Compleity-Effective Superscalar Processors

by

Subbarao 8lacharla

A dissertation submitted in partial fulfilment of

the requirements for the giee of

Doctor of Philosopi

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN—MADISON

1998

Abstract

The performance tradefdfetween hardare complgity and clock speed in the design
of superscalar microarchitectures is firstesticated. Using the results of this tradé-of
analysis, the thesis proposes anglgates tw nev superscalar microarchitectures

designed with the goal of ackiieg high performance by reducing comyptg.

This thesis tads a step twards quantifying the complity of superscalar microarchitec-
tures. First, a generic superscalar pipeline is defined. Then the specific araastef re
renaming, instruction winde wakeup, instruction windw selection, rgister file access,
and operand bypassing are analyzed. Each is modeled and Spice simulated fofghree dif
ent feature sizes representing past, present, and future technologies. Performance results
and compleity trends are xpressed in terms of issue width and wiwdsize. Results
shaw that instruction windw logic and operand bypass logic arelhkto be the most crit-

ical in the future.

Following the compleity analysis, we study amily of superscalar microarchitectures
called the dependence-based microarchitectures. These microarchiteqiloishatural
dependences occurring in programs to reduce the critypté window logic and oper-
and bypass logic. Simulation results whithat dependence-based superscalar microarchi-
tectures are capable ofxteacting similar lgels of parallelism as a ceentional

microarchitecture whileakilitating a aster clock.

Finally, we propose andvaluate the intgerdecoupled microarchitecture that impes
the performance of inger programs by minimally adding to a gentional microarchi-
tecture. Floating-point units in the a@mtional microarchitecture are augmented to per-

form simple intger operations and the resulting floating-point subsystem is used to

i

support some of the computation in integer programs. Simulation results are presented that
show modest speedups for a 4-way processor. The speedups are attractive, however, con-
sidering that the proposed microarchitecture requires little additional hardware.

TBD.

Acknowledgments

Table of Contents

ADSITaCt . . [
ACKNOWIBAgMENESo i
Table of ContentS. %
LISt Of FIQUIES . .o IX
ListOf Tableso Xiii
Chapter 1. Introduction e e e 1
LLIMOLVAELION . . oo et e e e e e e 1

1.2 Historical Perspectivet 4

1.3 The Conventional Microarchitecture 8
1.4ThesisContributions 9
1.4.1 Quantifying the Complexity of Superscalar Microarchitectures 9

1.4.2 Dependence-based Superscalar Microarchitectures 10

1.4.3 Integer-decoupled Microarchitecture 11
15ThesisOrganizationouiuiiii et 12
Chapter 2. Quantifying the Complexity of Superscalar Processors 13
2.1 Sources of Complexity 14
2.1 1BaSICSIMUCIUIES . . . oottt e et e et e e 16

2.1.2 Current Implementations 17
22Methodologyo 19
2.2 L CaVEaALS . . o 20
2.2.2TeMINOIOQY . ..ottt e 21
23Technology Trends e 21
23 1LogicDeaays 22
23.2WireDelayso e 22

24 Complexity AnalySISo 24
241 Register ReNAMELOQIC . ..o vttt 25
2411 SUUCIUME ..o 26
24.12D6eay AnalySIS . ..o 29

2413 9PICeRESUISo 35

2.4.2Window Wakeup LOQIC ovi e 37
2421 SUCIUME . .o 37
24.22Deay ANalySIS 38
2423 9piceResUItS 44

2.4.3Window SEleCtioN LOQICo vt e 47
2431 SUCIUrE ..o 47
2432Deay ANalySIS 50
2433 9pICERESUILS . ..ot 53

244 Register filleLogiCt 54
2441 SUUCIUME . . o 54
2442D6elay AnalySIS ... 55
2443 9PICERESUISo 59

245Databypass|ogic 62
2451 SUCIUrE . ..o 63
2452D6eay AnalySIS ... 64
2453 SpiceResUItS 67

2.5 Pipelining Issuesand Overall Delay Results 69
26 Relaled WOrK ... 77
2.7 Chapter SUMMAIY e e e e e e 78
Chapter 3. Dependence-based Superscalar Microarchitectures 81
B L CONCEPt . . e 82
3.2 Dependence-based Microarchitectures: AnExample 85

3.2.1 Performance of the Fifo-based Microarchitecture 88

3.2.2 Complexity Analysis of the Fifo-based Microarchitecture 90

3.2.3 Clustering the Fifo-based Microarchitecture 92

3.2.4 Overall Performance of the Clustered Fifo-based Microarchitecture 93

3.3 Other Dependence-based Microarchitectures 95

3.3.1 Single Window, Multiple Execution Clusters, Execution-driven Steering 95

3.3.2 Multiple windows, Dispatch-driven Steering 96

3.3.3 Complexity of Steering Policies 98

3.4 Experimental Evaluation 99

3.4.1 Performance Relativeto an Ideal Superscalar 102
3.4.2 Effect of Increasing Numberof Clusters 103
3.4.3 Effect of Increasing Inter-cluster Latency 104
34.4 Inter-cluster BypassSFrequency 105
3.4.5 Comparing against In-order Distributed Reservation Stations 106
S5 Relaed Work 107
3.6 Chapter SUMMArY o 110
Chapter 4. Integer-Decoupled Microarchitecturec..... 113
g 0] 0 o | 114
4.2 Changesto the Conventional Microarchitecture. 116
4.3 PartitioningtheProgram 117
4.4 Basic Partitioning Scheme 120
4.4.1 Terminology and DataStructures ..., 120
4.4.2 Partitioning Conditions i 122
4.4.3 Partitioning Algorithm 123
4.5 Advanced PartitioningSchemes 124
4.5.1 Limitations of the Basic PartitioningScheme 125
452C0stMOTE 127
4.5.3 Algorithm for Introducing Copiesand DuplicatingCode 128
4.6 Experimental Evaluation 129
4.6.1 Evaluation Methodologyo 129
4.6.2 Performance ResUltS i 131
A7 Related Work 136
4.8 Chapter SUMMAIYottt et e e e e e 137
Chapter 5. CONCIUSIONSo e e e e e et et 139
5. 1TheSISSUMMAYo e 139
S.2FUturedireCtionst 142
5.2.1 Quantifying the Complexity of Superscalar Microarchitectures 142
5.2.2 Dependence-based Superscalar Microarchitectures 142
5.2.3 Integer-decoupled Microarchitecture, 142

REfEIENCES . . . oot 145

APPENAIX A L 155
A.lTechnology Parametersttt e 155
A2Deay RESUITSo 156

APPENdIX B . 163
B.1Window wakeup logiC 163

B.2 DatabypasslogiC 166

List of Figures

Figure 1-1. A typical superscalar microarchitectureoou.... 2
Figure 1-2. Time line showing evolution of superscalar processors. 5
Figure 2-1. Baselinesuperscalarmodel. i 15
Figure 2-2. Reservation stations-based superscalar model.. 18
Figure2-3. Register renamelogiCo 26
Figure 2-4. Renaming example showing dependency checking 28
Figure 2-5. Renamemaptable. 29
Figure 2-6. Decoder structure and equivalent circuit, 31
Figure 2-7. Wordline structure and equivalent circuit. 32
Figure 2-8. Bitline structure and equivalent circuit. 34
Figure 2-9. Rename delay versusissuewidth 36
Figure 2-10. Window wakeup 10giC it e 37
Figure2-11. CAM cell inwakeuplogic i, 38
Figure2-12. Tag drivestructuret e e 39
Figure2-13. Tagmatch structure. e 42
Figure 2-14. Logic for ORing individual matchsignals 43
Figure 2-15. Wakeup logic delay versuswindow size, 44
Figure 2-16. Wakeup logicdelay. 45
Figure 2-17. Wakeup delay versusfeaturesize., 46
Figure 2-18. SElection [OgiC.o vt 48
Figure 2-19. Handling multiple functional units. 49
Figure2-20. Arbiter LOGIC. oot 52
Figure 2-21. Selection delay versuswindow Size, 53
Figure 2-22. Register filelogicdelay. i 60
Figure 2-23. Breakup of register filedelay L. 61
Figure 2-24. BypassS0QiCot e 63
Figure 2-25. Bypasslogic equivalent circuit. 65

Figure 2-26. Inserting buffersintheresult wires. 66

X

Figure 2-27. Bypasslogicdelays. 67
Figure 2-28. Alternative layoutsforbypassing, 69
Figure 2-29. Pipeliningwakeupand select. i 72
Figure 2-30. Effect of pipeliningonIPC 75
Figure2-31. Overal delay results. i e 76
Figure 3-1. Dependence-based superscalar microarchitecture. 83
Figure 3-2. Fifo-based microarchitecture. i 86
Figure 3-3. Instruction steeringexample 87
Figure 3-4. Performance of single-cluster fifo-based microarchitecture............. 88
Figure 3-5. Fifo utilization 90
Figure 3-6. Fifo-based microarchitecturewithtwoclusters. 92
Figure 3-7. Performance of the clustered fifo-based microarchitecture. 93
Figure 3-8. Potential speedups with the fifo-based microarchitecture. 94
Figure 3-9. Other dependence-based microarchitectures. 96
Figure 3-10. Fifo steering hardware. i 98
Figure 3-11. Performance of dependence-based superscalar microarchitectures 102
Figure 3-12. Effect of increasing number of clusters. 103
Figure 3-13. Effect of increasing inter-cluster latency. 104
Figure 3-14. Inter-cluster bypassfrequency. 105
Figure 3-15. Comparing against in-order distributed reservation stations. 106
Figure4-1. Anexampleprogramfragment 118
Figure 4-2. Code partitioning for examplefragment 119
Figure4-3. Program SliCeSot 121
Figure 4-4. SDG for example program. oottt 122
Figure 4-5. Partitioningwithcopies. i e 125
Figure 4-6. Partitioning with code duplication. 127
Figure 4-7. Percentage of instructionsassignedtoComp 132
Figure 4-8. Speedupsonthed-waymachine. 133

Figure 4-9. Speedupsonthe8-way machine............ 134

Figure 4-10. Instruction mix of the Comp partition

Xii

Xiii

List of Tables
Table 2.1 TerminolOogy.ot e e e 21
Table2.2: Fan-inof decoder gates.ot 56
Table 3.1: Delay of reservation tablein 0.18mm technology. 91
Table3.2: Basdlinesimulationmodel 100
Table 3.3: Various microarchitecturessimulated. 101
Table 4.1: Extra opcodes supported inthe Comp subsystem. 117
Table4.2: Machine parameters.t e 130
Table4.3: Benchmark programs.t 131
Table ALl Spiceparameters.t e 155
Table A.2: Metal resistance and capaCitanCe.ooieiennennennnn.n, 156
Table A.3: Bresk down of renamedelay. i, 156
Table A.4: Break down of window wakeup delay for 0.8mm technology. 157
Table A.5: Break down of window wakeup delay for 0.35mm technology. 158
Table A.6: Break down of window wakeup delay for 0.18mm technology. 159
Table A.7: Break down of selectiondelay. i, 160
Table A.8: Overall delay resultsfor 0.8mm technology. 161
Table A.9: Overall delay resultsfor 0.35mmtechnology. 161
Table A.10: Overall delay resultsfor 0.18mm technology. 161
Table B.1: Constants for tag drivedelay equation. oiiin.., 163
Table B.2: Constants for tag match delay equation. 164
Table B.3: Constants for match OR delay equation. 164
Table B.4: Constantsfor total delay equation., 165

Table B.5: Constants for data bypassdelay equation. 166

Xiv

Chapter 1

| ntroduction

1.1 Motivation

Over the past decade superscalar microprocesseesbegome a source of tremendous
computing pwer. They form the core of a wide spectrum of high-performance computer
systems ranging from desktop computers to small-scale paralletrséovmassely-par-
allel systems. @ satisfy the eergrowing need for higher {els of computing pmer, com-
puter architects need tovesticate techniques that continue imyirgy the performance of
superscalar microprocessors while considering both changing technology and applica-

tions.

Superscalar microarchitectures [Joh91, SS95], on which superscalar microprocessors
are based, defer high performance byxecuting multiple instructions in paralleVery
cycle. Hardvare is used to detect andeeute parallel instructions. This technique of
exploiting fine-grain parallelism at the instructiorvéé to improse performance is com-
monly referred to amstruction-level parallelism. The maximum number of instructions
processed in parallel, also kmo as thewidth of the microarchitecture, is typically four

for the fastest microprocessors[Gwe96ajnkO6] available today A typical superscalar

Load/Store TLB
Integer

Window [| Regs ALU/Branch ¢
ALY Write >
Fetch - Buffer Data
[-Cache Rename o
¢ | | Write ~
Buffer
FP Mult
FP » FP
FP Add

Figure 1-1. A typical superscalar microarchitecture.

microarchitecture, illustrated in Figure 1-1, operates as follows. Multiple instructions are
fetched from the instruction cache every cycle. The instructions are then decoded, checked
for dependences, renamed, and deposited in an instruction window. The instructions wait
in the instruction window for their operands and functional units to become available.
Hardware continuously monitors the dependences between instructions in the window and
selects appropriate instructions for parallel execution. The overall hardware apparatus
responsible for creating the window, monitoring dependences between instructions in the
window, selecting instructions for execution from the window, and providing data oper-
ands to the instructions, henceforth collectively referred to ssmply asissue l@ic, is one of
the most performance-critical components in a superscalar processor. The issue logic
largely determines the amount of instruction-level parallelism that can be extracted.

Hence, optimizing thislogic is of paramount importance.

The net performance of a superscalar microarchitecture is directly proportional to the
product —Instructions Per Cycle Clock Frequenc. Instructions Per Cycle or IPC isthe
sustained number of instructions executed in parallel every cycle. IPC depends on a num-
ber of factors including the inherent parallelism in the program, the width of the microar-
chitecture, the size of the instruction window, and other characteristics of the scheme used

for extracting parallelism. Clock Frequency is the speed at which the microarchitecture is

3
clocked and is determined by the delays associated with the significant critical paths in the

microarchitecture.

For the past decade, the general approach for vimgydhe performance of superscalar
microprocessors has been toilh microarchitectures with increasingly complssue
logic that can boost the IP@dtor in the performance equation. The increase in comple
ity results from a wider microarchitecture, a bigger instruction windod more comple
iIssue methods. hieever, there is a potential problem with continuing this sgwpt&Vhile
complec issue logic might be able tateact more parallelism, it can easily limit the clock
speed of the microarchitecture. Microarchitectures with more caniggdele logic typi-
cally require longer wires and deeperdks of logic to implement, and hence, can require
longer critical paths in the microarchitecture. Thus, there is a danger of squandering the
gains in IPC to a sle clock; resulting in reduced benefits @er no benefit inwerall per-
formance. Furthermore, technology trends suggest that wire delays will increasingly dom-
inate total delay as feature sizes are reduced. Theswd suggest that straightf@ma
scaling of current microarchitectures for higher IPCs might not be the most appropriate
approach for dekering higher performance in future. In summahere is a trade-bf
between issue logic compigy, instructions perycle (IPC), and clock speed that needs to
be carefully ®mined while designing impved superscalar microarchitectures. This the-

sis xamines this trade-bf

The abee discussion underscores the need feesticating superscalar microarchitec-
tures that judiciously use hardve complgity for exploiting significant lgels of instruc-
tion-level parallelism while permitting aa$t clock. V@ call such microarchitectures
complexity-effective superscalar microarchitectures.! These microarchitectures attempt to

maximize the product of IPC and Clock Frequerather than push thesiope for each

1. While compleity can be ariously quantified in terms such as number of transistors, die area,
and pover dissipated, in this thesis conytg is measured as the delay of the critical path
through a piece of logic, and the longest path througtoathe pipeline stages determines the
clock speed.

4
term separatelyThis thesis proposes andakiates tw such compbaty-effective super-
scalar microarchitectures calledpendence-based microarchitectures andinteger-decou-

pled microarchitectures.

While designing for complety-effectiveness is a desirable goal, the question that
immediately arises is: i do we quantify the compléy of a microarchitecture? It is
commonplace to measure the IPC of & meicroarchitecture, typically by using simula-
tion. Such simulations count clockales and praide IPC in a direct manneHowever,
the compleity of a microarchitecture is much morefoiéilt to determine — to beevy
accurate, it requires a full implementation in a specific technoMfat is ery much
needed areairly straightforvard measures of compigy that can be used by microarchi-
tects at adirly early stage of the design process. Such method#dvallov the determi-
nation of compleity-effectiveness. This thesis tak a step in the direction of

characterizing compkity and complgity trends.

1.2 Historical Perspective

This section briefly outlines thev@ution of ILP processors, especially superscalar pro-
cessors, while highlighting major trends in design trade+ofolving hardvare complg-
ity and performance. Figufel illustrates the wlution of ILP processors with a time

line.

Pipelining [Kog81] is the most pvalent technique forgloiting instruction-leel paral-
lelism. Pipelining enablesverlapped recution of multiple instructions by breaking
instruction processing into gments, just lik an assembly line. Itag first implemented
in the IBM Stretch [Buc62] in 1961. Ev since, pipelining has been adopted by almost all

high-performance designs.

The 1960s sa two pioneering machines that laid the foundation for much of the ILP
techniques in wide use todayhese were the CDC 6600 [Tho61,Tho63] and the IBM 360/
91 [AST67] machines dekered in 1964 and 1967 respeety. The CDC 6600 imple-

< ;\\o“\
\ S ©
) Q7
N4 & Q&
® &S
$® QQ\ Q;(\
N A R
Voo XS
S o F LIS
(0\5 (bQ) O Q‘b' ?SQQQ ‘]>' / rl/'\'
NP St SN (L QT L
N2 N2 PRI O
| I D L | | | >
o < N - o o Lo
O© ©O© O I~ [e0) (o)) (o))
o O OO O (@)
™ 1 i i i

Figure 1-2. Time line shaving evolution of superscalar processors.

mented an impress repertoire of architectural techniques, especially for its time — a
clean load/store instruction set that enablédieht pipelining, multiple functional units,
and scoreboarding logic for dynamic scheduling. In the IBM 360/91 floating-point sub-
system, the designers implemented a more sophisticated issuing schemeakmoma-
sulo’s algorithm [Tom67] after its imentor The issuing schemes of most current
superscalar microprocessors can bewgmk as ariants of Bmasulo$ scheme. Een
though the tw designs implemented out-of-ordexeeution, thg were both single issue
machines. Out-of-orderxecution vas used to\erlap eecution of long-latenc opera-
tions, tolerate sl memory accesses, and, in the case of the 360/91 ateitige perfor-

mance drabacks of haing few (8) floating-point rgisters.

Soon after both IBM and CDC neerted back to simpler in-order issue, pipelined
machines with adst clock. The folle-on machines, the CDC 7600 and the IBM 360/370,
issued instructions strictly in ordérhe eact reasons for thisversal are not kvan, kut
issues lile the dificulty of detugging complg issue methods and thetea hardvare cost
are likely considerations on which the decisioasibased.Wo decades latemushroom-
ing transistor bdgets, adanced CAD tools, and the matkfor high-performance, ould
trigger the resgence of 6600 and 360/914ikschemes in the comteof superscalar

microprocessors.

6
The 1970s s not anwentful decade for ILP processors. All commercial machines still

had a peak fetch rate of one instruction petec Havever, during this time, some of the
initial research in the area of multiple-instruction issue [TF70, RF72,Scré& farried
out. Schorr describes anptoratory design [Sch71] capable of fetching, decoding, and
executing multiple instructionsvery g/cle. The design, later to be ko as the IBM A£S
(Advanced Computer System)asvpartitioned into theadex unit that performed address-
ing operations and the¥ithmetic unit that @ecuted arithmetic instructions. The arithmetic
unit had a windw of eight instructions out of which 3 instructions could be issuedktr e
cution every g/cle. Unfortunatelythe project vas cancelled due to the incompatibility of

the ISA with the S/360 ISA and other problems.

The late 1970s sathe emegence of a ng paradigm for ILP called VLIW — ¥ty
Long Instruction Vérd — that grev out of early microcode machines i/84] and systems
built by Floating Point Systems [Cha81]. VLIWSs rely on the compiler to pack independent
operations into a long instructiorovd which are thenxecuted on multiple, independent
functional units. The guments indvor of VLIW are two-fold. First, since the compiler
has a lager scope than the hardre to look for independent operations, VLIWSs should be
able to eploit more parallelism than superscalars. Second, since coisples hardare
is no longer required, VLIW processors can be adckuch éster than superscalar pro-
cessors. Hwever, even though a 8 commercial VLIW processors wereily, the para-
digm has not gined widespread acceptance. There are a number of reasons. First, to
match hardwre techniques, the paradigm requires sophisticated compiler technology that
implements adanced techniques kksoftware pipelining, global scheduling to we
instructions across branches, trace scheduling [Fis81], and memory disambiguation.
While advanced VLIW compilers [EII85] that focussed on floating-point codgs baen
developed, it is not clear owell they perform on intger code where branches occur fre-
quently and memory disambiguation is hard. Secordpsng hardwre details to the

compiler results in binaries that might not be portable across implementations. Third, the

7
sophisticated transformations tend to result in increases in code size that can potentially

degrade werall performance.

The lack of ILP inngation continued into the early 1980s. Thiasathe period when
most microprocessor designers weres\b implementing RISC concepts [PS81] in the
form of simple pipelining, and melLP techniques did not ree& much attention. Heo-
ever, the second half of the 1980saseenaved ILP actvity both in the superscalar and
VLIW areas. The commercial implementations of the VLIW conceptracd [CNO88]
by Multifflow and Cydra 5 [RYT89] by Cydrome — were delered during this time.
However, these implementations had limited success in penetrating commerciaksnark
At the same time, threeqgerimental superscalar prototype $3,GHL"85,Gro90] eforts
were undenay. These were the Astronautics ZS-1, thesdénsin PIPE, and the IBM
America machines. All three of them, implemented a limited form of multiple issue —
integer instructions, including memory access related instructions, were issued in parallel
with floating-point instructions. The ZS-1 and the PIPE used architectural queues to com-
municate @lues between the twclasses of instructions. The America design usgidtes
renaming to achiee the same #dct. All the designs still used in-order issue xeaite
instructions within each class. This simplified issue logic whilevatig a limited form of

out-of-order g&ecution.

