns from memory
(or some lower level in the cache
hierarchy).

2) There is a data blockage. That
is, instructions that depend on the
load data, either directly or indi-
rectly, begin to pile up in the is-
sue window, eventually the win-
dow is full of data dependent in-
structions, and issue stops. In a
sense, this is a structural block-
age, but it is a direct result of
data dependences. This is differ-
ent from case 1) because the
blockage in 1) occurs purely for
structural reasons; no depend-
ences are necessarily involved.

3) A control dependence stops issu-
ing of useful instructions. In par-
ticular, if a mispredicted branch
is dependent on the load miss
data, all instructions after the
branch will eventually be
flushed. In effect, issuing of use-
ful instructions is blocked by the
control dependence on the miss
data.

In the research described here, we

study the above three causes of the data
cache miss penalty and discuss the rela-
tive importance of each. We then make
observations regarding future processor

microarchitectures that are tolerant of
data cache miss delays.

2 Methodology
In order to investigate the three

causes of performance loss, we per-
formed a number of simulation-based
experiments. Because the types of
blockages, especially the structural
blockage, depend on a processor’s mi-
croarchitecture, we first describe the
processor model. Then we describe the
simulation model, benchmarks, and the
general method used.

2.1 Processor Model
The relevant components of the

processors we study are listed below.
They have been chosen to be consistent
with the characteristics of modern super-
scalar processors. Key components are:

1) Modest issue width – 4-way. It
appears that the trend toward
wider issue widths may have
topped out, with emphasis shift-
ing to deeper pipelining as a way
of increasing parallelism.

2) Renaming in physical register
file. The physical register file is
larger than the logical file, and
all renamed values are held in the
physical file. This has become
the standard method for imple-
menting dynamic superscalar
processors.

3) The issue window and reorder
buffer are separate and may be
sized independently. All in-
flight instructions have a ROB
entry, but only instruction wait-
ing for data and/or functional
units wait in the window. After
they issue, instructions are re-
moved immediately from the
window, making room for others.

 3

4) The issue window “collapses”;
that is, the holes due to issued in-
structions may be re-filled. This
maximizes the issue opportuni-

ties following a cache miss and
reduces the likelihood that a full
window will eventually cause a
structural blockage.

Table 1: Processor Configuration

ROB size 64 entries
Issue Window Size 32 entries
LSQ size 64 entries
IF, ID, IS, IC Width 4 instructions/cycle
Branch Predictor gshare: 8K entries, 13 bit GHR
Return Address Stack 64 entries
Branch Target Buffer 4K sets, 4 way
Functional Units 4 Int. ALUs, 1 Int. MULT/DIV
 4 FP ALUs, 1 FP MULT/DIV
L1 I and D Caches 512 sets, 4-way SA, 16 byte block size,

LRU
L2 Unified Cache N/A; all L1 misses are 1000 cycles
Pipeline Depth 5 stages before the issue stage

2.2 Simulation Model
To evaluate performance, we used

a modified version of the SimpleScalar
simulator [1]. The main modification is
that the register update unit (RUU) is
replaced with a separate issue window

and re-order buffer. Up to four inde-
pendent instructions per clock cycle may
issue out-of-order from the issue win-
dow. Table 1 summarizes the processor
parameters used in all simulations.

2.3 Workload
We simulated SPEC 2000 INT

benchmarks compiled with base optimi-
zation level (-arch ev6 –non_shared –
fast). The reference inputs were used and
all benchmarks were fast forwarded 400
million instructions before being simu-
lated for 800 million committed instruc-
tions.

2.4 Simulation Approach
We perform simulation experiments

intended to highlight the above-listed
causes of data cache miss penalties. To
do this, we remove other events that dis-
rupt smooth instruction issue. In particu-
lar, we assume an ideal instruction
cache, and, for some experiments, we

assume the branch predictor is ideal as
well. A typical simulation experiment
does the following:

1) Simulate until the data cache is
warmed up. After warmup, wait
for the first data cache miss.

