
The Best Way to Achieve Vector-Like Performance?

J. E. Smith

April 20, 1994

Vect 4:20:94: 1

Remember?

the
SEMANTIC

GAP

Vect 4:20:94: 2

The Semantic Gap

Premise: The semantic gap between HLL and machine
languages should be closed via complex instructions.

Consider:

Do 10 i=1,looplength
a(i) = b(i) * x + c(i)

10 continue

CISC compilation:

R1 <- looplength
R2 <- 1
R3 <- x

loop: a(R2) <- b(R2) * R3 + c(R2)
if R2++ < R1 goto loop

The inner loop is just two instructions.

A problem: instructions have dependences coded in.

Vect 4:20:94: 3

RISC/superscalar

Premise: Break program into elemental pieces and schedule
to maximize independence.

(unroll twice)
A1 <- looplength .assume even
S2 <- x .load constant
A4 <- addr(b) .load
A5 <- addr(c) . address
A6 <- addr(a) . pointers

loop: S3 <- mem(A4) .load b(i)
S5 <- mem(A4 + 8) .load b(i+1)
S4 <- mem(A5) .load c(i)
S7 <- S3 * S2 .b(i)*x
S6 <- mem(A5 + 8) .load c(i+1)
S8 <- S5 * S2 .b(i+1)*x
A4 <- A4 + 16 .bump b pointer
S9 <- S7 + S4 .c(i)+b(i)*x
A5 <- A5 + 16 .bump c pointer
S10 <- S8 + S6 .c(i+1)+b(i+1)*x
A1 <- A1 - 2 .decrement counter
mem(A6) <- S9 .store a(i)
mem(A6+8)<- S10 .store a(i+1)
A6 <- A6 + 16 .bump a pointer
BNEZ A1,loop .branch on A1 NEZ

Vect 4:20:94: 4

RISC/superscalar (contd.)

A problem: at runtime, the hardware must still scan the
instruction stream to find dependences (in data and
resources).

g The wider the superscalar, the more difficult
the problem becomes.

g Dependences are found at compile time,
but thrown away after scheduling.

Another problem: data locality is hidden.
e.g. the address stream is:

b(1), b(2), c(1), c(2), a(1), a(2), b(3), b(4), c(3), c(4), a(3),
a(4), etc.

Vect 4:20:94: 5

So, just when you thought it was safe...

the

PARALLELISM
GAP

Vect 4:20:94: 7

The Parallelism Gap

Premise: The parallelism gap between HLL and the hardware
can be closed by having an architecture that conveys instruc-
tion level parallelism to the hardware.

Vect 4:20:94: 8

Example: VLIW

The compiler places independent instructions into long
instruction words.

(preamble and postamble omitted)

loop: S3 <- mem(A4) | S37 <- S33 * S2 | A6 <- A6+32

S5 <- mem(A5) | S29 <- S27 + S25|
mem(A6) <- S19 | |
S13 <- mem(A4+8) | S7 <- S3 * S2 |
S15 <- mem(A5+8) | S39 <- S37 + S35|
mem(A6+8) <- S29 | |
S23 <- mem(A4+16) | S17 <- S13 * S2 |
S25 <- mem(A5+16) | S9 <- S7 + S5 |
mem(A6+16) <- S39 | |
S33 <- mem(A4+24) | S27 <- S23 * S2| A4 <- A4+32

S35 <- mem(A5+24) | S19 <- S17 + S15| A5 <- A5+32

mem(A6+24) <- S9 | | BNEZ A1, loop

VLIW bridges parallelism gap to some extent...

Instructions packed in a LIW are independent, but there is no
additional info about other dependences.

Also the locality problem is not dealt with any better than
superscalar RISC.

Vect 4:20:94: 9

Vectors

Parallelism is conveyed to hardware via vector instructions.

With vector registers, large numbers of dependences can be
resolved at once.