The early 1990s ®a a number of superscalar implementations [KM89,
D*92,K"93,Hsu94] — Intel i860, DEC 21064, HP 7100, MIPS R8000, and others. All of
them, with the eception of the Pweerl, were simple in-order implementations that
achieved multiple-issue byxecuting instructions of dérent types (load/store, branch,
floating-point) in parallel. The IBM Reerl [Gro90] based on the earlier America design
implemented rgister renaming and sophisticated instruction fetch mechanisms. Other
vendors continued on the path of simple in-order implementations vastex tlock. This
gave rise to the “speed demons” (simple implementations walstacfock) ersus “braini-

acs” (compl& implementations with a sloclock) contreersy [Gwe93].

8
The mid 1990s sa some cowergence between the owcamps. Almost all endors

moved tavards designs implementing comypleut-of-order microarchitectures based on
the 6600 and 360/91 schemes as well as idgdered in academia [SP88, Soh90, HP86,
YP92]. At the time of the writing of this thesisieegy major microprocessoendor has a

product implementing sophisticated dynamic scheduling.

In 1996, Digital Equipment Corporation, long considered to be the bastion of the speed
demons, announced plans for a product (DEC 21264 [Gwe96a]) implementing an out-of-
order microarchitecture with a rehaiy fast clock (600 MHz). An interesting feature that
stands out in this design is the microarchitectural changes yaapto fcilitate a &st
clock. The intger subsystem is partitioned intoawlusters. Instructions are steered from
a central windw to the clusters. Each cluster has is\aopy of the r@gister file. In addi-
tion to reducing the number ofgister file ports, clustering also mek possible st
bypassing between units in the same clu3teese features are described in more detail in

Chapter 3. The research presented in this thesis has been highly influenced by this design.

In summarythe superscalar approadias golved over the years into the mainstream of
processor implementations and each generation of designers had to deal with thé trade-of

between hardare complgity and performance.

1.3 The Conventional Microarchitecture

As discussed earliecurrent superscalar processorse like MIPS R1000 [&a96] and
the DEC 21264 [Gwe96a], are typically based on the microarchitecturen simo
Figurel-1. The issue andxecution resources in the machine are partitioned intgente
and floating-point subsystems. The gee subsystem contains a number of load/store,
branch, and functional units that operate ongeteoperands. The floating-point sub-

system is similar to the irger subsystenmxeept it does not contain load/store units, and it

1. There hae been other ILP paradigms, sonegywsuccessful in theimm niche markt, that hae
not been touched upon in this section. Some of these paradignestme yRus78], superpipe-
lining [JW89], autotasking[ABHS89], multiprocessing[FJD80], and datafiaM74].

9
operates on floating-point operands. Instruction wivedan each subsystemuffer

instructions and implement dynamic scheduling as discussed .earlier

The microarchitecture presented in Figlifg will be referred to as the caentional
microarchitecture throughout the rest of this thesis. It will be used as a baseline for perfor-

mance comparisons.

1.4 Thesis Contributions

1.4.1 Quantifying the Complexity of Superscalar Microarchitectures

The main contribtion of this thesis is the delopment of simple models that both quan-
tify the compleity of superscalar microarchitectures and identify complerends. Mea-
surement of implementation compiy of microarchitectural features is going to be
increasingly crucial for computer architects to understand and m#4tde much vork
remains to be done in this area, therkvpresented in this thesis is an important starting

point.

The structures in a baseline superscalar microarchitecture whose xiongrievs with
increasing instructionel parallelism are identified and analyzed. Each is modeled and
Spice simulated for three tBfent feature sizes representing past, present, and future tech-
nologies. Simple analytical models areveleped that quantify the delay of these struc-
tures in terms of microarchitectural parameters of windize and issue width. The
impact of technology trendswards smaller feature sizes is studied. In particula

Impact of poor scaling of wire delays in future technologies is analyzed.

In addition to delays, we study the performandeat$ of pipelining critical structures.
Even if the delay of a structure is reladly lage, it may not increase the comytg of the
design because the structgreperation can be spreageo multiple pipestages. Our anal-
ysis identifies structures that are more performance critical. The operation of these struc-
tures should be accommodated within a singlgecto aoid significant dgradation in

IPCs achieed, especially for programs with limited parallelism.

10
Our analysis shes that the issue win#lologic and data bypass logic are going to be the

most critical structures in future. The delay of the issue wiridgic increases at least lin-
early with both issue width and windaize. The functioning of this logicuolves broad-
casting of multiple tags on long wires spanning the wingle an operation that does not
scale well in future technologies. Furthermore, the delay of the wikmipc must fit in a
pipestage to\id performance dgadation. Hence, this logic can be ey Kimiter of

clock speed as we me tovards wider issue widths, g windav sizes, and adnced
technologies in which wire delays dominate total defaother structure that can poten-
tially limit clock speed especially in future technologies is the data bypass logic. The
result wires that are used to bypass operatdeg increase in length as the number of
functional units is increased. This results in a quadratic dependence of the bypass delay on
issue width. Utilizing bffers helps mitigte the problem to anxtent, lut a linear increase

in delay with issue width still persists. Juselithe windav logic, data bypass logic must
also complete within a singleggde for performance reasons. Hence, bypass delays could
ultimately become significant and force architects to consider more decentragjaad or

zations.

1.4.2 Dependence-based Superscalar Microar chitectures

This thesis studies a wefamily of compleity-effective microarchitectures called
dependence-based superscalar microarchitectures that addresajow sources of com-
plexity — window logic and data bypass logic — in eentional microarchitectures.
Dependence-based microarchitectures usenhain techniques to ackieethe dual goals
of high IPC and aafst clock. First, the machinepartitioned into multiple clusters each of
which contains a slice of the instruction wimdand &ecution resources of the whole pro-
cessor This enables high-speed clocking of the clusters since thewniasoe width and
the small instruction winde of each clusterdeps critical delays small. The second tech-
nique irvolvesintelligent steering of instructions to the multiple clusters so that the full
width of the machine is utilized while minimizing the performancgra@ation due to

slow intercluster communication.

11
A number of design alternaéis and steering heuristics for dependence-based microar-

chitectures are proposed andileiated using simulations. Among the designs presented,
one that is particularly attracé is what we call théfo-basedmicroarchitectue. This
microarchitecture implements the instruction wiwdas a collection of a small number of
fifos and steers dependent chains of instructions to the same fifo. Simulatianigtino
slovdown as compared with a completelyxilde issue windew when performance is
measured in clockycles. Furthermore, because only instructions at fifo heads need to be
awakened and selected, issue logic is simplified and the clpdie ¢s faster —conse-
quently werall performance is impved. For example, our results stothat, due to the
clock speed adntage, the\@rall performance of a 2X4ay" fifo-based microarchitec-
ture is 16% higher than that of a typical &wsuperscalarven though the proposed
microarchitecture dgades IPC performance by 6% relatio the typical microarchitec-
ture. By grouping dependent instructions togetties fifo-based microarchitecture also
helps minimize the performancegiadation due to sk bypasses in future wide-issue

machines.

1.4.3 Integer-decoupled Microarchitecture

This thesis proposes another comfileeffective microarchitecture called theteger-
decoupled mi@architecture that impraes the performance of igger programs and can
be intgrated into a carentional microarchitecture with little or no increase in coxiple
The intggerdecoupled microarchitecture starts with avasrional microarchitecture and
augments the floating-point units to perform simple gateoperations. Some igger
instructions, those not used for computing addresses and accessing neeentrgn df
loaded to the augmented floating-point subsystem by the con@aiesequent|yfor inte-
ger programs, the ingerdecoupled microarchitecture pides a lager windav for
dynamic scheduling as well aste issue andxecution bandwidth at no increase in com-

plexity.

1. A 8-way microarchitecture comprising tvelusters — each consisting of four fifos feeding four
functional units.

12
We ealuate the potential performance imypgments with the inggerdecoupled

microarchitecture. Our results stiahat a modest to significant fraction of the total
dynamic instructions in our benchmark programs can béaded to the augmented
floating-point subsystem. In doing so, the gaedecoupled microarchitecture prdes
speedups from 3% to 23%er a 4-wide (2 intger and 2 floating-point units) oaen-

tional microarchitecture. Furthermore, the resultsisti@at only simple intger operations

need to be supported in the floating-point subsystem. This minimizes the additional hard-

ware cost.

1.5 Thesis Organization

The remainder of this thesis isganized as follews. Chapter 2 describes the simple
models that we deloped, along with the methodology used, for quantifying the comple
ity of superscalar microarchitectures. Chapter 3 proposesvahthtes dependence-based
superscalar microarchitectures. Chapter 4 introduces agdtigates the intgerdecou-
pled microarchitecture. Finall{Chapter 5 gies conclusions and suggests future directions

to explore. The appendices includes detailgdezimental results for Chapter 2.

13

Chapter 2

Quantifying the Complexity of Superscalar Processors

The complaity of a microarchitecture is di€ult to determine — to beevy accurate, it
would require a full implementation in a specific technoldffpat is ery much needed
are hirly straightforvard measures, possibly only relatimeasures, of compigy that
can be used by microarchitects abaly early stage of the design process. This chapter
presents wrk that tales a step in that direction. Simple models that quantify the cgmple
ity of superscalar microarchitectures areedeped and used to identify long-term com-

plexity trends.

We start by identifying those portions of a microarchitecture whose crityptgows
with increasing instruction-e| parallelism. Of these, we focus ogister rename logic,
window logic, reagister file logic, and data bypass logice halyze potential critical paths
in these structures andwa#dop models for quantifying their delayseWwtudy the manner
in which these delaysavy with microarchitectural parametersdiindav size (the num-
ber of instructions from which ready instructions are selected for issue) and issue width

(the number of instructions that can be issued yckel We also study the impact of the

14
technology trend teards smaller feature sizes. In particulae analyze he the poor

scaling of wire delays in futurefatts the werall delay of critical structures.

In addition to delays, we study the performandeat$ of pipelining critical structures.
Even if the delay of a structure is reladly lage, it may not increase the comytg of the
design because the structgreperation can be spreageo multiple pipestages. é\ana-
lyze structures to identify those whose operation must be accomplished within a single

cycle to aoid significant dgradation in the number of instructions committeerg o/cle.

The rest of this chapter isganized as folles. Sectior2.1 describes the sources of
compl«ity in a baseline microarchitecture. Sectih@ describes the methodology we use
to study the critical structures identified in Sectoh. Sectior.3 briefly discusses tech-
nology trends. Sectioh.4 presents a detailed analysis of each structure anthialelay
of the structure aries with microarchitectural parameters and technology parameters.
Section2.5 discusses pipelineability of each of the structures aacdhlb delay results.

Finally, Section2.6 lists related wk, and Sectio2.7 summarizes the chapter

2.1 Sourcesof Complexity

Before delving into specific sources of conxilg we describe the baseline superscalar
model assumed for the studife then list the basic structures that are the primary sources
of compl«ity. Finally, we shav how these basic structures are present in one form or
another in most current implementationsrethough these implementations might appear
to be diferent superficiallyOn the other hand, we realize that it is impossible to capture
all possible microarchitectures in a single model andrasults preided here hae some
obvious limitations. V@ can only preide a firly straightforvard model that is typical of
most current superscalar processors, and suggest that techniques similar to those used here

can be rtended for othemore adanced models as thare deeloped.

15

WINDOW FUNC. UNITS

W W g I
o n

AN RINEL>s 9
L il < W o [<
o =0 o o K
P %] a

WAKEUP EXECUTE | DCACHE

FETCH RENAME SELECT REG READ BYPASS ACCESS COMMIT

Figure 2-1. Baseline superscalar model.

Figure2-1 illustrates the baseline model and the associated pipeline. The fetch unit
fetches multiple instructionsery o/cle from the instruction cache. Branches encountered
by the fetch unit are predictedolwing instruction fetch, instructions are decoded and
their register operands are renamedgR&er renaming wolves mapping the logical gés-
ter operands of an instruction to the appropriatesigal reyisters. Renamed instructions
are then deposited in the issue wwdwhere thg wait for their source operands and the
appropriate functional unit to becomeadable. As soon as these conditions are satisfied,
the instruction is issued angexutes on one of the functional units. The operataeg of
an instruction are either fetched from thgiseer file or are bypassed from earlier instruc-
tions in the pipeline. The data cachevyes lav lateny access to memory operands via

loads and stores.

The issue windwe is responsible for monitoring dependences between instructions in the
window and issuing instructions to the functional units. The winbtimic consists of tw
components — thevakeup logic and theselect logic. The first component is responsible
for “waking up” instructions waiting in the issue windw for their source operands to
become wailable. Once an instruction is issued fRe&ution, the tag corresponding to its
result is broadcast to all the instructions in the wmdBach instruction in the windo
compares the tag with its source operand tags. Once all the source operands of an instruc-
tion are aailable the instruction is flaggedady for execution. The select logic is respon-

sible for selecting instructions foxecution from the pool of ready instructions. An

16
instruction is said to be ready if all of its source operandsvaikable. As pointed out ear-

lier, the wakeup logic is responsible for setting the ready flag.

2.1.1 Basic Structures

The most important criterion used for identifying a basic structure for our study is that
the delay of the structure should be a function of either issue wiside or issue width or
both. For example, we consider géster renaming to be a basic structure because its delay
depends on the number of ports into the mapping table which in turn is determined by the
issue width. On the other hand none of the functional units are included in the study
because their delay is independent of both the issue width and thewsirdo In addi-
tion, our decision to study a particular structusswased on twobserations. First, we
are primarily interested in dispatch and issue-related structures because these structures
form the core of a microarchitecture andjily determine the amount of parallelism that
can be eploited. Second, some of these structures rely on broadcast operations on long
wires and hence, their delays might not scale as well as logic-irgestgictures in future
technologies with smaller feature sizes. Hence, weueetleat these structures are poten-

tial cycle-time determinants in future wide-issue designs imackd technologies.

The structures we consider are:
* Raister ename lgic
* Window waleup l@ic
* Window selection Igic
* Raister file lgic
» Data bypass Igic

There are other important pieces of logic that are not considered in this thkenis, e
though their delay is a function of issue width. These are:
* Cades.

Instruction and data caches yide lowv latengy access to instructions and memory oper-

ands, respeactely. In order to preide the necessary load/store bandwidth [SF91] in a

17
superscalar processdhe cache has to be badkor duplicated. The access time of a

cache is a function of the size of the cache and the assgibgiafithe cache. \Ada et. al.
[WRP92] and Witon and Jouppi [WJ94] va developed detailed models that estimate the
access time of a cachesgn its size and associaty.
« Instruction fetb logic

Besides the instruction cache, there are other important parts of fetch logic whose com-
plexity varies with dispatch width. First of all, as instruction issue widths geyond the
size of a single basic block, it will become necessary to predict multiple branemgs e
cycle. Then, non-contiguous blocks of instructions wilvéhdo be fetched from the
instruction cache and compacted into a contiguous block prior to renaming. The logic
required for these operations are described in some detail in [RBS9@§vétodelay
models remain to be deloped. And, although tlgeare important, theare not considered

here.

Finally, it must be pointed out onceaaqg that in real designs there may be structures not
listed abee that influence theverall delay of the critical path. Kaver, our realistic aim
is not to study all of themub to analyze in detail some important ones thakHzeen
reported in the literature. \believe that our basic technique can be applied to others,

however.

2.1.2 Current Implementations

The structures identified ab®were presented in the caoxitef the baseline superscalar
model shwn in Figure2-1. The MIPS R10000 [&a96], and the DEC 21264 [Gwe96a]

18

WINDOW FUNC. UNITS
L + |7

e

B REG FILE

FETCH
RENAME

BYPABS
DATA CACHE

REORDER
BUFFER

WAKEUP+SELECT

REG READ | WAKEUP | EXECUTE | DCACHE

FETCH | RENAME | oo o) O | 'SELECT | BYPASS | ACCESS | COMMIT

Figure 2-2. Reseration stations-based superscalar model.

are two implementations of this model. Hence, the structures identifiece adquply to

these two processors.

On the other hand, the Intel Pentium Pro [Gwe95b], thheeFRC 604 [SDC95], and the
HAL SPARC64 [Gwe95a] are based on the reagon model shen in Figure2-2. There
are two main diferences between thedwnodels. First, in the baseline model all thepre
ister \alues, both specula@ and non-specula®, reside in the pisical rgister file. In the
resenation station model, the reordeauffer holds speculate values and the gester file
holds only committed, non-speculatidata. Second, operanalies are not broadcast to
the windav entries in the baseline model - only their tags are broadcast;alla¢s go to
the plysical reister file. In the reseation station model, completing instructions broad-
cast result &lues to the reseation stations. Issuing instructions read their operahaeg

from the resemtion station.

The point to be noted is that the basic structures identified earlier are also present in the
resenation station model and are as critical as in the baseline model. The only notable dif-
ference is that the resamion station model has a smallerypital rayister file (equal to
the number of architectedgisters) and might not demand as much bandwidth (ag man
ports) as the gaster file in the baseline model, because in this case some of the operands

come from the reordeuffer and the reseation stations.

19
While the discussion of potential sources of coxiplels in the contet of a baseline

superscalar model that is out-of-ord#rmust be pointed out that some of the critical
structures identified apply to in-order processors too.ekample, the rgister file logic,

and the data bypass logic are also present in-order superscalar processors.

2.2 Methodology

Each structure &s studied in tew phases. In the first phase, a represeet@&MOS cir-
cuit was selected for the structure. Thigsadone by studying designs published in the lit-
eraturé and by collaborating with engineers at Digital Equipment Corporation. In cases
where there &s more than one possible design, we performed a preliminary study of the
designs to select one thaasvmost promising. In one casggister renaming, we had to

study (simulate) te different schemes.

In the second phase, the circuasimplemented and optimized for speed. Circuits were
designed mostly using static logic. \Mever, in situations where dynamic logic helped
boost the performance significanttiynamic logic vas used. & example, in the winde
wakeup logic, a dynamic 7-input NORag was used for comparisons instead of a static
gate. A number of optimizations were applied to inwerthe speed of the circuits. First,
all the transistors in the circuit were manually sized so thatatl delay impreed. Sec-
ond, logic optimizations li& two-level decomposition were applied to redue@m-in
requirements. Staticages with adn-in greater than four wereaded. Third, in some
cases transistor reorderingisvused to shorten the critical path. Some of the optimization

sites will be pointed out when the im@lual circuits are described.

We used the HSPICE circuit simulator [Met87] from MetaSafeto simulate the cir-
cuits. In order to simulate thefeft of wire parasitics, parasitics were added at appropriate

nodes in the Hspice model of the circuit. These parasitics were computed by calculating

1. Mainly proceedings of the ISSCC — International Solid-State and Circuits Conference.

20
the length of the wires based on the layout of the circuit and usinglthes\ofR,, and

Chetal — the resistance and parasitic capacitance of metal wires per unit length.

To study the déct of reducing the feature size on the delays of the structures, we simu-
lated the circuits for three @#rent feature sizes: Qué, 0.3um, and 0.18m respec-
tively. The process parameters for thep@d8CMOS process were tak from [JJ90].
These parameters were used in [WJ94] to study the access time of caches. Because pro-
cess parameters are proprietary information, we had toxtreg@@ation to come up with
process parameters for the uBband 0.18m technologies. Wused the 018n process
parameters from [JJ90], uB process parameters from MOSIS, and process parameters
used in the literature as inputs. The process parameters assumed for the three technologies
are listed in Appendix A. Layouts for the 08B and 0.1fm technologies were obtained

by appropriately shrinking the layout for the |8 technology

Finally, basic RC circuit analysisag used to delop simple analytical models that cap-
tured the dependence of the delays on microarchitectural parametasslik width and
window size. The relationships predicted by the Hspice simulations were compared
against those predicted by our model. In most of the cases, our models were accurate in

identifying the relationships.

2.2.1 Caveats

The abee methodology does not address the issue wf Well the assumed circuits
reflect real circuits for the structures.w#yer, by basing our circuits on designs published
by microprocessorandors, we belie that the assumed circuits are close to real circuits.
In practice, may circuit tricks can be empyed to optimize critical paths for speed.wio
ever, we belige that the relate delay times between fiifent configurations should be
more accurate than the absolute delay times. Because we are mainly interested in finding
trends in the manner in which delays of the structuaeg with microarchitectural param-
eters lile windav size and issue width, andvwdhe delays scale as the feature size is

reduced, we beli@ that our results areahd.

21
It must also be pointed out that while the absolute delay times presented in this thesis

track the resulting clock speed, yheannot be directly caerted into clock speeds. There

are two reasons for this. First, we do not include the delay of-sttgye latches and the

delay resulting from clock s in our measurements. Theseotwomponents can be
responsible for a non-tial fraction of the total delay as skio in [NH97], especially for

high frequeng designs. Second, the delay of a design caw stamsiderable ariance

with process parameters and temperature of operation. Commercial designs are required to
operate ger a range of process parameters angiphl temperatures. Our designs were

simulated for a single set of process parameters and a single temperature gaint (25

2.2.2 Terminology

Table2.1 defines some of the common terms used in the rest of this clityeteemain-

ing terms will be defined when thare introduced.