2) When the miss occurs, disable all
additional data cache misses so
that the effects of the single miss
can be monitored.

3) Wait a very long time (1000
clock cycles) and monitor the in-
struction window, ROB, and in-
struction issue, observing the ef-
fects of the miss.

4) During (and immediately after)
the 1000 clock cycles, collect
relevant data, then let the proces-
sor settle back to normal issuing

 4

Table 2: Structural Blockage Statistics

Benchmark Avg. # insns issued
after the miss

Avg. #Insns in
window after 1000
cycles

Fraction of
samples where
ROB fills

bzip2 44.1 13.1 1.0
crafty 44.6 9.6 0.8
eon 55.2 6.0 1.0
gap 56.8 10.7 1.0
gcc 51.7 8.2 0.9
gzip 42.0 8.7 0.9
mcf 55.8 5.5 0.9
parser 44.2 7.4 1.0
perl 49.6 6.6 0.8
twolf 49.6 12.9 0.8
vortex 49.7 3.5 1.0
vpr 27.0 16.9 0.6

and re-enable data cache misses to moni-
tor the next miss.

The above is repeated, data is accu-
mulated, and then is summarized. In
effect, we collect data from a number of
isolated samples. Intentionally, this
method avoids the complications of mul-
tiple overlapping data cache misses. The
advantage is that it provides clearer in-
sight into the first-order phenomena that
take place. Toward the end of the paper
we briefly discuss multiple cache misses.

3 Experiments

3.1 Structural Blockage
The first set of experiments is fo-

cused on determining the nature of the
structural blockage caused by a finite
ROB and physical register set. We also
study the transient behavior as the miss
occurs and instruction issue eventually
blocks.

For these initial experiments, we
set the window to 32 entries, the ROB to
64 entries and use 64 physical registers.
These numbers are typical of what one
might find in a current superscalar proc-
essor. Also, the Load/Store queues are

sized large enough (64 entries) that they
will not be the initial cause of a struc-
tural blockage. We assume ideal branch
prediction.

As described above, after warmup,
the simulator takes the first data cache
miss and does not return the data for
1000 cycles. In the meantime, other
loads and stores are forced to hit in the
cache.

Table 2 contains statistics for each
of the benchmarks (listed in column 1).
The second column is the average num-
ber of instructions that issue after the
miss is detected. These instructions are
all independent of the load data. The
third column is the number of instruc-
tions left in the window after issuing
eventually stops. In general, these
instructions are dependent, either
directly or indirectly, on the cache miss
data. The fourth column is the fraction
of the samples where instruction issue
blocks because the ROB fills (as
opposed to data dependences filling the
window). Because the ROB and issue win-
dow are relatively small compared with
the long miss delay (1000 cycles), in-

 5

struction issue always blocks because either the ROB fills or the window fills.

Table 3: Data Dependence Blockage Average Statistics

Benchmark Avg. # insns issued
after the miss

Avg. #insns de-
pendent on load
miss data

bzip2 3950.1 17.8
crafty 3746.9 20.1
eon 3922.9 22.4
gap 3292.9 31.6
gcc 3678.4 17.2
gzip 3501.6 96.2
mcf 3862.7 11.5
parser 3648.8 32.6
perl 3518.8 30.3
twolf 3672.8 44.7
vortex 3606.5 7.8
vpr 2371.8 24.0

As shown in column four, about
90% of the time, the ROB usually fills
first and causes dispatch (and issue) to
stop. This indicates that the purely
structural (ROB) blockage eventually
leads to the miss penalty. Or, conversely
data dependences are usually not the
problem; there are enough instructions
independent of the load so that issue
could have kept going if it were not for
the ROB. In columns two and three we
see this reflected in the large number of
issuing instructions after the cache miss
occurs (typically over 40), and the small
number of dependent instructions left in
the window (about 9 on average) waiting
for the load to return. This highlights
the fact that data dependences on the
missing load are not the bottleneck. The
bottleneck occurs for purely structural
reasons. The only exception is bench-
mark vpr, where a significant number of
dependent instructions do pile up and
block issue because of a full window
about 40% of the time.