(stripmine code not shown)

A2 <- address(a) .load
A3 <- address(b) . array
A4 <- address(c) . pointers
S1 <- x .scalar x in register S1
V1 <- A3 .load b
V3 <- A4 .load c
V2 <- V1 * S1 .vector * scalar
V4 <- V2 + V3 .add in c
A2 <- V4 .store to a

This "CISC" does not close a semantic gap;
it closes a parallelism gap.

Also, data locality info is passed to hardware;

address stream:

a(1),a(2),a(3),a(4),...b(1),b(2),b(3),....c(1),c(2),c(3),...

Vect 4:20:94: 10

Passing ILP to Hardware

Large blocks of both data independence and dependence can
be passed to hardware.

r2=mem(ci) r2=mem(ci)r2=mem(ci)r2=mem(ci)r2=mem(ci)

mem(ai)=r4 mem(ai)=r4mem(ai)=r4mem(ai)=r4mem(ai)=r4

r1=mem(bi)

r3=r1*r0

r4=r3+r2 r4=r3+r2

r3=r1*r0

r1=mem(bi)

. . .
r4=r3+r2

r3=r1*r0

r1=mem(bi)r1=mem(bi)

r3=r1*r0

r4=r3+r2r4=r3+r2

r3=r1*r0

r1=mem(bi)

vector inst.

in one

mem(ai)=r4 mem(ai)=r4 mem(ai)=r4 mem(ai)=r4mem(ai)=r4

r1=mem(bi)

r3=r1*r0

r4=r3+r2 r4=r3+r2

r3=r1*r0

r1=mem(bi) r1=mem(bi)

r3=r1*r0

r4=r3+r2

. . .
r1=mem(bi)

r3=r1*r0

r4=r3+r2r4=r3+r2

r3=r1*r0

r1=mem(bi)independent

operations

Block of

r2=mem(ci) r2=mem(ci) r2=mem(ci) r2=mem(ci)r2=mem(ci)

vector instructions

between two

data dependences

Block of

r3=r1*r0

r1=mem(bi)

r3=r1*r0

r4=r3+r2 r4=r3+r2

r3=r1*r0

r1=mem(bi) r1=mem(bi)

r3=r1*r0

r4=r3+r2

. . .
r1=mem(bi)

r4=r3+r2r4=r3+r2

r3=r1*r0

r1=mem(bi)

mem(ai)=r4 mem(ai)=r4 mem(ai)=r4 mem(ai)=r4mem(ai)=r4

r2=mem(ci) r2=mem(ci) r2=mem(ci) r2=mem(ci)r2=mem(ci)

Vect 4:20:94: 11

Passing ILP to Hardware

Consider an example of control parallelism:

Do 20 i=1,looplength

if (a(i).eq.b(i)) then

c(i) = a(i) + e(i)

endif

20 continue

V1 <- a .load a

V2 <- b .load b

VM <- V1==V2 .compare

V3 <- e;VM .load e under mask

V4 <- V1+V3; VM .add under mask

c <- V4; VM .store under mask

g With vectors, hardware sees the "big picture":

VM: 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 . . .

skip skip skip skip

Consecutive zeros can be skipped
=> only useful operations are performed.

g Contrast with conditional moves: excess operations, safety problems

g Contrast with "guarded" scalar ops: consume issue bandwidth

Vect 4:20:94: 12

"Density-Time" Masked Operations

Do 20 i=1,looplength
if (a(i).eq.b(i)) then

c(i) = a(i) + e(i)
endif

20 continue

periods
clock

in

25 75

% of ones in VM

50 100

600

500

400

300

200

no zero skipping

zero skipping

VL=100

time
execution

Vect 4:20:94: 13

Passing Address Patterns to Hardware

A simple example has already been given.