Symboal Represents
W Issue width
WINS ZE Window size
NVREG Number of logical rgisters
NPREG Number of plysical rayisters

NVREG,,iqth Width of logical r@ister tags

NPREG,;iqth Width of plysical reyister tags

DATAidth Width of datapath
Rietal Resistance of metal wire per unit length
Cretal Capacitance of metal wire per unit length

Table 2.1: Terminology

2.3 Technology Trends

Feature sizes of MOS dees hae been steadily decreasing. This trend [Ass9¥atds

smaller deices is lilely to continue at least for thextelecade. In this section, we briefly

22
discuss the &ct of shrinking feature sizes on circuit delays. Thectfof scaling feature
sizes on circuit performance is an eetarea of research {4, MF95]. \\ are only inter-

ested in illustrating the trends in this section.

Circuit delays consist of logic delays and wire delays. Logic delays result fites g

that drve other gtes. We delays are the delays resulting fronviohg values on wires.

2.3.1 Logic Delays

The delay of a logicate can be written as
Delaygae = (CL xV)/I

whereC, is the load capacitance at the output of @we is the supply oltage, and is
the average chaing/dischaging currentl is a function of 4 — the saturation drain
current of the déces forming the gte. As the feature size is reduced, the supphage
has to be scaled dm to keep the pe@er consumption at manageabledis. Becauseolt-
ages cannot be scaled arbitrarilyythellow a different scaling cumr from feature sizes.
From [Rab96], for submicron dees, ifSis the scalingdctor for feature sizes, antlis
the scalingdctor for supply gltages, therl€, ,V, andl scale by &ctors ofl/S, 1/U,
and 1/ U respectrely. Hence, theerall cate delay scales by adtor of 1/S. Therefore,

gate delays decrease uniformly as the feature size is reduced.

2.3.2 Wire Delays
If L is the length of a wire, then the intrinsic RC delay of the wirevesngby

2

Delay,,i;. = 0.5%xR C L

metal x metal X

whereReta, Cetal @r€ the resistance and parasitic capacitance of metal wires per unit
length respectely andL is the length of the wire. Thadtor 0.5 is introduced because we

use the first order approximation that the delay at the end of a wlisthiRC line is

23
(RC)/2 (we assume the resistance and capacitance are utistribniformly eer the

length of the wire).

In order to study the impact of shrinking feature sizes on wire delays we fiestdha
analyze hw the resistanceR gy, and the parasitic capacitan€g,,, of metal wires
vary with feature sizes. 8Wuse the simple model presented by Bohr in [Boh95] to estimate
how Ryetar aNdCrg SCale with feature size. Note that both these quantities are per unit

length measures. From [Boh95],

Ruyetar = P/ (width x thickness)

C

metal Cfringe +C

parallelplate

2xgxe x(thickness)/(width) +2 x & x g, x (width)/(thickness)

wherewidth is the width of the wirethicknessis the thickness of the wirp,is the resist-

ity of metal, and& ande are permittrity constants.

The arerage metal thickness has remained redticonstant for the last\iegenera-
tions while the width has been decreasing in proportion to the feature size. H&se, if
the scalingdctor the scalingdctor forR,g IS S The metal capacitance haotaompo-
nents: fringe capacitance and parallel-plate capacitance. Fringe capacitance is the result of
capacitance between the sidals of adjacent wires and capacitance between the side-
walls of the wires and the substratardllel-plate capacitance is the result of capacitance
between the bottom-all of the wires and the substrate. Assuming that the thickness
remains constant, it can be seen from the equatio@fgg that the fringe capacitance
becomes dominant as we weotovards smaller feature sizes. In [RNOMO95], the authors
showv that as feature sizes are reduced, the fringe capacitance will be responsible for an
increasingly lager fraction of the total capacitancerfxample, thg shav that for fea-
ture sizes less than Quh, the fringe capacitance contrtes 90% of the total capacitance.

In order to accentuate thefeft of wire delays and to be able to identify thefeets, we

24
assume that the metal capacitance is largely determined by the fringe capacitance and

therefore the scaling factor for Cpg iSO S

Using the above scaling factors in the equation for the wire delay, we can compute the

scaling factor for wire delays as,

Scaling Factor = Sx S><(1/S)2

= 1

Note that the length scales as 1/S for local interconnects. In this study we are only
interested in local interconnects. This might not be true for global interconnects like the

clock because their length aso depends on the die size.

Hence, as feature sizes are reduced, wire delays remain constant. This, coupled with the
fact that logic delays decrease uniformly with feature size, implies that wire delays will
dominate total delays in future. In redlity, the situation is further aggravated for two rea-
sons. First, not all wires reduce in length perfectly (by afactor of S). Second, some of the
global wires, like the clock, actually increase in length due to bigger dice that are made

possible with each generation.

McFarland and Flynn [MF95] studied various scaling schemes for local interconnect
and conclude that a quasi-ideal scaling scheme closely tracks future deep submicron tech-
nologies. Quasi-ideal scaling performs ideal scaling of the horizontal dimensions but
scales the thickness more slowly. The scaling factor for RC delay per unit length for their
scaling model is (0.9 x S™+0.1 x 82'5) . In comparison, for our scaling model, the scal-

ing factor for RC delay per unit length is a more conservative, and simpler, g,

2.4 Complexity Analysis

In this section we discuss the critical structuresin detail. The presentation of each struc-

ture is organized as follows. First, we describe the logical function implemented by the

25
structure. Then, we present possible schemes for implementing the structure and describe

one of the schemes in detail Xtleve analyze theverall delay of the structure in terms of
microarchitectural parametersdikssue width and windosize using simple delay mod-
els. Finally we present Spice simulation results, identify trends in the results and discuss

how the results conform to the delay analysis performed earlier

2.4.1 Register Rename L ogic

The rayister rename logic is used to translate logicgister designators into phical
register designators. Logicallthis is accomplished by accessing a map table with the log-
ical register designator as the ind@ecause multiple instructions, each with multiplgre
ister operands, need to be renamesheg/cle, the map table has to be multi-portedr F
example, a 4-wide issue machine withotwead operands and one write operand per
instruction requires 8 read ports and 4 write ports into the mapping table. Theveigh le
block diagram of the rename logic is sioin Figure2-3. The map table holds the current
logical to plysical mappings. In addition to the map table, dependence check logic is
required to detect cases where the logicgister being renamed is written by an earlier
instruction in the current group of instructions being renamed. The dependence check
logic detects such dependences and sets up the output MUXes so that the appropriate
physical reyister designators are generated. The shadble is used to checkpoint old
mappings so that the processor can quicklyvwexcto a precise state from branch mispre-
dictions. At the end of\e@ry rename operation, the map table is updated to reflectwhe ne

logical to plysical mappings created for the resugjiséers of the current rename group.

26

— |, PHYSICAL SOURCE
—p —» REGS
LOGICAL SOURCE MAP .
REGS . TABLE .
—> PHYSICAL —
DEST. PHYSICAL
REGS . MUX ¥ REG FOR
. REG R
LOGICAL DEST. —»
—p
REGS DEPENDENCE
. CHECK T

* | LOGIC (SLICE)
LOGICAL SOURCE
REG R

Figure 2-3. Ragister rename logic.

2.4.1.1 Structure

The mapping and checkpointing functions of the rename logic can be implemented in at
least two ways. These tev schemes, called the RAM scheme and the CAM scheme, are
described nd.

RAM scheme

In the RAM scheme, as implemented in the MIPS R100@29%], the map table is a
RAM where each entry contains theypltal rgister that is mapped to the logicaister
whose designator is used to iRdine table. The number of entries in the map table is
equal to the number of logicalgisters. A single cell of the table is shoin Figure2-5. A

shift register present ineery cell, is used for checkpointing old mappings.

The map table arks like a rgister file. The bits of the pBical rgister designators are
stored in the cross-coupledserters in each cell. A read operation starts with the logical
register designator being applied to the decoflee decoder decodes the logicajiseer
designator and raises one of therdvlines. This triggers bit line changes which are sensed
by a sense amplifier and the appropriate output is generated. Beg;ldouble-ended bit

lines are used to impve the speed of read operations. Mappings are checkpointed by

27
copying the current contents of each cell into the shdister Recwery is performed by

writing the bit in the appropriate shiftgister cell back into the main cell.

CAM scheme

An alternatve scheme for gaster renaming uses a CAM (content-addressable memory)
to store the current mappings. Such a scheme is implemented in the H¥RCSP
[AMG *95] and the DEC 21264 f{96]. The number of entries in the CAM is equal to the
number of plisical rgisters. Each entry containsavields. The first field stores the logi-
cal register designator that is mapped to thggptal reyister represented by the enffhe
second field contains ahd bit that is set if the current mapping aid. The \alid bit is
required because a single logicalister designator might map to more than ongsjaal
register When a mapping is changed, the logicgiseer designator is written into the
entry corresponding to a freeydical reister and thealid bit of the entry is set. At the
same time, thealid bit used for the pwgous mapping is located through an assoasati

search and cleared.

The rename operation in this scheme proceeds asvéollbhe CAM is associatly
searched with the logicalgester designatolif there is a match and thalid bit is set, a
read enable wrdline corresponding to the CAM entry is aated. An encoder BM) is
used to encode the read enabtedvines (one per pisical rgister) into a pisical reyis-
ter designatorOld mappings are checkpointed by storing thiehbits from the CAM into
a checkpoint RAM. @ recaover from an gception, the alid bits corresponding to the old
mapping are loaded into the CAM from the checkpoint RAM. In the HAL design, up to 16
old mappings can beszd.

The CAM scheme is less scalable than the RAM scheme because the number of CAM
entries, which is equal to the number of/gibal rayisters, increases with issue width. In
order to support such a ¢gr number of pysical registers, the CAM will hee to be appro-

priately bankd. On the other hand, in the RAM scheme, the number of entries in the map

28

8 1
3 4
add r1,r2,r3 9 add p1,p3,p9 9
add r4,r2,r5 é RENAMING add p3,p6 g
add r2,r3,r4 — add p4,p9,
MAPTABLE MAPTABLE
(1] 7[afn] | el [[[|
FREE REGS FREE REGS

Figure 2-4. Renaming rample shwing dependencchecking.The first entry of the map
table corresponds to logicakyister rl.

table is independent of the number of/gibal reyisters. Havever, the CAM scheme has

an adwantage with respect to checkpointing. In order to checkpoint in the CAM scheme,
only the \alid bits hae to be se@ed. This is easily implemented bywireg a RAM adjacent

to the column of alid bits in the CAM. In other wrds, the dimensions of the in@iual

CAM cells is independent of the number of checkpoints. On the other hand, in the RAM
scheme, the width of inddual cells is a function of the number of checkpoints because

this number determines the length of the shdtster in each cell.

The dependence check logic proceeds in parallel with the map table acesgdogiv
cal register designator being renamed is comparaihagthe destination gester designa-
tors (logical) of earlier instructions in the current rename group. If there is a match, then
the tag corresponding to theysical reister assigned to the earlier instruction is used
instead of the tag read from the map tabte. é&le, in the case sia in Figure2-4,
the last instructios’ operand mgster r4 is mapped to p7 and not p2. In the case of more
than one match, the tag corresponding to the latest (in dynamic order) match iseised. W
implemented the dependence check logic for issue widths of 2, 4, ardf@uld that for
these issue widths, the delay of the dependence check logic is less than the delay of the

map table, and hence the check can be hidden behind the map table access.

29

/ WRITE PORT READ PORT

ROWO WORDLINE |
SHIFT
a ROW1 \ 4 3| REG >
- _| P- CELL
w o °
5 | 3
2 9 w ACCE$S STACK
] 8 i
& fa) E o —
S‘ [a) — —
: - D] | |
o
- —?— —?—
ROW NVREG - [l 7
- y
| = z
oo E
SENSE L =
AMPLIFIER '

® \WORDLINES
[J

Sigure 2-5. Rename map tabl&his figure shars the map table of the rename logic on the
eft and a single cell of the map table on the right.

PHYSICAL TAG BIT

2.4.1.2 Delay Analysis

We implemented both the RAM scheme and the CAM scheneefohd the perfor-
mance of the ta schemes to be comparable for the design spaceplered. D keep the
analysis short and since the RAM scheme is more scalable, we will only discuss the RAM

scheme here.

A single cell of the map table is sk in Figure2-5. The critical path for the rename
logic is the time it ta&s for the bits of the piical rayister designator to be output after
the logical rgister designator is applied to the address decdther delay of the critical
path consists of three components: the timenak decode the logicalgister designator
the time talken to drve the vordline, the time tadn by an access stack to pull the bitline
low plus the time tadn by the sense amplifier to detect this bitline change and produce the
corresponding output. The time &kfor the output of the map table to pass through the
MUX in Figure2-3 is ignored because this iery small compared to the rest of the

rename logic and, more importanttige control input of the MUX isvailable in adance

30
because the dependence check logic is faster than the map table. Hence, the overall delay

is given by,

Del ay = Tdecode + Twordline + Tbitline

Each of the componentsis analyzed next.

Decoder delay

The structure of the decoder is shown in Figure 2-6. We use predecoding to improve the
speed of decoding. The predecode gates are 3-input NAND gates and the row decode gates
are 3-input NOR gates. The output of the NAND gates is connected to the input of the
NOR gates by the predecode lines. The length of these linesis given by,

PredeclineLength = (cellheight + 3 x IW x wordlineg,,¢inq

) x NVREG

where cellheight is the height of the a single cell excluding the wordlines, IW is the issue
width, wordlineg,acing i the spacing between wordlines, and NVREG is the number of log-
ical registers. The factor 3 in the equation results from the assumption of 3-operand
instructions (2 read operand and 1 write operand). With these assumptions, 3 ports (2 read
ports and 1 write port) are required per cell for each instruction being renamed. Hence, for

alW-wide issue machine, atotal of 3 x IW wordlines are required for each cell

The decoder delay is the time it takes to decode the logical register designator i.e. the
time it takes for the output of the NOR gate to rise after the input to the NAND gate has

been applied. Hence, the decoder delay can be written as

Tdecode = Tnand + Tnor

31

WORDLINE

_}— WLINV WORDLINE DRIVER

PREDECODE
NAND GATES

RrROW O

DIRECT DECODE °
NOR GATES

DO—DO-DC ROW NVREG-1

- INPUT OF NOR GATE

F\)eq % -1 Ceq

LOGICAL REGISTER BITS
PREDECODE LINES

1>

L

Figure 2-6. Decoder structure and egalent circuit.
whereT, g IS the delay of the AND gate andT,,, is the delay of the NORage. From

the eqwalent circuit of the ND gate shan in Figure2-6.

Tnand = Cpx Req X Ceq

Req Consists of tw components: the resistance of theND pull-down and the metal

resistance of the predecode line connecting thDI gate to the NOR @fe. Hence,

Ry = R +0.5x PredeclineLength x R

nandpd metal
Note that we hae dvided the resistance of the predecode line by, tive first order
approximation for the delay at the end of a disteld RC line is RC/2 (we assume that the

resistance and capacitance are distad @enly over the length of the wire).

Ceq consists of three components: thdutifon capacitance of theAND gate, the gte

capacitance of the NORate, and the metal capacitance of the predecode wire. Hence,

+ PredeclineLengthx C

Ceq = C:diffcapnand + Cgatecapnor metal

32

WORDLINE
DRIVER

zZ
C
| |
L - - d

word X .. el _:|__

h e T

PREGyigth CELLS

FROM DECODER

A

Ruwidriver
Rwires
—AWWY word

Cchap

i

Figure 2-7. Wordline structure and equilent circuit.

Substituting the abw@ equations into theverall decoder delay and simplifying, we get

_ 2
Tdecode - CO"'Cl>< |W+CZX W

wherecy, ¢;, andc, are constants. The quadratic component results from the intrinsic RC
delay of the predecode lines connecting tA&ND gates to the NORajes. V¢ found that,

at least for the design space and technologiesxplred, the quadratic component is
very small relatre to the other components. Hence, the delay of the decoder is linearly

dependent on the issue width.

Wordline delay

The wordline delay is defined as the time éakto turn on all the access transistors
(denoted by N1 in Figur2.7) connected to theasdline after the logical ggster designa-
tor has been decoded. Therdiine delay is the sum of the delay of theeirter WLINV

and the delay of theavdline driver. Hence,

Twordline = Twlinv + Twldriver

33
From the equialent circuit of the wrdline drver shavn in the figure, the ardline

driver can be written as

Twldriver = Cp % (Rwldriver + valres) X Cwlcap

whereR,4river IS the efective resistanceof the pull-up (p-transistor) of theelriR s IS
the resistance of theondline, andCyc,, is the amount of capacitance on theraline.
The total capacitance on themdline consists of tarcomponents: theage capacitance of
the access transistors and the metal capacitance obtléng wire. The resistance of the

wordline is determined by the length of therdline. Symbolically

WordlineLength = (cellwidth + 6 x W x bitline,

spacing + S egwidth) X PREGWi dth

metal

oN1 T WordlineLength x C

wlcap gateca

Rures = 0.5x WordlineLength X R,
wherePREG,,;q, is the number of bits in the péical rgister designatoCyatecapns IS the
gate capacitance of the access transistor N1 in eacleakiiidth is the width of a single
RAM cell excluding the bitlineshitlinegycing is the spacing between bitlines, asney-

width 1S the width of a single bit of the shiftgister in each cell.
Factoring the abee equations into theavdline delay equation and simplifying we get

Twordline = Co + Cy X W+ Cy X |W2

wherecg, ¢;, andc, are constants. Agn, the quadratic component results from the intrin-
sic RC delay of the ardline wire and we found that the quadratic componeneig v
small relatve to the other components. Hence, thverall wordline delay is linearly

dependent on the issue width.

34

PRECHARGE —Cﬂ

rFr—— — = — — — — —_ — — — 1 Rastack

L LI LI, I
worDLINE |

L o - — —_ —_ = _— — —

Rupitiine

Chitline

T T | _=__|/'

sense amplifier
input

NVREG ROWS

SENSE
AMPLIFIER

v

Figure 2-8. Bitline structure and equalent circuit.We used Vdas sense amplifier from
[WRP92].

Bitline delay

The bitline delay is defined as the time between thelime going high (turning on the
access transistor N1 skio in Figure2-8) and the output of the sense amplifier going high/
low. From the figure this is the sum of the time iteskor one access stack to disgear

the bitline and the time it tak for a sense amplifier to detect the disphaldence,

Tbitline = Tbitdischarge+ Tsenseamp

From the equialent circuit shan in the figure, thetime tak to dischage the bitlines is

determined by the folleing equations.

BitlineLength = (cellheight + 3 x IW x wordlinegy,ns) X NVREG

R, = 0.5x BitlineLength x R

metal

Cpi = NVREG x Citcqp t BitlineLength x C

metal

Thitdischarge = 0 * (Rastack * Roi) X Cp

35
whereR 4, iS the eflective resistance of the access staclo(pass transistors in series),
Ry is the resistance of the bitlin@y, is the capacitance on the bitlilNPREG is the num-
ber of plysical reyisters Cyfrcqp IS the difusion capacitance of the access stack that con-
nects to the bitlinegellheight is the height of a single RAM celkeuding the verdlines,

andwordlinegycing is the spacing betweerovdlines.

Factoring the abee equations into theverall delay equation and simplifying we get

B 2
Thitline = Cot Cy X IW+cCy X IW

wherecy, ¢, andc, are constants. Agn, we found that the quadratic componenteig/v
small relatve to the other components. Hence, therall bitline delay is linearly depen-

dent on the issue width.

Overall delay

From the abee analysis, thewerall delay of the igister rename logic can be summa-

rized by the follaving equation

2
Delay = ¢y+cy X IW+c, xIW

wherecy, ¢;, andc, are constants. kever, the quadratic component is relaly small

and hence, the rename delay is a linear function of the issue width for the design space we

explored.

2.4.1.3 Spice Results

Figure2-9 shavs hav the delay of the rename logianes with the issue width i.e. the
number of instructions being renameaty g/cle for the three technologies. The graph
also shws the breakden of the delay into the components discussed in thequ® sec-
tion. Detailed results forarious configurations and technologies arenshan talular

form in Appendix A.

36
1600

Hl Bitline delay

14007 Bl Wordline delay]
1200 | (] Decoder delay
1000 ¢ .
800 .
600 r .
400 r .
200 t HHH]
02728 2 2 s -

2 4 8
0.8um 0.35um 0.18um

Figure 2-9. Rename delay versus issue width. This graph shows the breakup of rename delay
for issue widths of 2, 4, and 8 for the three technol ogies.

Rename delay (ps)

A number of observations can be made from the graph. The total delay increases linearly
with issue width for the technologies. Thisisin conformance with the analysisin the pre-
vious section. All the components show alinear increase with issue width. Theincreasein
the bitline delay is larger than the increase in the wordline delay because the bitlines are
longer than the wordlinesin our design. The bitline length is proportional to the number of
logical registers (32 in most cases) whereas the wordline length is proportional to the

width of the physical register designator (Iess than 8 for the design space we explored)

Another important observation that can be made from the graph is that the relative
increase in wordline delay, bitline delay, and hence, total delay with issue width only
worsens as the feature size is reduced. For example, as the issue width isincreased from 2
to 8, the percentage increase in bitline delay shoots up from 37% to 53% as the feature
size is reduced from 0.8um to 0.18um. This occurs because logic delays in the various
components are reduced in proportion to the feature size while the presence of wire delays
in the wordline and bitline components cause the wordline and bitline components to fall
at a dower rate. In other words, wire delays in the wordline and bitline structures will

become increasingly important as feature sizes are reduced.

37

OR N [@: OR
v

OPD TAGR| RDYR

WINSIZE INSTS

~

RDYL | oPD TAGL OPD TAGR | RDYR

RDYL | OPD TAGL

Figure2-10. Window wakeup logic.