3.2 Data Dependences
Because the previous section

shows that structural blockage caused by
the ROB (and physical register file) is
the major performance impediment, the
next set of experiments remove these
limitations by making the ROB, physical
register file, and load/store queues very
large (4K entries each). The latency to
main memory is set at 1000 cycles, and
statistics are given in Table 3. The main
difference is that now a large number of
instructions can issue after the miss oc-
curs (column 2). Because the maximum
issue width is four and the miss delay is
1000 cycles, at most 4000 instructions
can issue under ideal conditions. For
most benchmarks, over 3500 actually do
issue. This indicates that the vast major-
ity of instructions following the miss are
independent of the miss data. Mean-
while, after the 1000 cycle interval, we
measure only a few tens of dependent
instructions left in the window; the aver-
age is about 30, with the largest number
being 96 for bzip.

 6

To get additional insight, we
studied the average number of dependent
instructions each clock period after the
data cache miss occurs. These graphs

indicate that in most cases, the depend-
ent instructions follow the load fairly
closely, after which all remaining in-
structions are independent. Representa

Table 4: Load-to-Mispredicted Branch Statistics

Benchmark Fraction of
load misses

which drive a
mispredicted

branch

Avg. dis-
tance to

mispredicted
branch

Bzip2 0.01 33.5
Crafty 0.30 20.3
Eon 0.18 30.6
Gap 0.33 27.0
Gcc 0.35 32.4
Gzip 0.01 27.7
Mcf 0.44 32.4
Parser 0.08 35.9
Perl 0.40 30.2
Twolf 0.37 65.6
Vortex 0.16 41.2
Vpr 0.47 31.3

tive graphs for SpecINT2000 bench-
marks are in Fig 1. In some bench-
marks, like mcf, dependent instructions
come immediately after the missed load.
Other benchmarks such as gcc show a
growing number of dependent instruc-
tions through the entire 1000 clock pe-
riod interval.

3.3 Control Dependences
If a mispredicted branch is de-

pendent on the load miss, either directly
or indirectly, all speculative instructions
following the branch perform no useful
work. In effect, useful instruction issue
stops immediately after the mispredicted
branch. To determine the importance of
these control dependences on the data
cache miss penalty, we performed ex-
periments as in the previous section, but
branch prediction is no longer ideal. We
collect data to determine how often a
dependent misprediction follows the

load miss, and how far from the load it
occurs. Note that mispredictions inde-
pendent of the load are still properly
handled because they can be resolved
and fetch/issue can continue “under” the
miss.

Results are in Table 4. In column
2 we see that for many of the bench-
marks, a significant fraction of load
misses feed branches that are mispre-
dicted. Overall, about 25% of the miss
loads lead to a mispredicted branch, but
there is a lot of variance across bench-
marks. For 7 of the 12 benchmarks 30%
or more of the miss loads provide data
that eventually resolves a mispredicted
branch. This makes some intuitive sense,
because tests of data loaded from mem-
ory are more likely to be mispredicted
than branches based on an internally
generated value like a loop count, for
example. Furthermore, load miss data is
data that has not been accessed for a

 7

long period of time (and consequently
has not been used to decide a branch for

a long period of time).

Column 3 shows the number of in-
structions that separate the load from the
mispredicted branch (i.e. averaged over

those cases where there is a dependent
mispredicted branch). This number is
typically about 30, with a range from 20

0 200 400 600 800

7

7.5

8

8.5

9

9.5

10

10.5

11

mcf

Cycles after a D−Cache Miss

N
um

be
r

of
 D

ep
en

de
nt

 In
st

ru
ct

io
ns

0 200 400 600 800

9

10

11

12

13

14

15

16

17

gcc

Cycles after a D−Cache Miss
N

um
be

r
of

 D
ep

en
de

nt
 In

st
ru

ct
io

ns

Figure 1: Accumulation of dependencies on a missed load

to 65. This indicates relatively little use-
ful work is done in the control dependent
case.