Also consider:

Do 20 i = 1,length1
Do 20 j=1,length2
c(i,j) = a(j,i) + e(i,j)

20 continue

A1 <- length1 .setup stride
V1 <- e,A1 .load with stride

AND

Do 20 i = 1,length1
c(i) = a(index(i)) + e(i)

20 continue

V1 <- index,1 .load index vector
V2 <- a,V1 .gather with index vector

Vect 4:20:94: 14

Modular, highly parallel control structure

Yet simple instruction issue logic.

headtail

typical vector register

Control

Control

Control

Vector Registers

I-fetch & issue

to Memory

to Memory

from Memory

from Memory

Functional

Functional

Control

Unit

Unit

Port
Memory

Memory
Port

Counter-based control allows very fast clock
(e.g. 2X normal scalar clock)

Vect 4:20:94: 15

Simple support for a very large register space.

g Lots of registers: 1024 in CRI C90

g Simple reservation logic
2 reservations per vector register (1 read port, 1 write port)

g Two-level addressing
Vector register + element in register

g Simple port structure

Vect 4:20:94: 16

Example: 512 GPRs vs 8x64 Vregs

g Consider logical crosspoints required.

-with 512 general purpose registers:

=total 6144 x-points

..

.
4x512

4096 x-points2048 x-points

512 GPRs

512x4
512x4

unit 4

unit 3

unit 2

unit 1

...

-with 8 64-element vector registers:

512 x-points 64 x-points = total 1120 x-points

4x8

64x1.
..

8x4
8x4

64 V reg

64 V reg

.
64 V reg

....
.

1x64

1x64

64x1

1x64 64x1

unit 1

unit 2

unit 3

unit 4

32 x-points 512 x-points

g A factor of 5 fewer logical crosspoints.

Vect 4:20:94: 17

ILP can be simply increased

g Replicate pipes in the implementation

Vector Register V3

Functional Unit

Pipe 0 Pipe 1

.

Element N-2

.

Element N-1

..

Element N-2 Element N-1

..
Element 2
Element 0

Element 3
Element 1

..

Vector Register V2

Even OddOddEven

Vector Register V1

Element 3
Element 1

....
Element 2
Element 0

Element 0
Element 2

.

.

.

Element N-2

Element 3
Element 1

.

.

.

Element N-1

g Instruction issue logic is unchanged.

g Register crosspoints grow linearly.

g A multi-pipe vector implementation can sustain the
equivalent of 20 or more instruction issues per clock.

Vect 4:20:94: 18

How extensive is vector parallelism?

Vect 4:20:94: 19

View from Vector Advocate’s Perspective

Modest

SuperScalar

Vector

irregular
serial

regular
parallel

vect 4:20:94 20

View from Superscalar Advocate’s Perspective

SuperScalar

Vector

irregular
serial

regular
parallel

vect 4:20:94 21

View from VLIW Advocate’s Perspective

VLIW

SuperScalar Vector

irregular
serial

regular
parallel

vect 4:20:94 22

Flexibility: Nested parallelism

do 30 i = 1,looplen
if(b(i).ne.0) then

if(c(i).eq.0) then
d(i) = a(i) + b(i)

endif
c(i) = d(i) + b(i)

endif
30 continue

(stripmine code not shown)

V1 <- B(i) .load b(i)
VM1 <- V1 != 0 .test b != 0
V2 <- C(i); VM1 .load c(i) under mask
VM2 <- V2 == 0; VM1 .test c == 0 under mask
V3 <- A(i); VM2 .load a under mask
V4 <- V1 + V3; VM2 .add under mask
D(i) <- V4; VM2 .store d under mask
VM3 <- VM1 & !VM2 .for d elements in memory
V4 <- D(i); VM3 .load new d(i) under mask
V5 <- V4 + V1; VM1 .add under mask
C(i) <- V5; VM1 .store under mask

Vect 4:20:94: 23

Flexibility: 1st order linear recurrences

Example: X(I) = A(I) * X(I-1) + C(I)

+
AA* 9

C

C

C14

16

15

C13

4

3

C2

C

CC

C

2C

3

4

+
*A5

* 8 679 AA A A

A AA A

* 7A
+

* A
+

6

A8*
+

13 12 11 10+
*

14* A
+

15* A
+

+

+

16*
+
A

1C

3

4

5

6

7

8

10

9

11

12

13

9

5

X

X

X

C X

1X

X2

X

X

16

15

14

X

X

X

C X

X

X

X

X

AAAA* 235 4

4
+

* A

+
2* A

+
* A3

+
* A11

+
* A10

12A*
+

3A*
+

A*
+

4

+
* 8A

+

A7*

+
* A12

11A*
+

C

C

C

10

12

11 11

12

10

C

C

C

C

C

C

6

7

8 8

7

6

C

C

C

+
*

13
A

Vect 4:20:94: 24

Flexibility: Speculative Execution

g Techniques usually ascribed to superscalar of VLIW may
also be applied to vector architectures.