2.4.2 Window Wakeup L ogic

The wakeup logic is responsible for updating source dependences of instructions in the
issue windw waiting for their source operands to becomailable. Figure-10 illus-
trates the wkeup logic. Eery time a result is produced, the tag associated with the result
is broadcast to all the instructions in the issue windgach instruction then compares the
tag with the tags of its source operands. If there is a match, the operanded aiaik
able by setting thedyL or rdyR flag. Once all the operands of an instruction becorai-a
able (bothrdyL andrdyR are set), the instruction is ready t@eute and thedy flag is set
to indicate this. The issue wingdas a CAM (content-addressable memory [WE93]) array
holding one instruction per entiguffers, shavn at the top of the figure, are used twelri
the result tagsag; to tag,, wherelW is the issue width. Each entry of the CAM ha (2
IW) comparators to compare each of the result tagssigthe tvw operand tags of the

entry The OR logic combines the comparator outputs and setdyibedyR flags.

2.4.2.1 Structure

Figure2-11 shaevs a single cell of the CAM arrayhe cell shan in detail compares a
single bit of the operand tag with the corresponding bit of the result tag. The operand tag
bit is stored in the RAM cell. The corresponding bit of the result tagusrdon the tag

lines. The match line is preclgad high. If there is a mismatch between the operand tag

38

PRECHARGE OE 6' ‘ é é (DH (DE
2 =l 18 318 I8
RAM CELL
‘Zji - PULL-DOWN STACK
PD2F/ = PD1 | o B A 7]
o *J' _Ll'_l_l llJ' |
n JoL Y, MATCH1
1 1 1 R OR
[] _’
o r| L | | _Ll lJ- 1 I H / RDY
MATCHIW

Figure2-11. CAM cell in wakeup logic.

bit and the result tag bit, the match line is pulled ly one of the pull-don stacks. Br
example, iftag = 0, anddata = 1, then the pull-den stack on the left is turned on and it
pulls the match line 8. The pull-devn stacks constitute the comparatorsvanan
Figure2-11. The matchlinextends across all the bits of the tag i.e. a mismatchyirofin
the bit positions will pull it lav. In other vords, the matchline remains high only if the
result tag matches the operand tag. Thevaloperation is repeated for each of the result
tags by haing multiple tag and matchlines as smoin the figure. Finallyall the match

signals are ORed to produce the ready signal.

There are tw obserations that can be dea from the figure. First, there are as man
matchlines as the issue width. Hence, increasing issue width increases the height of each
CAM row. Second, increasing issue width also increases the number of inputs to the OR
block.

2.4.2.2 Delay Analysis

Because the match lines are pregedrhigh, the dedlt value of the ready signal is
high. Hence, the delay of the critical path is the time gtdkr a mismatch in a single bit
position to pull the ready signalvio The delay consists of three components: the time

taken by the bffers to drve the tag bits, the time tek for the pull-dan stack corre-

39

RESULT TAG BIT

| ! TAG DRIVER
I I Rtagdriverpup
I D> Voo

rr—-—n ——T"-""—--"=-"=-"=-=- = |
| __|_ PD2 |
| | | COMPARATORI
L e e e e] e e e e — — |

L

Z \

8 . WINSIZE ENTRIES

[]
< -~

Figure2-12. Tag drive structure.

sponding to the bit position with the mismatch to pull the match line low, and the time
taken to OR the individual match signals. Symbolically,

Delay = Ttagdrive + Ttagmatch + TmatchOR

Each of the componentsis analyzed next.

Tag Drive Time

The tag drive circuit is shown in Figure 2-12. The time taken to drive the tags depends
on the length of the tag lines. The length of the tag linesis given by

TaglineLength = (camheight + IW x matchlineg,,;,q) * WINSIZE

where camheight is the height of a single CAM cell excluding the matchlines, and

matchlinegacing i the spacing between matchlinest.

1. To be precise matchlinegycing is the height of a matchline and the associated pull-down stacks.

40
From the equwialent circuit shavn in the figure, the time tak to drve the tags is gen

by

Ttagdrive = Cpx (Rtagdriverpup + I:\)tlres) X Ctlcap

whereRgdriverpup IS the resistance of the pull-up of the tagyeliRy e is the metal resis-
tance of the tag line, ar@,c,, is the total capacitance on the tag liRgs is determined
by the length of the tag line€y 4, consists of three components: the metal capacitance
determined by the length of the tag line, tlegcapacitances of the comparators, and the

diffusion capacitance of the tagwdi Symbolically

Rires = 0.5x TaglineLength x R

metal

C = TaglineLength x C +C x WINSI ZE + Cdiffcap

tlcap metal gatecapcomp
where Cgatecapcomp 1S the @te capacitance of the pass transistor PD2wshmn
Figure2-12) in the comparata’pull-davn stack andCgjscqp is the difusion capacitance

of the tag dwner.

Substituting the ahv@ equations into theverall delay equation and simplifying we get

Tiagarive = Co+ (Cp + €y % IW) x WINSIZE + (G5 + G4 X IW + Cg IW?) x WINSI ZE?

The abwe equation shes that the tag dre time increases with windosize and issue
width. For a gven issue width, the total delay is a quadratic function of the wirsize.
The weighting &ctor for the quadratic term is a function of the issue wid#hfd/nd that
the weighting &ctor becomes significant for issue widthgdrel 2. for a given windav
size, the tag dve time is also a quadratic function of issue widtle. fdund that for cur-
rent technologies (0.3%Hn and longer) the quadratic component is neddyfismall and the
tag drve time is lagely a linear function of issue width. tever, as the feature size is

reduced to 0.38n the quadratic component also increases in significance. The quadratic

41

component results from the intrinsic RC delay of the tag lines. The constants in the equa-

tion are listed in ableB.1 in Appendix B.

In reality, both issue width and windosize will be simultaneously increased because a

larger windav is required for finding more independent instructions. Hence, wevéelie

that the tag dvie time can become significant in future designs with wider issue widths,

bigger windavs, and smaller feature sizes.

Tag Match time

The tag match time is the time &k for one of the pull-den stacks to pull the

matchline lev. From the equwalent circuit shavn in Figure2-13,

T x (R +R

tagmatch = Co pdstack mlres) x lecap
whereRygsack is the efective resistance of the pull-dm stack,Ryyres is the metal resis-
tance of the matchline, aii@, 5y, is the total capacitance on the match IR can be

computed using

MatchlineLength = (camwidth + W x taglinespacing) X

IDREGWi dth

R = 0.5x MatchlineLength x R

mires metal

whereMatchlineLength is the length of the matchlinesmwidth is the width of the CAM

cell excluding the tag linesaglineg,.ing is the spacing between tag lines.

Cricap CONsists of three components: thefudifon capacitance of all the pullwio

stacks connected to the matchline, the metal capacitance of the matchline, aai@ the g

capacitance of thewerter at the end of the matchline. Hence,

C = 2% PREG,jigtn * Cyifrcap + MatchlineLength x C +C

mlcap metal gatecap

42

TAG DATA PREG,yigth CELLS

PRECHARGE //////

- - - 1T — 1

PD1
| '|_r=|j: L
J P A i — -I:/IATCHDC

> TO OTHER MATCHLINES

o
v

R pdstack

leres lecap

Figure2-13. Tag match structure.

where PREG,iqth is the width of the physical register designators, Cyitrcqp IS the diffusion
capacitance of the pass transistor (marked as PD1 in Figure 2-13) in the pull-down stacks
that is connected to the matchline, and Cyatecqp IS the gate capacitance of the inverter at the

end of the match line.

Substituting the equations for Ryjres ad Cycqp iNto the overall delay equation and sim-
plifying we get

2
T +C X IWH+cy, x W

tagmatch = Co
Again, we found that the quadratic component is relatively small and hence, the tag
match time is a linear function of issue width. The constants are listed in Table B.2 in

Appendix B.

A drawback of our model for the tag match time isthat it does not model the dependence
of the match time on the slope of the tag line signal i.e. the tag drive delay. Our results,
presented in the next section, show that, as aresult of this dependence, the tag match time
isaso afunction of the window size. In other words, alarger window will result in slower
fanning out of the result tags to the comparators in the window entries, thus increasing the

compare time.

> | ple—

ISSUE WIDTH = 2 ISSUE WIDTH =4

ISSUE WIDTH = 8

Figure2-14. Logic for ORing individual match signals.

Match OR time

This is the time taken to OR the individual matchlines to produce the ready signal.
Because the number of matchlines is the same as the issue width, the magnitude of this
delay term is a direct function of issue width. Figure 2-14 shows the OR logic for result
widths of 2, 4, and 8. For an issue width of 8, we use two 4-input NAND stacks followed
by a NOR gate because this is faster than using an 8-input NAND gate. Because the rise
delay of a gate is a linear function of the of the fan-in [WE93,Rab96] we can write the
delay as

Tatchor = Co €1 X W

where the constants are as shown in Table B.3 in Appendix B.

44

400
350+
8 300¢
& 2501 2
[}
&) 200["/43/‘3/D/D/D/D/i
o w»
2 150¢ 1
o o—e 8-way
g 100t —a 4-Wa_y 1
50+ *—+ 2-way |
Og 16 24 32 40 48 56 64

Window Size
Figure2-15. Wakeup logic delay ersus windw size.This graph shws hav the delay of the
window wakeup logic \aries with windav size and issue width for 0.48 technology

Overall delay
The overall delay of the akeup logic can be summarized by the foiflog equation:

Delay (c0+c1x|W+cz><IW2)

+ (c3+cyxIW)xWINSIZE

+ (Cg+Cg X IW+c, x IW?) x WINSIZE?

where the constants are asuialbed in BbleB.4 in Appendix B.

2.4.2.3 Spice Results

The graph in Figur@-15 shevs hav the delay of the akeup logic aries with windov
size and issue width for 0.8 technologyAs epected, the delay increases as wimdo
size and issue width are increased. The quadratic dependence of the total delay on the win-
dow size results from the quadratic increase in tagedime as discussed in the yiois
section. This déct is clearly visible for issue width of 8 and is less significant for smaller
issue widths. W found similar cures for 0.8im and 0.3fam technologies. The quadratic
dependence of delay on wind®ize wvas more prominent in the caw for 0.18m tech-

nology than for the other ttechnologies

45

400 400
1 Match OR J Match OR
B Tag match B Tag match
- 300 ™ Tag drive % 300 mm Tag drive
! 2
> >
 200f 3 200
Q (m)
100 100
0 0
8 16 24 32 40 48 56 64 2 4 8
Window size Issue width

Figure2-16. Wakeup logic delayThe graph on the left s hav wakeup delay aries with
window size for a 8-ty machine. The graph on the rightwkdav wakeup delay aries with
issue width for a 64-entry windo Both graphs are for O.{uéh technology

Also, issue width has a greater impact on the delay than wisde because increasing
issue width increases all the three components of the. d@tathe other hand, increasing
window size only lengthens the tag\ditime and to a smalkeent the tag match time.
Overall, the results skwothat the delay increases by almost 34% going fronag4o 4-
way and by 46% going from 4ay to 8-vay for a windav size of 64 instructions. In real-
ity, the increase in delay is going to lvereworse because in order to sustain a wider issue
width, a lager windav is required to find independent instructionse Ygund similar
curves for 0.8im and 0.3am technologies. Detailed results f@arwus configurations and

technologies are st in talular form in Appendix A.

.The bar graph on the left in Figu2el6 shavs the detailed breakdm of the total delay
for various windav sizes for a 8-ay processor in 0.18n technologyThe tag dwe time
increases rapidly with windosize. lor example, the tag dre time and the tag match time
increase bydctors of 4.78 and 1.33 respeety when the windw size is increased from 8
to 64. The increase in tag deitime is higher than that of tag match time because the tag
drive time is a quadratic function of the windsize. The increase in tag match time with
the windav size is not taén into account by our simple modelen abwe because the
model does not takinto consideration the slope of the input signals (determined in this

case by the tag aee delay). Also, as skm by the graph, the time tak to OR the match

46

1400
1200 [Match OR delay -
Em Tag match delay
? 1000 ¢ Em Tag drive delay |
~ 800+
<
@ 600
o
400 r
200 - E

0.8um 0.35um 0.18pm

Figure2-17. Wakeup delay ersus feature siz&his graph shes hav the wakeup delay for a
8-way machine with a 64-entry windovaries with feature size.

signals depends only on the issue width and is independent of thewsrmoThe graph
on the right in Figur@-16 shevs hav the delay of a 64-entry windoin 0.181m technol-
ogy varies with issue width. As sivm by the delay analysis, all the components increase

with issue width.

Figure2-17 shavs the efliect of reducing feature sizes on tteigus components of the
wakeup delay for an 8-ay, 64-entry windw processorThe tag due and tag match
delays do not scale as well as the match OR dé&lay is epected because tagwiiand
tag match delays include wire delays whereas the match OR delay only consists of logic
delays. Quantitately, the fraction of the total delay conwiled by tag dvie and tag
match delay increases from 52% to 65% as the feature size is reduced fpomt©.8
0.18um. This shws that the performance of the broadcast operation will become more

critical in future technologies.

In the aboe simulation results the windosize was limited to a maximum of 64 instruc-
tions because we found that fordar windavs the intrinsic RC delay of the tag lines
increases significanthAs discussed pveusly, the intrinsic RC delay is proportional to
the square of the windo size. Therefore, for implementing dg@r windavs banking
should be used. Banking helps wiéde the intrinsic RC delay by reducing the length of

the tag lines. Fon@mple, tvo-way banking will impree the intrinsic RC delay by ad-

47
tor of four. At the same time it must be pointed out that banking will introduce sximze e

delay due toxra inverter stages and the parasitics introduced byxtemgion to the tag

lines.

2.4.3 Window Selection Logic

Selection logic is responsible for selecting instructions %ecetion from the pool of
ready instructions in the issue windaSome form of selection logic is required forotw
reasons. First, the number of ready instructions in the issuewirelobe greater than the
number of functional units.df example, for machine with a 32-entry issue wiwdbere
could be as manas 32 ready instructions. Second, some instructions ca®beated only
on a subset of the functional unit@rkexample, if there is only one irger multiplier all

multiply instructions will hae to be steered to that functional unit.

The inputs to the selection logic are the request signals, t&E@done per instruction
in the issue winde. The request signal of an instruction is raised when all the operands of
the instruction becomevailable. As discussed in the pi@us section, the akeup logic is
responsible for raising thREQ signals. The outputs of the selection logic are the grant
signals, terme@RANT, one per request signal. On receipt of BRANT signal, the asso-
ciated instruction is issued to the functional unit and the correspondingwverdoy is
freed for later use. A selection pglits used to decide which of the requesting instructions
is granted the functional unit.&\lse a selection pojitchat is based on the location of the
instruction in the windw. The HP R-8000 [Kum96] uses a similar selection pglid\Ve
chose this polig because it alles a simplerand hencealster implementation compared

to other more sophisticated policiesditoldest ready first”.

2.4.3.1 Structure

The assumed structure of the selection logic isveho Figure2-18. The selection logic
is used to select a single instruction fee@ution on a functional unit. The modifications

to this scheme for handling multiple functional units is discussed Tdterselection logic

48

ISSUE WINDOW
A A A A A A A A
v v v v v v v v v v v v v v v v
RS ARl [ASRSASAY |IASARSRSAS||IASRARERLAY
02030203 |c20of0f0B| |00 0os|l|lc20FO020 3P
oOZFrPr Z2ZNZ2 w2 oOZFrPr Z2NZ2 w2 oOZFrPr Z2NZ2 w2 oOZFrPr Z2NZ2 w2
5 = = = 5 = = = 5 5 = = 5 5 = =
o { N w o ol N w o ol N w o ol N w
ANYREQ ENABLE ANYREQ ENABLE ANYREQ ENABLE ANYREQ ENABLE
T | 7'y — X 7Y
v | A 4 v * I
o 0 0o © AR AYRY
T OO D Py Pyl P Y QO >0 »>» 0 >O >
mmmm > > > > oOZFrPrZ2ZNZ w22
oco0b 5 5§ 3J 35 s A R &
SrP® & A N o
A A
+ 2 ANYREQ ENABLE FROM/TO OTHER SUBTREES
- i)t
VVVYYVY * l A\ 4 \ 4 * | l l l
6O 0O 0O IO
SB28285328B 3
OR PRIORITY ENCODER QRO RO
5 = 5 =
o |l N w
F N
1 ANYREQ ENABLE
ANYREQ ENABLE T

Figure2-18. Selection logicThis figure sharis the arbiter tree of the selection logic and a
single arbiter cell in detail.

consists of a tree of arbiters. Each arbiter cell functions asvillid the enable input is
high, then the grant signal corresponding to the highest priadtye input is raised. ¢t
example, ifenable = 1,req0 = 0,reql = 1,reg2 = 0, andreg3 = 1, thengrantl will be
raised assuming priority reduces as we go from imgg@ to inputreq3. If the enable
input is low, all thegrant signals are set towo In all cases, at most one of the@nt sig-

nals is high. Thanyreq output signal is raised if grof the inputreq signals is high.

The overall selection logic wrks in two phases. In the first phase, thguest signals are
propagted up the tree. Each cell raisesahgeq signal if aty of its inputrequest signals
is high. This in turns raises the inpetuest signal of its parent arbiter cell. Hence, at the
root cell one or more of the inpugquest signals will be high if there are one or more
instructions that are readyhe root cell then grants the functional unit to one of its chil-
dren by raising one of itgrant outputs. This initiates the second phase. In this phase, the
grant signal is propaated davn the tree to the instruction that is selected. At eaat,le

thegrant signal is propaated davn the subtree that contains the selected instruction. The

49
enable signal to the root cell is high wheres the functional unit is ready txecute an
instruction. Br example, for singleycle ALUs, theenable signal will be permanently
tied to high.

The selection policimplemented by our assumed structure is static and is strictly based
on location of the instruction in the windoThe leftmost entries in the windchave the
highest priority The oldest ready first pojiccan be implemented using our scheme by
compacting the issue winddo the left gery time instructions are issued and by inserting
new instructions at the right end. This ensures that instructions that occur earlier in pro-
gram order occupthe leftmost entries in the windoand hence he higher priority than
later instructions. Hweever, it is possible that the compigy resulting from compaction
could dgrade performance. &/did not analyze the compley of compacting in this

study

Handling Multiple Functional Units

If there are multiple functional units of the same type, then selection logiwr(sho
Figure2-19) comprises a number of blocks of the type studied in theopsesection,
stacled in series. Theequest signals to each block are dexdl from the requests to the

previous block by masking the request thatsvwgranted the prmus resource.

An alternatve to the abee scheme is toxéend the arbiter cells so that the request and

grant signals encode the number of resources being requested and grantedalgspecti

GRANTO GRANTO
q) REQO '
REQO
~ —{) —
FU1 ARBITER FU2 ARBITER

Figure2-19. Handling multiple functional units.

50
However, we beliee that this could considerably slalowvn the arbiter cells and hence

could perform werse than the staell design. The staell design might not be a feasible
alternatve begrond two functional units because the resulting delay can be significant. An
alternatve option is to statically partition the windaentries among the functional units.

For example, in the MIPS R10000 §496], the windw is partitioned into three sets called

the intger queue, floating-point queue, and the address queue. Only instructions in the

integer queue are monitored foreeution on the te integer functional units.

2.4.3.2 Delay Analysis

The delay of the selection logic is the time ite¢sko generate the grant signal after the
request signal has been raised. This is equal to the suro tdrws: the time tan for the
request signal to propatg to the root of the tree and the timestakor the grant signal to

propagte from the root to the selected instruction. Symbolically

Delay = (L-1)xT +(L-1)xT

reqpropd + Troot grantpropd

whereL =10g,(WINSZE) is the height of the selection tréigeqpropg is the time takn for
the request signal to propsatg through an arbiter cell,, is the delay of the grant output
at the root cell, andyanpropg IS the time taén for the grant signal to propetg through

an arbiter cell. Hence, theerall delay can be written as

Delay = ¢, +c; x log,(WINSIZE)

wherecgy andc; are constants. The base of thealgipmic term is determined by the num-
ber of inputs to the arbitevwe found the optimal number of arbiter inputs to be four in our

case. The associated tradésafre discussed later

From the abee equations we can see that the delay of the selection logic is proportional
to the height of the tree and the delay of the arbiter cells. The delay hasithiog rela-
tionship with the windw size. Increasing issue width can also increase the selection delay

if a stacked scheme is used to handle multiple functional unisthe rest of the discus-

51
sion, we will assume that a single functional unit is being scheduled and hence no stacking

is used. The delay for a st@tkdesign can be easily computed by multiplying our delay
results by the stacking depth. Onaywto imprae the delay of the selection logic is to
increase the radix of the selection treewieer, as we will see shortlyhis increases the

delay of a single arbiter cell and could radke @erall delay vorse.
Arbiter Logic

The circuit for generating thenyreq signal is shan in Figure2-20. Theanyreq signal
is raised if one or more of the input request signals igeacthe circuit, implementing the
OR function, consists of a dynamic NORtg folloved by an imerter The dynamic gte
was chosen instead of a static CiRegfor speed reasons. The circuit operates asvillo
The anyreq node is prechged high. When one or more of the input request signals go
high, the corresponding pull-dms pull theanyreq node lav. The irverter in turn raises
theanyreq signal high. The alue ofT,gp0nq in the delay equation is the delay of the OR

circuit.

The priority encoder in the arbiter cell is responsible for generating the grant signals.

The logic equations for the grant signals are:

grant0 = req0 n enable

grantl = req0 n reql n enable

req0 n reql n req2 n enable

grant2

grant3 = reqg0Onreqlnreg2n req3 n enable

For example,grant2 is high only if the cell is enabled, the input request andreqgl
are law, andreg2 is high. Because the request signals at each ge#ipefor the root, are
available well in adance of the enable signal we use a-tevel implementation for\al-
uating the grant signals. As awraenple, the circuit for valuatinggrantl is shavn in

Figure2-20. The first stagevaluates thegrantl signal (nodegrantlp) assuming the

52

precharge—o"f anyreq

oot

req0 reql req2 req3 | precharge

T A

I I I

| req0 _°| | enable —o| |

I I I
1 grantl

ITeq Dc grantlp : Dc I

: rer—l er]able —I |

precompute
prlorlty = and with enable

Figure2-20. Arbiter Logic.The block on top shes the logic for thanyreq signal. The bottol
block shavs the logic for generating tlygeant1 signal.

enable signal is high. In the second stagegthetlp signal is ANDed with the enable to
produce thegrantl signal. This tw-level decomposition as chosen because it rerae
the logic forgrantlp from the critical path. This optimization does not apply at the root

cell because at the root cell the request signalseaafier the enable signal.