Our conclusion is that these con-
trol dependences may be a major cause
of performance loss when there is a long
data cache miss. Furthermore, this loss
is a property of the program and the
quality of the branch predictor. A larger
window or ROB will not help in this
case.

4 Implications for Proc-
essor Design
Assuming extremely long miss de-

lays was an experimental device for col-
lecting basic data. As stated earlier, in
reality, misses will vary in length from
about ten cycles to hundreds of cycles
(for a miss all the way to main memory).

For short misses, we can conclude
that a 10-cycle miss delay is likely hid-
den with windows and ROBs about the
same size as are currently being used.
From Table 2, we see that about 40 in-
structions can issue after the miss is de-

tected, and at the rate of four per cycle,
this is ten cycles worth of instructions.
For multiple outstanding misses to the
L2 cache, a slightly larger ROB may be
called for, but in most cases a window of
32-48 instructions is probably enough,
because the miss load has a relatively
small number of nearby dependent in-
structions that take up window space.

For long misses, implications are
more interesting, and in many respects
this is a more important case for future
designs. Relatively speaking, main
memory latencies continue to grow; they
now consume over 100 cycles and may
reach many hundreds of cycles in the
near future. Although they are less
common than the short misses, the pen-
alty is much higher. The remainder of
this section focuses on the long miss
case.

The first conclusion is that data de-
pendences do not inhibit performance in
a major way. If the structural resources
are available, instructions can continue
issuing and can overlap even very long
miss latencies.

 8

A second conclusion is that control
dependences are significant in some
cases. In these cases, even if structural
blockages are removed, mispredicted
branches will inhibit performance. Con-
sequently, we have one more reason to
use highly accurate branch predictors.
In this study, we used a relatively mod-
est predictor by today’s standards (8K
gshare).

A third conclusion is that if the win-
dow and ROB are somehow enlarged to
cover long misses, they should be scaled
up in different ways. As future research
we plan to investigate this further, but
we can make some rough estimates of
how they may scale. First, the ROB
must be large enough to sustain a high
rate of instruction issue during the miss
delay. For example, if the issue width is
n and the miss delay is D cycles, then a
ROB of size nD should be adequate. In
other words, to cover a miss delay of
200 cycles with a four-issue machine
would require a ROB of about 800 en-
tries. Of course, the number of rename
locations, store queue entries, etc. for
uncommitted values must be commensu-
rately sized.

On the other hand, the window must
be enlarged to hold the dependent in-
structions that back up behind each out-
standing long miss. If the original win-
dow size is W, if there are m outstanding
long misses, and if each has d dependent
instructions, then the window should be
enlarged to about W� :�GP. For ex-
ample, if m is 6 and d is 30, then the
window should be enlarged by 180 slots,
for a total of slightly more than 200.
That is, it is significantly smaller than
the ROB.

Others have noted that when there is
a long data cache miss, resources may sit
idle for long periods of time. Conse-
quently, it has been proposed that the

processor should use the resources by
context switching to a different thread
(in a fine-grained multi-threaded para-
digm) [2], or execute speculative threads
to perform pre-fetching or pre-execution
[3,4]. Our results show that, in fact,
many blockages are not inherent, but are
structural. By providing additional win-
dow and ROB resources (which may be
needed by the aforementioned methods,
also) the otherwise idle resources can be
used for real execution of the main
thread.

Of course, enlarging the window,
ROB (and load/store queues and physi-
cal registers) is not a simple matter, al-
though proposals have been put forward
for each. Ways of building more scal-
able windows have been proposed in
[5,6], and these may provide adequate
window sizes. Recently, a proposal for
extremely large windows [7] has been
put forward, with the same objective as
we are studying – covering long cache
miss latencies. For large physical regis-
ter files, using a hierarchy as in [8,9,10]
may be a good approach. The IBM
Power4 [12] has ROB entries composed
of blocks of instructions rather than sin-
gle instructions. Consequently, the
Power4 can maintain 200 in-flight in-
structions. This coarser granularity ap-
proach could be used to expand the ROB
even larger. Increasing the ROB also
entails increasing the number of physical
registers. Schemes such as speculative
retirement and large history buffers
[13,14] may be useful as alternatives to
increasing the number of physical regis-
ters.