x = a(1)
do 410 i = 1,looplen
b(i) = x + c(i)
if (b(i).eq.0) x = a(i+1)

410 continue

If b(i) is always 0, then inner loop:
b(i) = a(i) + c(i)

If b(i) is never 0, then inner loop:
b(i) = x + c(i)

g VL is profile-dependent

g i.e. one might make the VL artificially short to avoid
speculative overshoot TM

I.e. if branch is 90 percent taken, use VL = 10

If 99 percent taken, use VL = 100

Vect 4:20:94: 25

Speculative Vector Execution

Assume mostly true:

A4 <- looplen .loop iterations
A5 <- maxvl .a profile-dependent VL
VL <- min(A4,A5) .initialize VL
A1 <- 0 .initialize offset into arrays

loop:V1<- a,A1 .load a(i), offset by A1
V3 <- c,A1 .load c(i), offset by A1
V4 <- V1 + V3 .add to get b(i)
VM <- V4 == 0 .test b(i)
A2 <- LZ(VM) .find leading zero count
A3 <- A2 - 1 .backup to first false
Br next;A4 == VL .branch if all were true
S1 <- V1(A3) .get previous x from A vector
S4 <- V3(A2) .get c element.
S5 <- S1 + S4 .add
V4,A2 <- S5 .put into b array
A3 <- A2 .will be new VL

next:VL<- A3 .VL is up to first false
b,A1<- V4 .store into b
A1 <- A1 + A2 .adjust base address of A array
A4 <- A4 - A2 .decrement remaining iterations
Br done; A4 <= 0 .quit if all iterations done
VL <- min(A4,A5) .readjust VL
Br loop

done:

Speculative Vector Execution

Assume mostly false:

A4 <- looplen .number of times to execute loop
A5 <- maxvl .a profile-dependent value for VL
VL <- min(A4,A5) .initialize VL
S1 <- a(1) .initialize x
A1 <- 0 .initialize offset into arrays

loop:V3 <- c,A1 .load c(i) offset by A1
V4 <- S1 + V3 .add to get b(i)
VM <- V4 == 0 .test b(i)
A2 <- LO(VM) .leading one
A3 <- A2 - 1 .backup one from first true
Br next;A3 == VL .branch if all were false
A6 <- A3 + A1 .offset into a
S1 <- a,A6 .get new a value

next:VL <- A3 .VL is up to first true
b,A1<- V4 .store into b
A1 <- A1 + A3 .adjust base address of A array
A4 <- A4 - A3 .decrement remaining iterations
Br done; A4 <= 0 .quit if all iterations done
VL <- min(A4,A5) .readjust VL
Br loop

done:

Vect 4:20:94: 26

Easily Understandable HLL
Programming Paradigm

g Concept of vectors is usually understood by programmers

g This helps in expressing programs that are efficient on vector
processors

g FORTRAN 90 further enforces the vector model

Vect 4:20:94: 28

Conclusions and Observations

g Superscalar, VLIW, Vector advocates can all learn from one
another.

g Challenge: close parallelism gap and follow RISC principles

g The region between modest superscalar and vector needs to
be explored.
Related question: with vectors, how much superscalar is
needed?

g The role of single pipe vectors needs to be studied;
i.e. vectors offer more than bandwidth.

g Speculative vector execution needs more development.

g Can parallelism-gap-closing principles be adapted
to non-numeric processing?

g What vector architecture really needs is a healthy dose of
good research...

Vect 4:20:94: 29

Acknowledgements:

Greg Faanes

Wei Hsu

Corinna Lee