The poligy used by the selection logic is embedded in the@leguations for thgrant
outputs of the arbiter cell.of example, the design presented assumes static priority with
req0 having the highest prioritymplementing an alterna® polioy would require appro-
priate modifications to these equationsamg the designer has to be careful while select-
ing a poliy because a complepolicy can increase the delay of the selection logic by

slowing dowvn individual arbiter cells.

Increasing the number of inputs to the arbiter ceWsldavn both the OR logic and the
priority encoder logic. The OR logic sis davn because the load capacitance couatet

by the difusion capacitance of the pullagdas increases linearly with the number of

53

3000
2500 f I Request propagation delay
I Root delay
= 2000 1 Grant propagation delay
2
2 1500 [
—
w
0 1000 r
- T e

0163264128 16 32 64128 16 32 64128

0.8um 0.35um 0.18um
Figure2-21. Selection delay versus window size. This graph shows how the selection delay
varies with window size for the three different feature sizes. The selection policy used is based on
the location of the instruction in the window.

inputs. The priority logic slows down because the delay of the logic used to compute pri-
ority increases due to higher fan-in. We found the optimal number of inputs to be four in
our case. The selection logic in the MIP R10000, described in [V*96], is also based on

four-input arbiter cells.

2.4.3.3 Spice Results

Figure 2-21 shows the delay of the selection logic for various window sizes in the three
technologies assuming a single functional is being scheduled. The delay is broken down
into the three components discussed earlier. From the graph we can see that for al three
technologies, the delay increases logarithmically with window size. Also, the increase in
delay is less than 100% when the window size is increased from 16 instructions to 32
instructions (or from 64 instructions to 128 instructions) because the middle term in the
delay equation, the delay at the root cell, is independent of the window size. Detailed

results are presented in tabular form in Appendix A.

The various components of the total delay scale well as the feature size is reduced. This
Is not surprising because all the delays are logic delays. It must be pointed out that the

selection delays presented here are optimistic because we do not consider the wires in the

54
circuit, especially if it is the case that the request signals originate from the CAM entries
in which the instructions reside. On the other hand, it might be possible to minimize the

effect of these wire delays if the ready signals are stored in a smablex compact array

2.4.4 Register file Logic

The raister file preides law lateny access to gaster operands. The access time of the
register file depends on the number dfisters in the file and the number of ports into the
file. Assuming tw read operands and one write operand per instruction, the number of
read and write ports required for a machine with issue Alltls 2 x IW andIW respec-
tivelyl. The number of gisters required increases with issue width in order to support a
greater dgree of speculate execution. A recent study [FIC96] st®that for significant
performance up to 80 phical rayisters are required for a 4-wide issue machine and up to

120 plysical ragisters are required for an 8-wide issue machine.

2.4.4.1 Structue

The structure of the gester file assumed for this study is similar to that of the map table
shavn in Figure2-5 on page9. The rgister file contents are stored in the cross-coupled
inverters in the cells. Eachwoof cells stores the contents of a singlgiseer Hence, the
number of ravs is determined by the number ofjisters in the file. The number of cells in
each rav is determined by the datapath widthe Wssume a 64-bit datapath for this study
A read operation starts with thegrster number (pysical) being applied to the decoder
The decoder decodes thgister number and raises one of thardlines. This triggers bit
line changes which are sensed by a sense amplifier and the appropriate output is gener-
ated. V@ use prechged, double-ended bitlines to impeothe speed of read operations.
Read ports are implemented usingND stacks instead of a single pasgegto preent
flipping of cell contents during a read operation, especially for configurations witea lar

number of read ports.

1. In most machine designs additional write ports are implemented for write-back of load data.

55
There are a fe differences between the map table in thggster rename logic and the

register file. The shift igister component of the map table is not present in thetee file.

In the case of the rename logic, the numberwEns determined by the number of logical
registers in the instruction set architecture. The numbengs no the rgister file is deter-
mined by the number of phical raisters. The width of eachwoin the map table is
determined by the width of the ydical rejister tags. In case of thegister file, the width

of each rav is determined by the datapath width — 64 bits in most current designs.

2.4.4.2 Delay Analysis

The critical path for the gaster file logic is the time it tas for the contents of thegis-
ter to be output after thegister number is applied to the address decdder delay of the
critical path consists of three components: the timertak decode the gester number
the time takn to drve the vordline, and the time tak by an access stack to pull the bit-
line low and for the sense amplifier to detect the change in the bitline and produce the cor-

responding output. Hence, theeoall delay is gien by

Taelay = Tdecode ™ Twordiine T Thitline

Each of the components is analyzedtn&he analysis presented here is similar to that

presented for the rename logic. Hence, figures are omitted and the discusspirbreek.
Decoder delay

We use the same predecoding scheme as used in the map table of the rename logic s
shavn in Figure2-6 on page31. The &n-in of the M\ND and NOR @tes is determined by
the number of bits in the gester number i.e. the number ofysital reyisters. able2.2

shaws the &n-in of the decoderages for the arious rgister file sizes simulated.

56

Number of Fan-in of Fan-in of direct
physical reyisters | predecode ates decode gtes
32 2 3
64 2 3
128 3 3
256 4 2
512 4 3

Table 2.2: Fan-in of decoderages.

The output of the AND gates is connected to the input of the NGieg by the prede-
code lines. The length of these lines igegi by

PredeclinelLength = 0.5x (cellheight + 3 x IW x wordlinegy,ng) X NPREG

wherecellheight is the height of a single celk@uding the verdlines,IW is the issue
width, wordlineg,acing is the spacing between themdlines, andNPREG is the number of
physical reisters. Thedctor 3 in the equation results from the assumption of 3-operand
instructions (2 read operands and 1 write operandh Wese assumptions, 3 ports (1
write port and 2 read ports) are required per cell for each instruction being renamed.
Hence, for dWwide issue machine, a total (& x IW) wordlines are required for each

cell. The &ctor 0.5 results from the assumption that the predecatiédNjates dwe the
predecode lines from the centre of the arfdys optimization \es necessary to minimize

the RC eflects of long predecode lines fordar highly ported configurations.

The decoder delay is the time it éskto decode thegester number i.e. the time it ek
for the output of the NORage to rise after the input to thAND gate has been applied.

Hence, the decoder delay can be written as

Tdecode = Tnand + Tnor

57
whereT, g is the delay of the AND gate andT,,,, is the delay of the NORate.Tanq IS

given by the follving equations,

Tnand = Cpx Req x Ceq

Ry, =R

eq nandpd + 0.5 PredeclineLength x R

metal

Ceq = Cdiffcapnand + Cgatecapnor + Predecli neLength X Cmetal

where Randpdis the pull-devn resistance of the AND gate, Giitrcapnandis the difusion
capacitance at the output of thé\ND gates, Gatecapnors the @te capacitance of the
NOR cates.

Substituting the abw@ equations into theverall decoder delay and simplifying, we get

_ 2
Tdecode - CO"'Cl>< |W+sz W

wherec, ¢;, andc, are constants. The quadratic component results from the intrinsic RC
delay of the predecode lineseibund that, at least for the design space and technologies
we e&plored, the quadratic component iery small relatie to the other components.

Hence, the delay of the decoder is linearly dependent on the issue width.
Wordline Delay

The wordline delay is defined as the timedaako turn on all the access transistors con-
nected to the wrdline after the gister number has been decoded. Tloedline delay is
the sum of thedil delay of the imerter and the rise delay of themdline drver. The delay

of the wordline drver is gien by the follaving equations

WordlineLength = (cellwidth +6 x IW x bitlinegy,ing) X DATA;4h

R, = 0.5xWordlineLength x R

metal

C

wi = DATA,i4in X C + WordlineLength x C

gatecap metal

58

Twldriver = CO x (Rwldriver + R\N|) x CWI

whereR,; is the resistance of theondline wire,C,,; is the capacitance on thesdline,
Rwidriver 1S the pull-up resistance of theowdline driver, andCyyiecap iS the @ite capaci-

tance of the access transistor
Factoring the abae equations into theavdline delay equation and simplifying we get

_ 2
T = CytCy xIW+c, xIW

wordline

wherecg, ¢;, andc, are constants. Agin, the quadratic component results from the intrin-
sic RC delay of the ardline wire and we found that this componentasyvsmall relatie

to other components. Hence, theeall wordline delay is linearly dependent on the issue
width.

Bitline delay

The bitline delay is defined as the time between thelime going high (turning on the
access transistor N1) and the output of the sense amplifier going Wigkifis is the sum
of the time it taks for one access stack to disgeathe bitline and the time it tek for a

sense amplifier to detect the disg@erHence,

Tbitline = Tbitdischarge+ Tsenseamp

The time takn to dischaye the bitlines is determined by the faliog equations.

BitlineLength = (cellheight + 3 x IW x wordlinegy,ns) X NPREG

R, = 0.5x BitlineLength x R

metal

Cpi = NPREG x Citcqp t BitlineLength x C

metal

Thitdischarge = 0 * (Rastack * Roi) X Cp

59
whereR 4, iS the eflective resistance of the access staclo(pass transistors in series),

Ry is the resistance of the bitlin@y, is the capacitance on the bitlilNPREG is the num-
ber of plysical reyisters Cyfrcqp IS the difusion capacitance of the access stack that con-
nects to the bitlinegellheight is the height of a single RAM celkeuding the verdlines,

andwordlinegycing is the spacing betweerovdlines.
Factoring the abae equations into theverall delay equation and simplifying we get

_ 2
Thitline = Cot Cy X IW+Cy X IW

wherec, ¢, andc, are constants. Agn, we found that the quadratic componenteig/v
small relatve to the other components. Hence, therall bitline delay is linearly depen-

dent on the issue width.
Overall delay

From the abee analysis, thewerall delay of the mgster file can be summarized by the

following equation:

2
Delay = ¢y+cy X IW+c, xIW

wherecy, ¢;, andc, are constants. kiwever, the quadratic component is reVally small
and hence, the delay of theyigter file is a linear function of the issue width for the design

space wexlored.

2.4.4.3 Spice Results

Figure2-22 shavs hav the delay of the gaster file \aries with the number of gesters
and the issue width for the case of uiBtechnologyA number of obseations can be
made from the graph. First, the delay increases as issue width and the numdjistestre
are increased. The graph alsowbkdhat the total delay is a linear function of the number

of registers. The dependence on issue width is also lineapefor lager configurations

60

2000

1600 1

1200 |

DELAY (ps)

800 1

400 ¢

073264 128 256 512

Number of registers
Figure2-22. Raister file logic delayThis graph shas hav the delay of the ggster file
implemented in 0.18m varies with issue width and the number afisters

(512 registers or more) where the quadratic component start to. Siieese obseations

are in agreement with the analysis presented in theopise section. Issue width has a
greater impact on the delay than the number gisters. This is xpected because, as
showvn in the preious sections, increasing issue width increases all the three components
of the total delayFor example, increasing the issue width from 4 to 8 increases the total
delay by 28.9%, whereas increasing the numbergi$ters from 64 to 128 for a Say
machine only increases the delay by 18.1%. In practice, the increase in delay is going to
be even worse because in order to sustain a wider issue width, nisters are required

to support a layer number of specula#g operations. W found similar curgs for 0.8m

and 0.3pm technologies.

The graph in Figur@-23 the shw the breakden of total delay into the components
discussed in the prmus section. The graphs are for the case ofi@ril&chnologyCon-
sider the graph on the left. Agpected, the decoder delay and bitline delay increase with
the number of mgisters. Havever, the decoder delay does not increase as smoothly as the
bitline delay because the decoder structuaa-(f of the MMND and NOR @tes) changes
discretely with the number ofgssters as shven in Table2.2. The wordline delay does not

change with the number ofgisters because it is a function of the width of thgsters

61

2000 800

mm Bitline delay mm Bitline delay
m= Wordline delay m Wordline delay
1500r [Decoder delay 1 - [Decoder delay

1000} - -
500} H H H {200}
0 0 2 4

64 128 256 512
Number of registers Issue width

[*2)
o
o

DELAY (ps)
DELAY (ps)
B
o
o

Figure2-23. Breakup of rgister file delayThe graph on the left stus hav the breakup aries
with the number of mggisters for a 8-ay machine in 0.18n technologyThe graph on the right
shawvs hav the breakup aries with issue width for a 128-entrygrgter file in 0.18m technology

(64 bits in our case) and the number of ports, both being constant for the graph. The bitline
delay increases linearly with the number dajiseers because the capacitance on the bit-
lines increases linearly with the number djisters. The graph on the right sishav the
breakdevn varies with issue width for a 128-entrygister file. In this case all three com-
ponents increase with issue width. The decoder delay increases slightly with issue width
even though its structure is determined by the numbergiétegs because the predecode
lines increase in length with issue width. Thereline and bitline components sha lin-

ear increase with issue width.

While the structure assumed for the @banalysis is popular and has been used in most
implementations, microprocessagndors are lggnning to eplore alternaties that help
reduce the delay of thegister file. Br example, the DEC 21264, as described ifdd,
uses tw copies of the ggster file, each with half the number of read ports as the original
file. Writes are sent to both copies. Eachycterefore has the same number of write
ports at the original file. Reducing the number of read ports helps reduce the delay com-

pared to the delay of a singleyiter file.

62
2.4.5 Data bypasslogic

The data bypass logic is responsible for bypassing reslukes to subsequent instruc-
tions that hee completedecution lut hare not yet written their results to thegrgter
file. The hardware datapaths and control added for this purpose form the bypass logic. The
number of bypasses required is determined by the depth of the pipeline and the issue width
of the microarchitecture. As pointed out inGQR95], if IW is the issue width, and if there
are S pipestages after the first result-producing stage, then a fully bypassed desidn w
require(2 x IW? x S bypass paths assuming 2-input functional units. In otioedsy the
number of bypass paths @re quadratically with issue width. The current trendaas
deeper pipelines and widergtee of issue only multiplies the number of bypass paths and

makes the bypass logiven more critical.

The bypass logic consists ofdwomponents: the datapath and the control. The datapath
comprises bses, called the resuluges, that are used to broadcast bypalses from
each source to all possible destinations. The sources of byglass are the functional
units and the cache ports. Bark are used to dee the bypassalues on the resulubses.
In addition to the resultusses, the datapath comprises operand MUXes. Operand MUXes
are required toafe in the appropriate results to the operars$és. Theain-in of the oper-
and MUXes is one greater than the number of resiglids. Thexdra input to the MUX is
connected to a read port on thgister file. This is for cases in which the operand is read

from the r@jister file.

The control logic is responsible for controlling the operand MUXes. The control logic
compares the tag of the resudtive to the tag of the sourcalwe that is required at each
functional unit. If there is a match, the MUX control is set so that the redu# is diven

on the appropriate operandsh

The key factor that determines the speed of the bypass logic is the delay of the result
wires that are used to transmit bypassaides. The control adds to this delaywieer,

for our analysis, we will ignore the control because its delay is a small fraction of the total

63

FU3
[] MUX
FU2 A
[] MUX
REGFILE
[=411 MUX
FUO
[3= MUX
FUL
QUTPUT R AR M S 8 %8 %
RESULT _QJ A & 8 R B2
WIRES T

Figure2-24. Bypass logic.

delay Also, as we mee tovards smaller feature sizes, wire delays resulting from the

result wires will be responsible for a significant fraction of the total delay

2.45.1 Structure

A commonly used structure for the bypass logic issshn Figure2-24. The figure
showvs a bit-slice of the datapath. There are four functional unitsedafkJO to FU3.
Consider the bit slice of FUOQ. It gets itsatwperand bits from thapdO-1 andopdO-r oper-
and wires. The result bit is g&n on theesO result wire by the result dker. Tristate luff-
ers are used to &g the result bits on the operand wires from the result wires. These
buffers implement the MUXes sthv in the figure. Br example, in order to bypass the
result of functional unit FU1 to the left input of functional unit FUO, the tristateedri
marked A is switched on. The dar A connects theesl wire andopdO-l wire. In the case
where bypasses are not gated, the operand bits are placed on the operand wires by the
register file read porfs The result bits are written to thegigter file in addition to being

bypassed.

1. In a reseration-station based microarchitecture the operand bits come from the data field of the
resenation station entry

64
The delay of the bypass logic isdaty determined by the time it ek for the drier at

the output of each functional unit toithe result alue on the corresponding result wire.
This in turn depends on the length of the result wires. From the figure it can be seen that
the length of the result wires is determined by the height of the functional units and the

register file. Alternatre layouts are possible and are discussed later

2.4.5.2 Delay Analysis

As discussed before, the delay of the bypass logic can be approximated by the time
taken to drve the result bits on the result wires. The egjeint circuit for calculating the

delay is shavn in Figure2-25. From the figure it follws,

Tdelay = Rdriver x Cdriver + (Rdriver + vaire) X Cwire

= Rdriver x Cdriver + (Rdriver +0.5%xR X L) xC xL

metal metal

wherelL is the length of the result wireBy e IS the resistance of the pull-up of the
driver, andCyj e IS the difusion capacitance at the output of theveiri For the layout
assumed, the length of the result wires is determined by the height of the functional units
and the rgister file. Each of these terms in turn is a linear function of issue width. Increas-
ing issue width increases the number of functional units and thus lengthens the result
wires. Increasing issue width also increases the heighgisteefile because this stretches
individual cells in the rgister file as seen in Secti@m.4. The result is that the length of

the result wires increases linearly with issue widthwiRng the length of the result

wires L, in terms of issue width\W, and simplifying we get,

2

where @, ¢;, and ¢ are constants. The constants are listecdalieB.5 in Appendix B.

From the abee equation we can see that the bypass delay has both a linear component

and a quadratic component determined by the issue width.eUinlikhe case of other

65

Cdriver Cwire

T 1
L L

Figure2-25. Bypass logic equalent circuit.

structures, we found that the quadratic component can be significant. Hence, the bypass

delay grovs quadratically with issue width.

Increasing the depth of the pipeline also increases the delay of the bypass logic as fol-
lows. Increasing the depth increases thie-ih of the operand MUXes connected to a
given result wire. This in turn increases the amount of capacitance to gecdloardis-
chaged on each result wire because th&udibn capacitance at the output of the operand
MUXes adds to the capacitance on the wiresvéder, this component of the delay is not
captured by our simple model.e/&kpect this component of the delay to become radbti

less significant as the feature size is reduced.

Buffered result wires

The quadratic component in the delay equation can be reduced in magnitude by insert-
ing kuffers in the result wires [WE93]oF example, Figure@-26 shavs the equialent cir-

cuit with a single bffer inserted in each result wire. The resulting delayvsrgby

Tdelay = Rdriverl X Cdriverl + (Rdriverl +0.5x% Rmetal X L/2) X Cgate2
+ (Rdriverl +0.5x Rmetal x L/Z) x Cmetal xL/2+ Rdriver2 x Cdriver2
+ (Rdriverz +0.5x Rmetal x L/Z) x Cmetal xL/2

66

“— L2 —> “— L2 ——r

Rdrivt-:'rl Rwire
Rwire ~AMAN—
Cwiret Cyate2 Rdriver2 __Cwire
Cdriver1 — — .
| | Cdriver2

t

Figure2-26. Inserting luffers in the result wires.

where Ryiver1 and Gyiver are the pull-up resistance andfasion capacitance of the first
driver, Ryiver2 and Gyriver2 are the pull-dan resistance and dlifsion capacitance of the
second dwer, and (e is the @te capacitance of the secondvelri By breaking the
result wires in half and inserting after, the magnitude of the quadratic component is
reduced in half compared to the uffered configuration. Heever, the total delay will
benefit from this reduction only if the delay of thefbr inserted is less than the reduction
in the quadratic component. Therefore, this approach of insediferdwill help reduce
delay up to the point where the delay of the insertdfts equals the delay of eaclyse
ment of the result wire. Insertingutfers beond this point will only increase the total

delay

From the delay equation we can see thagnewith huffers, the total bypass delay is at
least a linear function of issue width. There are asditional &ctors which augment the
criticality of bypass logic. First, bypass logic is in series with the functional units (ALUS)
i.e. the sum of ALU delay and bypass delay must be less than the clock period in order to
execute dependent instructions in conseeutycles. As we will see later in Secti@rb,
the ability to &ecute dependent instructions in conseeutycles is essential for high per-
formance. Second, the result wires are actually longer because in most implementations
they extend into the data cache array in order for the cache output &mibedf out to the

functional units.

67

1000

800t Bl suffered wires |
2 [] Unbuffered wires

%600 | -
[}

©

@ 400 - i
o

>

@

. W=

0.8um 0.35um 0.18um 0.8um 0.35um 0.18um 0.8um 0.35um 0.18um
2-WAY 4-WAY 8-WAY

Figure2-27. Bypass logic delay$or this graph we assume each functional unit has a he
2500\, whereA is half the feature size. The lengthswestimated based on data presented in
[HF88,593,1"95]. The height of the géster file in each caseas computed using the formula
Height = NPREG x (cellheight + wordlinegy,qing 3% 1W) , WhereNPREG is the number of pisical
registerscellheight is the height of an indidual RAM cell excluding the wordline, and
wordlineg,acing is the spacing betweerovdlines. V¢ usecellheight = 24\, NPREG = 48 for 2-
way, NPREG = 80 for 4-vay andNPREG = 120 for 8-vay, andwordlineg,ging = 6A for computin
the graph.