5 Conclusions and Fu-
ture Research
The main conclusion is that in cur-

rent superscalar processors, data and
control dependences are typically not the

 9

main performance limiter when there is a
long cache miss – rather structural fea-
tures are often the limiters (e.g. ROB
size and window size). If the ROB and
window size are separated (i.e. not an
RUU), then it appears that the ROB
needs to be enlarged significantly more
than the window size in order to cover
long misses.

Future research should be directed
at ways of covering cache misses by im-
plementing structural resources that al-
low the covering of longer latency
misses. The work in [7, 13] are interest-
ing steps in that direction, but we feel
that the design space is large and a vari-
ety of other solutions should be studied

6 Acknowledgements
We would like to thank Timothy

Heil and Eric Rotenberg for several
valuable discussions. This work is being
supported by SRC grant 2000-HJ-782,
NSF grants EIA-0071924 and CCR-
9900610, Intel and IBM.

References

[1] D. Burger et al., “Evaluating Future
Microprocessors: The SimpleScalar Tool
Set,” Technical Report TR-1308, Uni-
versity of Wisconsin-Madison Computer
Sciences Dept., June 1996.

[2] Anant Agarwal, et al., “April: A
Processor Architecture for Multiproces-
sing,” Proceedings of the 17th Annual
International Symposium on Computer
Architecture, June 1990, pages 104-114.

[3] R. Balasubramonian et al., “Dynami-
callyAllocating Processor Resources Be-
tween Nearby and Distant ILP,” 28th Int.
Symp. on Computer Architecture, pp. 26-
37, July 2001.

[4] C. B. Zilles and G. Sohi, “Under-
standing the Backward Slices of Per-
formance Degrading Instructions,” 27th
Int. Symp. on Computer Architecture,
pp. 172-181, June 2000.

[5] R. Canal and A. Gonzalez, “A Low-
Complexity Issue Logic”, 2000 Int.
Conf. on Supercomputing, pp. 327-335,
May 2000.

[6] P. Michaud and A. Seznec, “Data-
flow Prescheduling for Large Instruction
Windows in Out-of-Order Processors”,
7th Int. Symp. on High Performance
Computer Architecture, pp. 27-306, Jan.
2001.

[7] A. Lebeck, et al., “A Large, Fast In-
struction Window for Tolerating Cache
Misses,” 29th Int. Symp. on Computer
Architecture, May 2002.

[8] J. L. Cruz et al., “Multiple-Banked
Register File Architectures”, 27th Int.
Symp. on Computer Architecture, pp.
316-325, June 2000.

[9] J. Zalamea, et al., “Two-Level Hier-
archical Register File Organization for
VLIW Processors”, 33rd Int. Symp. on
Microarchitecture, pp. 137-146, Dec.
2000.

[10] R. Balasubramonian et al., “Reduc-
ing the Complexity of the Register File
in Dynamic Superscalar Processors,”
34th Int. Symp. on Microarchitecture, get
pages, Dec. 2001.

[11] D. Sorin, et al., “SafetyNet: Improv-
ing the Availability of Shared Memory
Multiprocessors with Global Check-
point/Recovery,” 29th Int. Symp. on
Computer Architecture, May 2002.

[12] J. M. Tendler, et al., “IBM Power4
System Microarchitecture,” IBM Journal

 10

of Research and Development, pp. 5-26,
Jan. 2002.

[13] P. Ranganathan, et al., “Using
Speculative Retirement and Larger In-
structions Windows to Narrow the Per-
formance Gap between Memory Consis-
tency Models,” 9th ACM Symposium on
Parallel Algorithms and Architectures,
June 1997.

[14] C. Gniady, et al., “Is SC + ILP =
RC?,” 26th Int. Symp. on Computer Ar-
chitecture, May 2002.