2.4.5.3 SpiceResults

We studied the bypass delay for a @ya 4-way and a 8-&y machine assuming typical
heights for the functional units and thejister file. Both bffered and uniiffered result
wires were studied. The results arewhan Figure2-27. There are a number of observ
tions that can be made from the graph. First, the bypass delay increases at least linearly
with issue width for both theuffered and unloffered configurations.df example, assum-
ing unhuffered result wires, the bypass delay increasesabiprs of 2.4 and 3.0 going
from 4-wide to 8-wide issue width for u& and 0.1fm technology respeetly. The
increase is higher for 0.ugn technology since the intrinsic wire delay (quadratic) compo-
nent increases in significance as the feature size is reducedt,lfof the 0.18m tech-
nology, the intrinsic wire delay is responsible for 68% and 90% of the total delay

respectiely for the 4-vay and the 8-ay machine.

68
Introducing luffers helps mitigte bypass delays for the &ymachine. & example,

now the bypass delay only increases >érs of 1.8 and 2.4 when going from 4-wide to
8-wide issue width for Oi8n and 0.1m technology respestly. For the 4-vay

machine, the reduction is not as significant because the delay afrdnédfer inserted is

close to the reduction in the intrinsic delay of the result wire. Another important abserv

tion that can be made is that bypass delay does not scale well as the feature size is reduced.
For the 8-vay machine with bffered result wires, the bypass delay reduces by 42% going
from 0.8&um to 0.3%um and by only 13% going from 0.6 to 0.1&m. This shas that

single gcle bypassing between functional units in a wide superscalar machine is going to

be increasingly diicult as the feature size is reduced.

Alternative L ayouts

The results presented in the yoeis section assume a particular layout; the functional
units are placed on either side of thgister file. Havever, as mentioned before, the length
of the result wires is a function of the layout. Hence, microarchitects wdl teastudy
alternatve layouts in order to reduce bypass delays. Figt2@ shovs some alternate

layouts.

In the alternatie shavn on the left, all the functional units are placed on one side of the
register file. In this case the result wires do nateht extend wer the rgister file. Hav-
ever, the length of the operand wires originating from tlggster file increases relaé to
the configuration in Figur2-24 thus stretching the gister file access time. Also, this
organization has the disaantage that the sense amplifiers of thgaster file cannot be
distributed on both sides. This could stretch thardlines in the rgister file and hence,

can also increase thegister file access time.

In the long term, microarchitects will Y& to consider clusteredgamizations lile the
alternatve shovn on the right. Each cluster has itgrocopy of the register file. Bypasses

within a cluster complete in a singlgote while intercluster bypasses tak2 or more

69

=Y =c]= {1 = I N
FUO FU2
FUO
L REGFILEO REGFILE1
FU2 FU1 FU3
FU3 Al B "'f"'
SINGLE CYCLE BYPASSES MULTI CYCLE BYPASSES

Figure2-28. Alternative layouts for bypassing.
cycles. Such a scheme is implemented in the DEC 21264 [Gwe96a]. Theataathe

compiler or both will hae to ensure that intetuster bypasses occur infrequenttyaddi-

tion to mitigating the delay of the bypass logic, thigaorization also has the aatage of
faster rgister files because there arevée ports on each gester file. Another technique
[ACR95] that can be used to impeobypass performance is to use an incomplete bypass
network. In an incomplete bypass netkk only the frequently used bypass paths are pro-
vided while interlocks are used in the remaining situations.alR 8-vay machine with

deep pipelines, thisould exclude a lage number of bypass paths.

2.5 Pipelining Issues and Overall Delay Results

In the preceding sections, the delay of each of the critical structaesmalyzed in
detail. Havever, in addition to the delaynother important consideration is the pipeline-
ability of the structures. En if the delay of a structure is releglly lage it can be elimi-
nated from the critical path defining the clogkle if it can be pipelined, i.e. its operation

is spread wer multiple gcles.

However, while deeper pipelining can impm® performance byatilitating a &ster
clock, it can result in a number of siddeets that can dgade performance too. First, the
extra stages introduced by deeper pipelining in the front end increase the penalty of

mispredicted branches. Also, the penalty of instruction cache misses will increase as a

70
result of &tra pipestages that v to be re-filled. At the same time, accurate branch pre-

diction can allgiate these problems to a certairtemt. Hence, if the performance
improvement achieed as a result of deeper pipeliningdter clock) surpasses the perfor-
mance dgradation caused by thete stages, then pipelining might be an attvacti
option. The current trend in the microprocessor industrywaris deeper pipelining oF

example, the pipeline in the Intel Pentium Pro [Gwe95b] has ay asmh4 pipestages.

The general subject of thd&dt of pipelining depth onwerall performance has been the
focus of a number of studies [DF90,JW89,KS86F Wok a diferent approach in our
study We study the feasibility of pipelining each of the critical structures from the point of
view of performance. W identify structures that are amenable to pipelining, i.e. those
whose operation can be spreacoa small number of pipestages without significantly
impacting the IPCdctor in the performance equation. @ersely we identify certain
structures that should not be pipelined, especially for programs with limited parallelism,
since the pipeline ubbles introduced by pipelining can cause significagtatiation in
IPCs achieed.

The ability to &ecute dependent instructions in conseeutycles is an important
requirement for high performance, especially for programs with limited parallelism. The
inability to execute dependent instructions back-to-back often introduces pipabieb
that can result in significant performanceg@elation. Experimental results supporting
this will be presented lateA simple eample will help illustrate this. Consider the time
taken to eecute a dependent chain of singyele instructions of lengtm. If the ALU
operation is sgmented into tw pipestages,xecution of the chain will tak(2 x n—1)
cycles — much more than the cycles it would tale in the non-pipelined caseorRthis
case, een if the clock frequenycdoubles as a result of pipelining the ALWeaall perfor-
mance does not impve. In fact, latch erhead couldwen diminish performance. Ea
though this gample uses arxegeme case of zero parallelism, the ability xeaite depen-
dent instructions in consecusi g/cles is essential, especially for programs with small

amounts of parallelism.

71
Using the ability to ¥ecute dependent instructions in conseeugy/cles as the metric,

we evaluate hw pipelining the functions implemented by the indual structures can

affect this requirement.

Instruction fetching. Pipelining the instruction fetch logic does notver@ back-to-

back eecution of dependent instructions. It doesywéeer, increase the penalty of
mispredicted branches and instruction cache misses when the pipeline has to be
refilled. More accurate branch prediction and an out-of-order back-end help reduce the
penalty of mispredicted branches. Owperimental results sho that instruction
fetching can be pipelined into afesegments at the cost of a small (4% per pipestage)
degradation in IPC performance for eacttra pipestage introduced. Similar results —

3% per pipestage — @ been reported by designers [Hin95] in the industry

Register renaming. Pipelining register renaming does not pemt back-to-backx@cu-
tion of dependent instructions. Justeliknstruction fetch, it increases the penalty of
mispredicted branches and instruction cache misses and results in similagiBC de

dations when pipelined.

The reyister rename logic can be pipelined by spreading the dependence checking and
the map table accessay multiple pipestages. While it is easy to se® Hependence
checking can be pipelined, it is not so/ms hav the map table access can be pipe-
lined. Hovever, there are schemes [Cha91 W] for pipelining RAMs that can be
applied to map table accesses. In addition, in order to ensure that each rename group
sees the map table updates performed byiqure rename groups, the updategehto

be bypassed around the map table i.e. the updates should be visible before the writes to
the table actually complete. Hence, we haithat en though the design will be
complicated, rgister renaming can be pipelined to at least fgments. It must be

pointed out that before attempting to pipeline renaming, there are a number of tricks
that can be applied to reduce its laterkirst, the map table can be duplicated to

reduce the number of ports on eachycopthe table. Second, because not all instruc-
tions hae two operands and because it i®likthat instructions in a rename group

have common operands, the port requirements on the map table can be reduced with

72

o o WAKEUP|SELECT| EXEC | o o ADD R10R1R2
* o WAKEUP|\ SELECT| EXEC o o BUBBLE
v
e o WAKEUP| SELECT EXEC * o SUBR3,R10,1

Figure2-29. Pipelining wakeup and select.

little effect on performance.

* Wndow Iggic. Wakeup and select togetheneato be accomplished in a singiele to
facilitate back-to-backxecution of dependent instructions. If yhare spread across
multiple pipestages, dependent instructions canketwte in consecwi o/cles as
shavn in Figure2-29. Theadd and thesubinstructions cannotxecute back-to-back
because the result of the select stage has to feecalleaipvstage. The resulting pipe-
line bubbles can seriously geade performance especially in programs with limited
parallelism. Hence, akeup and select together must be accommodated to fit within a
cycle.

» Data bypassingData bypassing is anothetaenple of an operation that must be com-
pleted in less than acle in order to xecuted dependent instructions in conseeuti
cycles. The bypassalues must be madeailable to the dependent instruction within a
cycle. The delay of the bypass logic is madenemore critical by theatt that it is in
series with the ALU operation — the sum of the delays of the ALU and the bypass
delay should be less than ycle to fcilitate back-to-backxecution. As shwn ear-
lier, it is going to be increasingly hard to accomplish data bypassing within a single
cycle in wide-issue machines.

* Raister file accesRipelining the rgister file does not &dct back-to-back»ecution
since the operandalues for the consumer instruction areviled by the data bypass
logic. Again, like in the case of instruction fetch andister rename, pipelining the
register file increases branch mispredict and instruction cache miss penalties. It results
in similar IPC dgradation as for the case of pipelining front-end stagesitigtruc-

tion fetch and rgister rename.

73
The techniques used to pipeline RAM can be eygado pipeline the master file.
Tullsen et. al. [T96] studied the &ct of spreading mister read wer two pipestages.
They found that single thread performancg@eed by only 2% for their design. Once
again, it must be mentioned that instead of pipelining tyester file, architects can
reduce its latencby duplicating the mgister file. Each copof the reister file will

have half the number of read ports as the origingister file. This technique has been

used in the DEC 21264 [@7]. In this case tw copies of the inger reister file are
used.

e Cache access. Pipelining cache access canvyangt back-to-backx@cution of depen-
dent instructions. & example, breaking the cache access into pipeline sgments
will prevent back-to-backxecution of a load instruction and a instruction using the
result of the load. In the absence of parallelism, this caerelg afect performance.
However, cache access is not as critical as windtmgic or data bypass logic because
unlike them, cache access onlyeafs load-use instruction pairs. Pipelining windo
logic and data bypass logic injectabbles for all pairs of dependent instructions.
While most designs attempt to prde single-gcle cache access, there are designs in

which cache access has been pipelined intostages.

Caches can be pipelined in a number aysv One scheme, implemented in the DEC
21064, reads the tags and the data in the ficd¢ @nd performs the hit/miss detection
operation in the secongde. A second, more aggressischeme could pipeline both
the tag RAM and the data RAM themsesv A related trade-bis to size the L1 data
and instruction caches so thatytloan be accessed in a singfele and use a bigger

L2 cache to service the L1 misses.

To summarize, the analysis presentedvatshavs that windav logic, data bypass logic,
and cache access logic implement operations tlvattbeaccomplished in a singlhgate in
order to &cilitate execution of dependent instructions in conseeutycles. Back-to-back
execution is a desirable feature from the point oiwmf performance, especially for

codes that ha limited parallelism. Because operations thavgme execution of depen-

74
dent instructions in consecuti g/cles will not be pipelined for performance reasons, we

believe that the laterycof these operations will ultimately limit the gtee of pipelining.
Consequentlythe delays of these operations are crucial and will determine the &ignple

of a microarchitecture.

The qualitatre analysis presented afeois not ne. Similar issues and tradefethare
been discussed in the caxitef deep pipelining [KS86] and superpipelining [JW89]. The
trade-ofs are analyzed here in the cotitef out-of-order microarchitectures. The vao
towards wide-issue superscalar machines and the technology trend of wire delays domi-
nating total delays increases the importance of these tréslaraf hence, architects need
to reevaluate these tradefef There are a Ve caveats to the analysis. Thegaments pre-
sented are tightly hinged on the assumption that there is limited instructedpézallel-
ism in programs. At least theoreticallg the typothetical situation ofery high-levels of
parallelism, pipelining an of the structures will not significantly impact performance.
Also, pipelining cannot be used as a panacea for reducing cotmpRipelining, espe-
cially deep pipelining, has itsam set of dravbacks. Clock séw and latch werhead can
combine to limit the decrease in clock period obtained by further pipelining. Deep pipelin-

ing also requires sophisticated circuit design.

To quantify the déct of pipelining the ab@ operations on the fettiveness of a
microarchitecture, we studied the performandecefof varying the number of pipeline
stages. A baseline out-of-order microarchitecture of the kinsrshon Figure2-1 on
pagel5 is assumed. The pipelin@svdvided into three sections: front-endeeute, and
cache access. The front-end section includes instruction fegistererename, andges-
ter file access operations. Theeeute section includes windowakeup, windev selec-
tion, and data bypass operations. The cache access section consists of only the cache
access operation. The pipelin@syartitioned in thisaEhion because the operations in a
given section are identical with respect to pipelining i.e. spreadgigtee rename \e@r

two stages and spreadingyiger file accessver two stages ha the same #fct on per-

75

1 Front-end I Execute [Cache access
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Normalized IPC

121212 121212 121212 121212
compress gcc m88ksim vortex

Figure2-30. Effect of pipelining on IPCThis figure shas the effect of pipelining on the
performance of a 8-ay out-of-order microarchitecture. Each pair of barsvshitie effect of
introducing one (1) and v(2) etra pipestages in that particular section. The leftmost bar 1
each benchmark stws the base performance. The simulated processor has a 64-entry,ver
120-entry rgister file, and a gshare branch predictor with 20 bits of global history

formance. W then studied the fett of introducing etra stages in each section. The

results are shvan in Figure2-30.

A number of obsemtions can be made from the graph. First, pipelining the operations
in the front-end does not giade eflectiveness significanthHowever, pipelining the oper-
ations in the xecute section can result in serious performanggadation and hence,
should be woided. For example, dviding execute into tw pipestages can gede the per-
formance by as much as 24% in the caseoofpress. Also, it is important to &ep the
cache access latgniow (less than 3yxles) for good performance. In summahe graph
shows that while rgister file access andgister renaming can be pipelined without taking
a significant hit in performance, performing wimdand data bypass operations in a single

cycle is crucial for high performance.

76

[] Rename delay
' [] Window delay
600 - [Register file delay
’8\ 500 + [Bypass delay
_‘% 400
8 300

= N

o O

o O
T T

2-WAY 4-WAY 8-WAY

Figure2-31. Overall delay resultsThis figure shas overall delay results for a 2ay, a 4-way,
and a 8-way machine in 0.18n technologyThe 2-vay machine has a 48-entrygigter file and ¢
16-entry windav. The 4-vay machine has a 80-entrygister file and a 32-entry windo The 8-
way machine has a 120-entrgigter file and a 64-entry windo

Overall delay results

The wverall delay results for a 2ay, a 4-way, and a 8-\ay microarchitecture in 0.{8n
technology are shn in Figure2-31. The corresponding results for 8 and 0.3Em
technologies are stwm in Appendix A. The graph stws that the delay of winawlogic,
register file logic, and data bypass logic increases significantly with issue width. The data
bypass logic shes the lagest increase, increasing lacfors of 1.95 and 2.37 going from
2-way to 4-way and from 4-wy to 8-vay respectiely. Even though the delay of the
bypass logic is smaller than that of the wiwdogic and the rgister file logic, the dct
that the bypass logic is in series with the functional unitsesék performance critical.
Another obseration is that when the issue width is increased from 4 to 8, gieteefile
delay dgrades more than the windalelay This is eplained by the particular configura-
tions assumed for the graph. The size of thester file increases from 80gisters to 120
registers whereas the windosize only increases from 32 entries to 64 entries. Also, the
delay of the winde selection logic is the same for both the configurations because selec-
tion logic increases I@githmically (base 4) with windw size. Haovever, as shan earlier

the raister file logic is not as critical as the windtngic because it can be pipelined with

77
a small reduction in IPC. Hence, wivdéngic and bypass logic are the most crucial struc-

tures among the list of structures studied here.

2.6 Related Work

The access time of caches anglister files hae been studied in the past. In [WRP92],
Wada et. al. quantify the access time of a cache as a functiani@is/cache parameters
like cache size, associaty, and line size. \iton and Jouppi further refined alfas
model in [WJ94]. The methodology used for thisrkvis similar to the one used in
[WJ94]. Farkas et. al. [FIC96] modified the cache model to sugiyg Spice simulations,
how the access time of agister file \aries with the size of thegister file and the number
of ports. In this chapter we d&op analytical equations in addition to presenting Spice
simulation results for ggster files. Specific implementations ofjiser files are described
in [AMG *95,J0191, $91].

The subject of quantifying the compity of issue logic in superscalar microarchitec-
tures has receed some attention, mostly qualitetj in the past. Homitz et. al. in
[HPS92] ague that increasing compiéy, both due to wrsening wire delays and gving
interconnection cost, will ultimately limit the performance atage of wide-issue,
dynamically scheduled, superscalar microarchitecturesy heasure compiity of a
specific operation in terms of the number afeg, or in some cases the die area, required
for implementing the operationoFexample, thg shav that the compbaty of operand

bypassing gne's asO(IW?) wherelW is the issue width.

Johnson, in his book [Joh91]vgs a lagely qualitatve description of the comply of
a central winde. He points out that the critical path for the windimgic comprises to
operations: an instruction being made ready by a result that will barfiea and the arbi-
tration for a functional unit by that instruction, i.e. akeup folloved by a select in our
terminology Based on some assumptions, he estimates that the critical path can be imple-

mented using 16 logic stages. He does not consider wire delays in his analysis.

78

Chamdani [Cha95] measures the comiyeof superscalar microarchitectures in terms
of hardware costs. He presents a theoretical cost analysis in terms of the costs of a 1-bit
comparatar 1-bit register storage, 1-bit global wire, and other unit parameters. The cost

analysis is used to compararius superscalar designs.

There are a number of studies that discussihterconnect delays can become a signif-
icant limiter in future technologies. Bohr claims in [Boh95] that as clock frequencies
approach 1 GHz and interconnect pitches shrinkvbé&ldum, interconnect delay will
become a dominant portion of clockete time. Een though increasing metal aspect ratio
helps impree RC delayhe shas that maximum benefits are aclEd once aspect ratios
reach close to 2. Furthermore, the study alsavstibat using more interconnect layers is
not a feasible solution since the practical limits for the number of layers will be reached in
just a fav technology generations.ilvelm [Wil95] presents a lucidxplanation, starting
from basic principles, of the poor scaling of wire delays in future. He concludes that the
impending wire delay problem will force architects to consider designswibiakt global
signalling. Matzle [Mat97] introduces the notion aignal drive region andclock locality
matrix to shav hov multiple clock gcles will be required to propate signals across a
die in future. He also concludes that only microarchitectures with good locality and corre-

sponding floor planning will surve.

2.7 Chapter Summary

This chapter analyzed the delay of critical structures in a baseline superscalar microar-
chitecture. The structures studied are critical in the sense that their delay is a function of
issue width, issue windosize, wire delays and hence, it iselik that the delay of these
structures will determine theg/de time in future designs in aalvced technologies. Sim-
ple analytical models thatxpressed the delay of each of the structures in terms of
microarchitectural parameters dikssue width and instruction windosize were deel-
oped. In addition, we studied\Wwdhe delays scale as feature sizes shrink and wire delays

become more prominent.

79
The overall results she that the logic associated with managing the issue wirafca

superscalar processor isdlig to become the most critical structure as weartovards
wider issue, lager windavs, and adanced technologies in which wire delays dominate.
One of the functions implemented by the wiwdogic is the broadcast of result tags to all
the waiting instructions in the winde The delay of this operation is determined by the
delay of wires that span the issue wiwd&e found that the delay of this operation
increases at least linearly with wimdsize and issue width. Hence, this operation does
not scale well. Furthermore, in order to be ablexerete dependent instructions in con-

secutve gscles, the delay of the windologic should fit within aycle.

In addition to the winde@ logic, a second structure that needs careful consideration
especially in future technologies is the data bypass logic. The length of the result wires
used to broadcast bypasdues increases linearly with issue width and hence, the delay of
the data bypass logic increases at least linearly with issue wicdim,Ag order to be able
to execute dependent instructions in conseeutycles, the sum of the delay of a func-

tional unit and the data bypass logic should be less tharlea ¢

In summary straightforvard scaling of current microarchitectures will not bdisint
because the resulting wire delays could significantly impase dime thus reducing the
overall performance impk@ment. As wire delays increasingly dominate total delay

architects hee to design more compact microarchitectures thaitlaglobal signalling.

80

81

Chapter 3

Dependence-based Superscalar Microar chitectures

The analysis presented in Chapter 2 shows that issue window logic is one of the primary
contributors of complexity in a conventional microarchitecture. The delay of the window
logic increases at least linearly with both issue width and window size. Furthermore, the
wakeup and select operations implemented by the window need to be accomplished in a
single cycle for high performance. In addition to window logic, another structure whose
delay scales poorly with issue width, especialy in future technologies, is the data bypass
logic. The length of the result wires used to broadcast bypass values increases linearly
with the number of functional units and hence, the delay of data bypass logic grows at
least linearly with issue width. This chapter proposes and evaluates dependence-based
superscalar microarchitectures that address the complexity of the window logic and the
data bypass logic. The proposed microarchitectures are designed to extract similar levels

of parallelism as conventiona microarchitectures while enabling a faster clock.

Dependence-based microarchitectures use two main techniques to achieve the dual goals
of wide-issue and fast clock. Partitioning is used to enable a fast clock. The machine is

partitioned into multiple clusters each of which contains a part of the instruction window

82

and the gecution resources of the whole proces3tiis enables high-speed clocking of

the clusters since the nanressue width and the small instruction wimdof each cluster

keeps the critical delays small. The second technique is applied to sustain a high IPC for
the whole machine. Thisvnolvesintelligent steeringof instructions to the multiple clus-

ters so that the full width of the machine is utilized while minimizing the performance
degradation due to sl inter-cluster communication. Dependences between instructions,
discovered at run-time, are used as input to perform the steering. Hence, thdepsne
dence-baseduperscalar microarchitectures. It must be pointed out that thiedthwniques

must be used in conjunction since botlast tlock and a high IPC are necessary for high

performance.

The rest of this chapter isganized as folls. The ngt section discusses the concept
behind the dependence-based superscalar microarchitectures. 3&ctpyasents and
analyzes in detail a specific instance of the dependence-based superscalar microarchitec-
tures called théfo-based miayarchitecture. Section3.3 discusses other interesting mem-
bers of the dmily of dependence-based microarchitectures. Experimensdiagion
results are presented in Sectihi. Other related microarchitectures are discussed in

Section3.5, and finallythe chapter is summarized in Secti8.

3.1 Concept

The oganization of a generic dependence-based superscalar microarchitecture is illus-
trated in Figure-1. The issue andkecution resources of the machine are partitioned into
multiple clusters. Renamed instructions are steered to one of the clusters. Steering issues
are discussed lateEach cluster contains a slice of the instruction wiwndad the func-
tional units of the whole machine. A gopf the r@gister file is proided in each cluster
The multiple copies of the gester file are &pt identical by broadcastinggister writes.

Local bypasses within a cluster (8housing thick lines) are responsible for bypassing
values produced in awgn cluster to the inputs of the functional units in the same cluster

By keeping the issue width of the clusters small, local bypassing is accomplished in a sin-

83

WINDOW
(]
= [, +
g %
— m a
() il B
04
AT "
L
CLUSTER O @
g
[] m
—»| Rename » Steer LOCAL BYPASSES @ &
° %
)
—
O
CLUSTER N-1 o
Ll
WINDOW vl Z
(]
= b 0 +
o »
>z L8
()] al L
o

Figure 3-1. Dependence-based superscalar microarchitecture.

gle gscle. Intercluster bypasses are responsible for bypassahges between functional
units residing in dierent clusters. Because intduster bypasses require long wires, it is
likely that these bypasses will be relaly slover and tak two or more gcles in future
technologies. The intarluster bypass wires are also useddegkthe multiple copies of
the raister file coherent. Hence, the multiple copies are identicadpe for the one or

more ¢cles diference in propaging results from one cluster to the rest of the clusters.

The proposed microarchitecture has a number oaradges wer the cowentional
microarchitecture with respect to comytg. Since each cluster implements a nareze-
cution core with a small winag both the winder logic and data bypass logic delays in
each cluster can beefat small. As a result, the proposed microarchitecture can support a
faster clock than a wide caentional microarchitecture with a g issue windw. Also,
by using multiple copies of the gister file, the dependence-based microarchitecture
reduces the number of ports on thgister file and mads the access time of the fikster

relative to that of a centralized file.

84
The front-end of the dependence-based superscalar microarchitecture is identical to that

of the conentional microarchitecturexeept for the addition of steering logic. The steer-

ing logic is responsible for steering instructions to vitial clusters based on depen-
dences eracted at run-time. The goal of the steering logic is toemese of the full width

of the machine while minimizing the use of wlontercluster communication. Ewn
though the figure shes the steering logic to be in series with the rename logic, simple
versions of the steering logic can be implemented to operate in parallel with the rename
logic, thus eliminating the need for axitr@a pipestage. Sectidh3.3 discusses the trade-

offs involved in more detail.

Since the proposed microarchitecture uses the same front-end asmatiomal microar-
chitecture, it does not reduce the comjiieof instruction fetch and renaming. Extra pip-
estages, at thexgense of a reduction in IPC as almoin Sectior2.5 in ChapteR, is one

way to reduce the compiigy of the front-end.

Perfor mance factor s

The overall performance of a dependence-based microarchitecture is highly dependent
on the amount of ILP that can betracted relatie to the coventional microarchitecture.
If the microarchitecture can sustain comparable IPCs, then its clock speadaa@wvwill
result in higher werall performance. The primargdtors that determine the IPCs agbi

by the proposed microarchitecture are:

* Load balancing. It is important that instructions are spread out to use ag chasters
as the amount of program parallelism ato Otherwise, the program will not be able
to take adwantage of the full-width of the machineorFexample, if we hee a 8-vay
dependence-based superscalar microarchitectgamiaed as 4 clusters each being 2-
wide, and if all instructions are steered to a single clugtermachine will be &fc-

tively reduced to a 2-wide machine.

* Inter-cluster bypass frequency. Since intercluster communication is sig excessvely

using the intecluster bypass paths can easily stretch the critical path of the program,

85
resulting in poor performance. Hence, it is essential that the steering logic minimize

the frequeng of intercluster bypassexercised. It must be pointed out that int&rs-

ter bypass frequeganust be judged along with load balancingt Bxample, it is pos-

sible to completely eliminate intetuster communication by steering all instructions

to a single clusteHowever, performance can be significantlypdaded because of the
reduced dective width of the machine. Hence, the challenge is to be able to balance
the load across multiple clusters while minimizing the frequeoicintercluster

bypasses.

« Steering lgic compleity. Comple steering logic will require multiple pipestages that
can result in IPC dgadation due to increase in penalties associated with branch
mispredicts and instruction-cache misses. This can reduce the benefit ofngchie
good load balance and minimizing intduster bypass frequepndience, the steering

logic must be &pt simple.

The results presented in the rest of the chapter wilvdhat it is possible to achie

good steering with simple steering heuristics.

3.2 Dependence-based Microar chitectures: An Example

This section describes a particular dependence-based microarchitecture cdiled the
basedmicroarchitecture. The idea behind the fifo-based microarchitecturexpltat ¢he
natural dependences among instructionsey®doint is that dependent instructions cannot
execute in parallel. In a single-clustesrgion of the proposed microarchitecture vaman
Figure3-2, the issue winde is replaced by a small number of fifoffers. The fifo ffers
are constrained to issue in-ordand dependent instructions are steered to the same fifo.
This ensures that instructions in a particular fitdfdr can only gecute sequentially
Hence, unlile the typical issue windowhere result tags kia to be broadcast to all the
entries, the mgister aailability only needs to beafined out to the heads of the fifafflers.

The instructions at the fifo heads monitor reagon bits (one per pisical ragister) to

86

ALUs

FETCH
RENAME
STEER
WAKEUP
SELECT
REG FILE

A
BYPASS

DATA CACHE

RENAME | WAKEUP EXECUTE DCACHE
FETCH | steEer | seLect | RECREAD | gypass | access | COMMIT

=igure 3-2. Fifo-based microarchitecture.

check for operandvailability. This is discussed in detail lat€urthermore, the selection

logic only has to monitor instructions at the heads of the tiftets.

The steering of dependent instructions to the fifibelos is performed at run-time during
the rename stage. Dependence information between instructions is maintained in a table
called the SRC_FIFO table. This table is etk using logical mgister designators.of
example, SRC_FIFO[Ra], entry for logicabister Ra, stores the identity of the fifaffer
that contains the instruction that will writegrster Ra. If that instruction has already com-
pleted i.e. rgister Ra contains its computedlwe, then SRC_FIFO[Ra] isvalid. This
table can be accessed in parallel with the rename table. In order to steer an instruction to a
particular fifo, the SRC_FIFO table is accessed with thester identifiers of the source
operands of an instructionoFexample, for steering the instructianld r10,r5,1 where
r10 is the destination gister the SRC_FIFO table is inded with 5. The entry is then

used to steer the instruction to the appropriate fifo.

A number of heuristics are possible for steering instructions to the fifos. A simple heu-
ristic that we found to wrk well for our benchmark programs is describext.neet| be
the instruction under consideration. Depending upon thaaadility of I’'s operands, the
following cases are possible:
1. All operands available. All the operands df have already been computed and are
residing in the rgister file. In this case,is steered to a me(empty) fifo acquired from

a pool of free fifos.

87

TIME 20

0: addu $18,%$0,%$2 :IO,l,B issue

1: addiu $2,$0,-1 jl

2: beq $18,$2,L2]

3: Iw $4,-32768($28)

4: sliv $2,$18,$20 2

5: xor $16,%$2,$19 75 4 2 46 issue

6: lw $3,-32676($28) 6]

7: sl $2,$16,0x2

8: addu $2,$2,$23

0: I\?II $§,Oé$2)$ 1110
10: sllv $4,$18,%$4

P10, 9875 .
11: addu $17,$4,$19 :I 5,10 issue
12: addiu $3,$3,1 :I
13: sw $3,-32676($28)
14: beq $2,$17,L3
11
149871791 12 issue
1312
Y

Figure 3-3. Instruction steeringx@mple.

2. One outstanding operand. | requires a single outstanding operand to be produced by
instructionl ¢ ce residing in fifo F. In this case, if there is no instruction behind

lsource IN Fy, thenl is steered to L elsel is steered to a mefifo.

3. Two outstanding operands. | requires tw outstanding operands to be produced by
instructiond e andlyigy residing in fifos Eand F respectrely. In this case, apply the
heuristic in the pngous hullet to the left operand. If the resulting fifo is not suitable (it
is either full or there is an instruction behind the source instruction), then apply the

same heuristic to the right operand.

If all the fifos are full or if no empty fifo isvailable then the steering logic stalls. A fifo
Is returned to the free pool when the last instruction in the fifo is issued. Iniikitize
fifos are in the free pool. FiguB3 illustrates the heuristic on a codgmsent from one of

the SPEC benchmarks for a 4-wide machine. The listing on the lefsghe dynamic

88

4.0
% 35| B window-based i
> 5 [] fifo-based
O 30r -
[L i
9 25
v 20 i
c
S 15} .
S 10r _
w 05]
£

0.0 compress gcc go ijpeg li perl m88ksim vortex

Figure 3-4. Performance of single-cluster fifo-based microarchitecture.

stream of instructions. The directed graph in the middlevshbe rgister dependences
between those instructions. On the right end of the figure versti®e contents of the fifos

in each gcle. Instructions can issue only from the heads of the four fifos. The steering
logic steers four instructions/ery g/cle and a maximum of four instructions can issue
every g/cle. Considerthe steering performed iryde 1. Instructions 4, 5, 6, and 7 are
being steered to the appropriate fifos. Since instructions 4, 5, and 7 form a dependence
chain, thg are steered to the same fifo. Since instruction 6 is a ready instruction (which
happens to start a dependence chain) it is steered to ffmen the n&t cycle, instruc-

tions 8, 9, 10, and 11 are steered. Since instructions 8 and 9 form a chain that depends on
instruction 7, the are steered to the fifo containing instruction 7. Similamigtructions 10

and 11 form a chain and are steered tovafife.

3.2.1 Performance of the Fifo-based Microarchitecture

Comparison with window-based super scalar

We compared the performance of the fifo-based microarchitectamesathat of a typi-
cal microarchitecture with an issue winddl'he proposed microarchitecture has 8 fifos,
with each fifo haing 8-entries. The issue wingoof the cormentional processor has 64
entries. Both microarchitectures can decode, rename, x@wlite a maximum of 8
instructions eery g/cle. The simulation model assumed is detailed abld3.2 on

pagel00.

89
The performance results in terms of instructions committed y&e @re shan in

Figure3-4. The fifos dependence-based microarchitectiracts similar parallelism as
the typical windav-based microarchitecture. Thgcte count numbers are within 5% for
five of the seen benchmarks and the maximum performanggadation is 8.7% in the

case operl.

Fifos utilization

The graph on the left in FiguB5 shavs the time distribtion of the number of as
fifos during the gecution ofm88ksim. A fifo is actve if it contains at least one instruction.
While the graph shws that for majority of the time all the fifos are being utilized, there
are periods during whichvieer fifos are acte. This shws that distrilntion of parallelism
in the program is uven — there are phases in which thverage number of parallel

chains is small. Other benchmarkswstsdmilar results.

The graph on the right in FiguB5 shavs the time distribtion of the depth of a partic-
ular fifo during the xecution ofm88ksim. The graph shas that on theaerage the num-
ber of instructions in a fifo is small. This is due t@tmain reasons. First, the steering
heuristic used here stalls wheaea suitable fifo is not found. &\found that placing the
instruction that caused the steering logic to stall in a random fifo cogradge perfor-
mance in certain programs. Second, and more importdretyjuent branch mispredicts
cause breaks in the instruction stream presented to the steering logic, resultingw shallo

fifos on the aerage. V& found similar distribtions for the other benchmarks.

Effect of increasing number of fibs

Increasing the number of fifos increased the performance for all the benchmanvks. Ho
ever, the impraements were in the 2%-3% range for as yras 12 fifos. This is because
8 fifos are able to support most of the parallel chains found/ahstance during thexe-

cution of the programs.

90

£ 35¢

%Total time
%Total tim

Number of active fifos Fifo depth

Figure 3-5. Fifo utilization. The graph on the left stvs the number of ae fifos during th
execution ofm88ksim. The graph on the right sive the depth of a particular fifo during
execution of the program.

3.2.2 Complexity Analysis of the Fifo-based Microar chitecture

First, consider the delay of theakeup and selection logic. &deup logic is required to
detect cross-fifo dependencesr Example, if the instructioh, at the head of fifo Fis
dependent on an instructidg waiting in fifo R, thenl, cannot issue untll, completes.
However, the wakeup logic does not wolve broadcasting the result tags to all treating
instructions. Instead, only the instructions at the fifo heads tmdetermine when all
their operands arevailable. This is accomplished by interedigg a table called the reser-
vation table. The reseation table contains a single bit perypital register that indicates
whether the rgister is vaiting for its data. When an instruction is dispatched, the ra@serv
tion bit corresponding to the psical rejister is set. The bit is cleared when the instruction
executes and the resulalue is produced. An instruction at the fifo heaaltsvuntil the
resenation bits corresponding to its operands are cleared. Hence, the delay akég w
logic is determined by the delay of accessing the raenvtable. The reseation table is
relatively small in size compared to the rename table agidtes file. lor example, for a

4-way machine with 80 pfsical reisters, the reseation table can be laid out as a 10-

entry table with each entry storing 8 bits. A column MUX is used to select the appropriate

bit from each entryTable3.1 shaevs the delay of the resextion table for 4-a&y and 8-

way machines. ér both cases, theakeup delay is much smaller than thekaup delay

91

Issue width| # physical regs | # table entries| Bits/entry Delay(ps)
4 80 10 8 192.1

8 128 16 8 251.7
Table 3.1: Delay of reseration table in 0.1)m technology

for a 4-way, 32-entry issue windw-based microarchitecture. Also, this delay is smaller
than the correspondinggister renaming delaylhe selection logic in the fifos depen-
dence-based microarchitecture is simple because only the instructions at the fifo heads

need to be considered for selection

Instruction steering is done in parallel witlgister renaming. Because the SRC_FIFO
table is smaller than the rename table wgeet the delay of steering to be less than the
rename delayin case a more complsteering heuristic is used, thera delay can easily
be maed into the vakeup/select stage or am@ipestage can be introduced — at the cost

of an increase in the branch mispredict and instruction-cache miss penalties.

In summarythe complgity analysis presented alm shaevs that by reducing the delay
of the windav logic significantly it is likely that the fifo-based microarchitecture can be
clocked faster than the typical microarchitecture. Combining the potential for a much
faster clock with the results indicate the dependence-based microarchitecture is capable of

superior performance reledi to a comentional microarchitecture.

92

FIFOS - -
T € et
L Tl @
n al
|_’ () al »
m | I—
A T 0
L
CLUSTER 0 A
g
>
m
Fetch Rename LOCAL BYPASSES &
> [
Decode Steer 0
-
O
CLUSTER 1 @
L
l [
FIFOS v £
(]
N\ L 2 b,
— al N
q_) L
7 8
a » >
—» o [¢p» D +
o

Figure 3-6. Fifo-based microarchitecture with tvelusters.

3.2.3 Clustering the Fifo-based Microar chitecture

The real adantage of the fifo-based microarchitecture is folding machines with
issue widths greater than four where, asnshim the preious chapterthe delay of both
the lage windav and the long bypasaibses can be significant and can considerably slo
the clock. Dependence-based microarchitectures based on fifos are ideally suited for such
situations because thsimplify both the windw logic and the bypass logic as well as nat-
urally facilitate eficient steering. Such a microarchitecture foilding an 8-vay machine
is described ne.

Consider the 2X4-ay clustered system shio in Figure3-6. Two clusters are used,
each of which contains four fifos, one gapf the reister file, and four functional units.
Renamed instructions are steered to a fifo in one of tbectusters. Local bypasses
(shavn using thick lines) permit singlggde bypassing inside each clustencal bypass-
ing can be accomplished within gcte. Intercluster bypasses, responsible for bypassing

values between functional units residing irfafiént clusters, taktwo or more gcles.

93

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

B window-based
[] 2-cluster fifo-based

Instructions Per Cycle

compress gcc go ijpeg li m88ksim perl vortex

Figure 3-7. Performance of the clustered fifo-based microarchitecture.

This dependence-based microarchitecture based on fifos has a numbexnvages:
First, wakeup and selection logic are simplified as notedipusly. Second, because of
the heuristic for assigning dependent instructions to fifos, and, indjrectdisters, local
bypasses are used much more frequently than-chister bypasses, reducingeoall

bypass delays.

3.2.4 Overall Performance of the Clustered Fifo-based Microarchitecture

The graph on the left in FiguB7 compares performance, in terms of instructions com-
mitted per gcle (IPC), for the 2X4-ay dependence-based microarchitectusaresj that
of a comwentional 8-vay microarchitecture with a single 64-entry issue wimdeor the
dependence-based microarchitecture, instructions are steered using the heuristic described
in Section3.2. Local bypasses complete withinyale while intercluster bypasses tak
cycles. Also, in the carentional 8-vay system all bypasses are assumed to complete in a
single gcle. From the graph we can see that for most of the benchmarks, the dependence-
based microarchitecture is nearly aeetive as the winde-based microarchitectureen
though the dependence-based microarchitecture is handicappedwbyntdecluster
bypasses that tak2 g/cles. Havever, for two of the benchmarksn88ksim andcompress,
the performance dgadation is close to 13% and 10% respetti We found that this

degradation is mainly due toea lateng introduced by the sho intercluster bypasses.

94

N
o

10

oIIIIIIII

compress gcc go ijpeg li m88ksim perl vortex

6]
T

Performance Improvement(%o)

Figure 3-8. Potential speedups with the fifo-based microarchitecture.

Because the dependence-based microarchitectureawilltdte a &ster clock, adir per-
formance comparison must &lclock speed into account. The local bypass structure
within a cluster is equalent to a coventional 4-vay superscalar machine, and int&rs-
ter bypasses are renea from the critical path by taking ante clock gcle. Conse-
qguently the clock speed of the dependence-based microarchitecture is at laashadlie
clock speed of a 4-ay, 32 entry windw-based microarchitecture, and iselik to be sig-
nificantly faster because of the smalleraf@up + selection) delay compared to avemm
tional issue winde as discussed in SectiB2.2. Hence, i€yq, is the clock speed of the
dependence-based microarchitecture @Ry, is the clock speed of the windeébased

microarchitecture then fromableA.10 in Appendix A for 0.18m technology

Cdep delay of 8-way 64-entry window _
Cuin delay of 4-way 32-entry window

=1.252

In other words, the dependence-based microarchitecture is capable of supporting a clock
that is 25% dster than the clock of the winsldbased microarchitectureaRing this actor
into account (and ignoring other pipestages that mag tabe more deeply pipelined),
we can estimate the potential speedup with a dependence-based microarchitecture. The
speedups for the benchmarks are graphed in F&j8réd-rom the graph we can see that
the dependence-based microarchitecture is capable \atlim superior werall perfor-
mance. The performance impeanents ary from 10% to 22% with arvarage improe-
ment of 16%.

95
Overall, our results sho that the dependence-based microarchitecture using fifos is

capable of superior performance due to its ability to supp@stacfock while gtracting

significant leels of instruction-leel parallelism.

3.3 Other Dependence-based Microar chitectures

The microarchitecture presented in thevpres section is one point in the design space
of dependence-based microarchitectures. The fifo-based microarchitecture simplifies both
the windav logic and naturally reduces the performancgraéation due to sk inter
cluster bypass paths. This section describes some other interesting points in the design
space. In each case there are multiple clusters withdhitster bypasses taking multiple

cycles to complete.

3.3.1 Single Window, Multiple Execution Clusters, Execution-driven Steering

In this design, shen in Figure3-9, instructions reside in a central windahile wait-
ing for their operands and functional units to becowslable. Instructions are assigned
to the clusters at the time thbagin execution; this isexecution-driven steering. Vith this
steering, cluster assignmenbnks as follevs. The rgister \alues in the clusters become
available at slightly diierent times, that is, the resulgister \alue produced by a cluster is
available in that cluster oneycle earlier than in the other clust€€onsequentlyan
instruction vaiting for the alue may be enabled foxexution a fev cycles (equal to the
inter-cluster lateng) earlier than in the other clusters. The selection logic monitors the
instructions in the winde and attempts to assign them to the cluster whichiges their
source ®lues first (assuming there is a free functional unit in the cluster). Instructions that
have their source operandsadlable in all clusters are considered for assignment in a
round-robin &shion starting with cluster 0. Static instruction order is used to break ties in

this case.

96

2 CLUSTERO | o | cLUSTER O
o o}
2 o
G o o
a . a Z0 .
[» . = o b
%) (%} wao
Z L4 pd w 4 A
a a o
i m
z = > |cLUSTER N-1
z CLUSTERN-1] =
Ll
ad o
Execution-driven Steering Dispatch-driven Steering

Figure 3-9. Other dependence-based microarchitectures.

The eecution-drven approach uses a greedy polic minimize the use of slointer
cluster bypasses while maintaining a high utilization of the functional units. It does so by
postponing the assignment of ready instructions to clusters matlgon time. While
this greedy approach mighaig some IPC adntages, this design $eifs from the pre-

ously discussed dnbacks of a central wingwand comple selection logic.

3.3.2 Multiplewindows, Dispatch-driven Steering

This design, shen in Figure3-9, is identical to the fifo-based microarchitecture pre-
sented in SectioB.2 ecept that each cluster has a completelyilfle window instead of
fifos. Instructions are steered to the wiwdausing a heuristic that ta& both dependences

between instructions and the relatioad of the clusters into account.

Steering Policies

In the case of dependence-based superscalar microarchitectures based on multiple win-
dows with dispatch steering, a number of steering heuristics are possétaeda num-
ber of heuristics. Three of these are describetl ne
1. Fifo steering. In this scheme the windois modeled as if it is a collection of fifos with
instructions capable of issuing fromyasiot within each indidual fifo. It must be

pointed out that these fifos are a conceptuakdaused only by the instruction assign-

97
ment heuristic — in realifynstructions issue from the wingawvith complete flgibil-

ity. Instructions are steered to the fifos using the heuristic presented in Szt
example, a 32-entry windocan be treated as eight fifos with four slots each. An
advantage of considering the winale as a collection of fifos is that it helps &ek
majority of the communication local and to aslei@ good load balance at the same

time.

. Round-robin steering. In this scheme instructions in the dynamic stream are steered to
clusters in a round-robimghion with a particular block sizeofexample, for a block

size of 16, the first 16 instructions are steered to cluster 0, thé@estructions are
steered to cluster 1, and so on. The tacit assumption here is that dependences are local-
ized in the dynamic stream as shmoby previous studies on the distrbon of ILP in
programs [MV92,AS92]. In other wrds, instructions are dependent on other instruc-
tions that occur in close proximity (earlier) in the dynamic stream, i.e. independent
instructions are well separated in the dynamic stream. An important parameter in this
scheme is the block size. Using too small a block size can result in significant cross-
cluster communication that can easilgde performance by stretching the critical
path. On the other hand using too big a block size can ajsad¥eperformance since

now the number of functional unitxecuting each block is a fraction of the total
machine resources, i.ewautilization might hurt performance. A compiler can assist
this scheme by placing dependent instructions toge$itadying the impact of

instruction reordering by the compiler on the performance of this schemgisthe

the scope of this thesis.

. Random steering. This steering heuristic is used as a basis for comparisons. Instruc-
tions are steered randomly to one of the clusters. If the wifalothe selected cluster

is full, then instruction is inserted into the other clusters in a round-rasioin. This
design point \as &aluated in order to determine thegdse to which dependence-
based microarchitectures are capable of toleratingcthe lateng introduced by shy

inter-cluster bypasses and the importance of dependevere-acheduling.

98

lsourc? SRC_FIFO| src fifos - fifo id
regs free
fifos
fifo occupied A
CONFLICT
dest. CHECK
logical —®| LOGIC

regs

Figure 3-10. Fifo steering hardare.

3.3.3 Complexity of Steering Policies

In addition to reducing interluster communication and utilizing as rgariusters as

possible, a good steering pglimust also bedfst. Lav lateny is essential since grextra

stages introduced in the front-end for steering camnadie performance (in terms of IPC)

due to increased branch mispredict and instruction cache miss penalties. Thisrcan e

nullify any advantages resulting from adter clock. This section discusses the coritgle

of the steering policies analyzed in this chapter

Fifo steering. This steering polic can be implemented as shoin Figure3-10. The

logic operates in parallel with thegister rename logic. The number of entries in the
SRC_FIFO table is equal to the number of logicgisters. The number of read ports
and write ports into the SRC_FIFO tableis IWandIW respectrely, wherelW is

the issue width. Comparing the block diagram with the one for rename logis) 8ho
Figure2-3 on page6, shavs that the steering logic is functionally similar to the
rename logic. There are tvdifferences. First, the SRC_FIFO table is smaller than the
rename map table as the width of each entry (determined by the number of fifos) is
smaller than the width of the rename table. The secofetettce is that the output
MUX in the case of fifo steering is slightly more complicated than that for the rename
logic. Owerall, the hardware complgity of fifo steering is similar to rename logic com-
plexity. Just as shvan for rename logic in Chapter 2, the delay of the steering logic

increases linearly with issue width. Therefore, almostgs the fifo steering logic

99
can be performed in parallel with renaming. In tlegst/case, it might require artea

pipestage in addition to the rename stages.

* Round-robin steering. Since this simply requires a counter to cduotk size number
of instructions before incrementing the “current” cluster pojrker logic for steering
is straightforvard and can be accomplished in less time than the rename logic delay
Hence, steering in this case can be completely hidden behind renaming. Also, the

delay of the steering logic is independent of issue width.

* Random steering. Just lilke in the case of round-robin steering, the logic required for
random steering is straightfoand and can be accomplished in less time than the
rename logic delayHence, once ain, steering can be completely hidden behind

renaming. The delay of the steering logic is independent of issue width.

A natural question that arises in connection with instruction steering yscavinot the
compiler steer instructions? This question is especially pertinesn ginat the compiler
has complete kivdledge of rgister dependences between instructions and this is the criti-
cal information being used by the ha@ate to steer instructions. Theylkfactor that maés
the compiler less &ctive than hardare is the inability of the compiler to lookymand
branches, i.e. detect the dynamic sequence of dependences created at run-time. Also, it is
not olvious hav the compiler can pass dependence information to the underlying hard-
ware without compromising binary compatibili&t the same time, dependence informa-
tion such as the template bits in the recently announced IA-64 [CH97] instruction set

architecture can help ease the steering logic.

3.4 Experimental Evaluation

This section ealuates the performance ofarious dependence-based superscalar
microarchitectures by measuring the performance of benchmark programs running on a
detailed timing simulatorThe timing simulatgra modified ersion of SimpleScalar
[BAB96], is detailed in @ble3.2. All the configurations studied in this section are 8-wide

— the configurations can fetch, decode, rename, clite a maximum of eight instruc-

100
tions every g/cle. An aggresse fetch mechanism is used to stress the issuexaacdteon

subsystems. The benchmark programs are from the SPEC’95 suite using their training

input datsets. Each progranasvrun for a maximum of 0.5B instructions

Fetch width ary 8 instructions
[-Cache Perfect instruction cache
Branch predictor McFarling’s gshare [McF93]

4K 2-bit counters, 12 bit history
unconditional control instructions pré
dicted correctly

U
1

Issue windw size 64

Maximum 120

in-flight instructions

Retire width 16

Functional units 8 symmetrical units

Functional unit latenc | 1 ¢ycle

Issue mechanism out-of-order issue of up to 8 opgéte
loads may recute when all prior store
addresses are kwo

Physical regjisters 120int/120fp

D-Cache 32KB, 2-way SA

write-back, write-allocate

32 byte lines, 1yxle hit, 6 gcle miss
four load/store ports

174

Table 3.2: Baseline simulation model

Simulated microarchitectures

Table3.3 lists the arious types of microarchitectures simulated here. The typical win-
dow-based microarchitecture, sto as the “1-clustetwindov” configuration, assumes

uniform bypassing between all functional units within a singlele; i.e. dependent

101
instructions canecute back-to-back. All the dependence-based microarchitectures com-
prise two clusters with intecluster bypasses taking anxtm ¢/cle. The “2-clus-
ter.lwindow.execsteer” configuration is made up obtexecution clusters each containing
half the &ecution resources of the machine. Renamed instructionsiéeesll in a central
window and routed to thexecution clusters using theexution-drven steering polic
described in Sectiod.3.1. In the “2-clustavindowns.randomsteer”, “2-clustevin-
dows.fifosteer”, and “2-clustevindows.roundrobinsteer” configurations, both the win-
dow and &ecution resources are partitioned into wiusters and renamed instructions are
routed to the clusters using random steering, fifo steering, and round-robin steering poli-
cies respectely. The “2-clustewindows.randomsteer” design pointa® ealuated to
determine the importance of dependengasa scheduling. The “2-clustifos.fifosteer”
configuration is identical to the “2-clust@mdows.fifosteer” &cept that fifos are used in
each cluster instead of a completelyitdde window. Table3.3 summarizes theavious

microarchitectures simulated.

Configuration Win.dcw. Steer ing
Organization Heuristic
window.execsteer Flexible window Execution steering
fifos.fifosteer Fifos Fifo steering
windows.fifosteer Flexible window Fifo steering
windows.roundrobinsteer Flexible window Round-robin steering
windows.randomsteer Flexible window Random steering

Table 3.3: Various microarchitectures simulated.

102

@

@

@

@

@

@

OCRr ENDNDWOWhS
o vl ouloulo
T

WVAVAVAYAVAYAYAYAYAYAYA

va

PuO O V0 V. 9.9.9.9.9.9.9

Instructions Per Cycle
WPV V.0.0.9.9.9.9.9.1
SSSSSSSSSSNN
T

IS NSNS N\Y
AAAAAAAAAAAAANAAN
BSOSO
0707070707070707070707607607676

XXX XXX XA

.

VNN NNRNY

X

= /] = /

0.0 compress gcc go ijpeg i m88ksim perl vortex
[1-cluster.1window [] 2-cluster.1window.execsteer 2-cluster fifos.fifosteer
& 2-cluster.windows.fifosteer [] 2-cluster.windows.roundrobin steer
B 2-cluster.windows.randomsteer

Figure3-11. Performance of dependence-based superscalar microarchitectures.

3.4.1 Performance Relativeto an Ideal Superscalar

The first set of perimental results, graphed in Figd1, shevs the performance of
various dependence-based superscalar microarchitecturegerétai typical winde-
based microarchitecture in terms of instructions committedymée.cA number of obser-
vations can be made from the graph. First, random steering consistently perfunsas w
than the other schemes. The performanggatiation with respect to the ideal caadeas
from 17% in the case @brtex to 23% in the case of88ksim. Hence, it is essential for the
steering logic to consider dependences when routing instructions. Second, the microarchi-
tecture with a central winsand &ecution steering performs nearly as well as the ideal
microarchitecture with a maximum gladation of 3% in the case wB8ksim. However,
as discussed earlier in Secti®3.1, this microarchitecture requires a centralized windo
with comple selection logic. Third, the “2-clustéfos.fifosteer”, “2-clustewin-
dows.fifosteer”, and “2-clustavindons.roundrobin steer” microarchitectures perform
competitvely in comparison to the ideal microarchitecture. Aseeted, using completely
flexible windows instead of fifos helps impre performance slightlyAnother vay of
interpreting this result is that it reinforces the earlier finding that wedan be replaced
with the combination of fifos and intelligent steering with littleg@eation in IPC. An

interesting supplementary result is that round-robin steering, which can be implemented

103
using simple logic, performs as well as the more coxfie steering. Havever, as shan

later, round-robin steering does not scale well as the number of clusters and is increased.

Overall, the abwee results she that dependence-based superscalar microarchitectures
can delver performance similain terms of instructions committed pgicte, to that of an
ideal microarchitecture with a & windav and uniform, singleycle bypasses between

all functional units.

3.4.2 Effect of Increasing Number of Clusters

° 4.0
S 35 o i
G 3.0 _ IS 25 N .
G 25 17 ZN T]
o / ZNN
n 2.0 / 72N -
[i / /’ \\ i
S 15 / 7N
3] I / 7/ \N i
B 05t / 7N\ -
=3he / 7N\
0.0 compres gcc m88ksim
[] 1-cluster.single-window
] 2-cluster fifos.fifosteer [] 4-cluster fifos.fifosteer
2-cluster.windows.fifosteer 4-cluster.windows.fifosteer
2-cluster.windows.rrsteer 4-cluster.windows.rrsteer

Figure3-12. Effect of increasing number of clusters.

The graph in Figur8-12 shavs the eflect of increasing the number of clusters on the
performance of “fifos.fifosteer”, “windes.fifosteer”, and the “windes.rrsteer” microar-
chitectures. Performance uniformlygitades for the three designs as the number of clus-
ters is increased. This igmected since increasing the number of clusters augments load
imbalance and results in more frequent kdlester communication. The performance
degradation going from 2 clusters to 4 clusters for the “fifos.fifosteer” and “wisdifos-
teer” microarchitectures is in the 5%-10% rang®.tRhe “windavs.rrsteer” microarchitec-
tures the performance giadation is in the 9%-17% rangeorRall the benchmarks, the
performance of the round-robin steering ppliegrades more than the fifo steering pplic

This is mainly due to tw reasons. First, the fifo steering pglidoes a better job of

L 25+
% 2.0 - %

compress gce m88ksim vortex
[] 1-cluster.single-window
M 2-cluster fifos.fifosteer.1 B 2-cluster fifos.fifosteer.2 [] 2-cluster fifos.fifosteer.3
V] 4-cluster fifos.fifosteer.1 4-cluster fifos.fifosteer.2 K 4-cluster fifos.fifosteer.3
Figure3-13. Effect of increasing intecluster lateng

Instruction

oCOoR K
ocuvowm

exploiting the full width of the machine.df example, it can use all the clusters coopera-
tively to execute a block of instructions. In the case of round-robin steering, the block of
instructions might be steered to a single cluster and hence, only the resources in that clus-
ter can be empleed to &ecute the instructions, resulting imder throughput. The second
reason for the superior performance of the fifo steering\p@i¢hat it requires feer
inter-cluster bypasses as compared to the round-robin steering heuristic. A siarple e

ple plains this. Consider the case where there are 4 clusters each 2-wide (2 functional
units) and the dynamic stream is made up of ¢ains (parallelism is equal to 2). In this
situation, the fifo steering polianill only utilize a single cluster since all instructions will

be routed to the tw/fifos in the clusterThis eliminates intecluster communication com-
pletely in this @ample. The round-robin steering pglion the other hand, is obilous of

the parallelism in the instruction stream, and uniformly steers instructions t@itdiode
clusters. Therefore, in this case, intlrster communication is more frequent with the

round-robin steering polcthan with the fifo steering poiic

3.4.3 Effect of Increasing Inter-cluster Latency

The graph in Figur8-13 shavs the eflect of increasing intecluster lateng on the per-
formance of 2-cluster and 4-cluster “fifos.fifosteer” microarchitectures. Performance
degrades as the lateyof intercluster communication is increased. Thisxpexted since

increasing intecluster communication latepancreases the time tak to perform an

105

g 40

o 35 —
(O]

£ 30 -
@ 25 .
£ 20 i
215 - -
(O]

% 10 - .
S 5¢ E
g 0

£ compress m88ksim vortex

[]2- cluster.1W|ndow.execsteer [] 2-cluster fifos.fifosteer
[2-cluster.windows.fifosteer [l 2-cluster.windows.rrsteer [l 2-cluster.windows.randomsteer

Figure3-14. Intercluster bypass frequenc

computation that is spread across multiple clusters and hence, could easily stretch the crit-
ical path of the program.ofF 2-cluster configurations, theexage performance geda-

tion for 2-cluster systems when the intduster lateng is increased fromXto 2 and from

2 to 3 gcles is 8.7% and 9.3% respeety. Similarly, for 4-cluster systems, the corre-
sponding performance gedations are 13.4% and 11.2% respebti The reduction in
performance is higher for the 4-cluster systems since the number of instruction depen-
dences spread across clusters increases with the number of clusters. Whithahd is
extremely important to prode low lateny intercluster communication for high perfor-

mance.

3.4.4 Inter-cluster Bypass Frequency

The graph in Figur8-14 shavs the frequencof intercluster communication foravi-
ous steering heuristics and 4-cluster configurations.-thister communication is mea-
sured in terms of the fraction of total instructions thxareise intercluster bypasses. This
does not include cases where an instruction reads its operands frogigtes fde in the
cluster i.e. cases in which the operandsvarfrom the remote cluster in ahce. As
expected, we see that there is a high correlation between the frgqufeimtercluster

communication and performance - configurations tklaib& higher intercluster commu-

1. There is a singleubble between tewdependent instructiongecuting in diferent clusters.

106

35 B 2-cluster in-order reservation stations
30 F L] 2-cluster fifo-based -

2.5
2.0
15
1.0
0.5
0.0

Instructions Per Cycle

compress gcc go ijpeg li m88ksim perl vortex

Figure3-15. Comparing aginst in-order distribted reseration stations.

nication commit fever instructions perycle. The intercluster communication is particu-

larly high in the case of random steering, reaching as high as 35% in the gasexof
Execution steeringxhibits the lovest intercluster bypass frequepncThis is not surpris-

ing becausex@cution steering is based on the greedy padiicpostponing selection to

favor execution of dependent instructions in the same clustether obsemtion that can

be made from the graph is that the “fifos.fifosteer” microarchitecture uniforralgises

fewer intercluster bypasses than the “wingrrsteer” microarchitecture. This is in
agreement with earlier discussion aboutvhibe fifo steering polic dynamically adapts

the number of clusters being used based on the parallelism in the instruction stream thus

resulting in fever intercluster bypasses.

3.4.5 Comparing against In-order Distributed Reservation Stations

Johnson proposed using in-order disttédal reseration stations in [Joh91] as a means
of reducing the compiegty of the instruction windw. Instructions are forced to issue in-
order from the reseation stations. The adwtages of such a scheme are similar to those
of the fifo-based microarchitecture; simpleak&up and selection logic. The fifo-based
microarchitecture diérs from Johnsos’scheme in the manner in which instructions are

steered to the fifos. The dependence-based microarchitecture steers instructions based on

107
dependence informationxteacted at run-time instead of instruction type as in the case of

the in-order reseation stations scheme.

The graph in Figur8-15 compares the performance of 2-cluster configurations based on
in-order distriluted reseration stations and fifo-based microarchitecture with fifo steering
policy respecirely. The dependence-based microarchitecture consistently performs better
than in-order reseation stations. Thevarage performance dedation is as high as 27%.
This is mainly due to tw factors. First, in the in-order resatwn stations scheme,
instructions at the head of the resdion stations can block other ready instructions
behind them from issuing. Second, the instruction digiob logic in the in-order reser-
vation stations scheme nekno attempt to minimize the use of intkrster bypasses.
Butler and Rtt [BP92] also report significant performancgmdelation when the “head-

only” (fifo) scheduling polig is used with distribted reseration stations.

3.5 Related Work

Tomasulo, in his original proposaldm67] on dynamic scheduling, proposed distrib-
uted reseration stations as an alternetito centralized reseation stations to reduce com-
plexity. Distributed reseration stations simplify selection logic. The selection logic at a
functional unit only has to monitor the instructions in the regemw stations associated
with that unit. Hovever, the result tags still a to broadcast to all the resation stations
just like in the case of centralized resdron stations, i.e. the comply of window

wakeup logic remains the same.

Johnson [Joh91] proposed in-order disttdnl reseration stations to further reduce
issue-logic compbdty. The fifo-based microarchitecture presented in this chapter is simi-
lar to the in-order distrilited reseration stations scheme in a lot of respects. Both distrib-
ute windav entries and force in-order issue out of the distad windav entries to
simplify selection logic. Havever, there are te key differences. First, the fifo-based
microarchitecture uses @escheduling (steering) phase to determine a suitable fifo to

place each instruction in. As sk in Sectior8.4.5, this intelligent steering helps the

108

dependence-based microarchitecturextraet more parallelism relag to in-order dis-
tributed reseration stations. Second, the dependence-based microarchitectures use clus-
tering to simplify vakeup logic. A cluster consists of a small number of branch , ALU, and
memory units. Whdow operations and bypasses within a cluster complete within a single
cycle, thus &cilitating back-to-backxecution of dependent instructions residing in each
cluster Tomasulos distrituted reseration stations on the other hand clusters functional
units based on type oF example, all memory units are clustered together and so on. This

results in more cross-cluster frafcompared to the dependence-based microarchitectures.

An early CRA/-2 design [Unk79,SS90,Smi97] realized the importance of detecting and
exploiting dependences tadilitate a &st clock. The issue logic consisted of four instruc-
tion queues feeding eighkecution units. A dependent chain of instructions were issued
to the same queue. The compileasmesponsible for grouping dependent instructions
together A single accumulator style instruction set helpgdress the grouping to the
hardware without the need foxea bits to &plicitly specify dependences. The haale
simply starts a v chain wheneer it hits a LDA (load accumulator) instruction in the
instruction stream. As a result, the haadgevdoes not hva to etract dependence informa-
tion at run-time. The fifo-based microarchitectureesticated in this chapter as partly
inspired by the CR%-2 design. The primary dérence is that hardave steering is used
instead of compiler steering. Agmained before, hardave steering is well-suited for
integer codes since the small basic blocks and frequent control instructionsger inte

codes can serely handicap compile-time steering of instructions to fifos.

Kemp and Franklin [KF96] studied a microarchitecture called PEVe&I{El Execu-
tion Windows) for simplifying the logic associated with a central windBEWS simpli-
fies windav logic by splitting the central instruction windcamong multiple windas
much like the dependence-based microarchitectures described in this cRegitter \al-
ues are communicated between clusters (calleds)peia hardwre queues and a ring
interconnection netark. In contrast, we assume a broadcast mechanism for the same pur-

pose. Instructions are steered to thegpbased on instruction dependences with a goal to

109
minimize interpen communication. Haever, for their xperiments thg assume that each

of the ps&vs has as marfunctional units as the central wind@rganization. This assump-
tion implies that the reduction in compity achiesed is limited since the akeup and
selection logic of the windwes in the indvidual pavs still have the same porting require-

ments as the central winao

The DEC 21264 [Gwe964a] is the first commercial microarchitecture implementing out-
of-order scheduling thatag forced to use significant microarchitectural changes,weelati
to the comentional microarchitecture, to supportaatf clock. Like the dependence-based
microarchitecturesxplored in this chapteithe eecution units are partitioned into dw
clusters with bypasses between clusters taking<tia g/cle to complete. The selection
logic steers instructionsulfered in a central windw to the &ecution cluster based on

dependences. Theact steering algorithm used has not been made public.

Multiscalar processors [Bre,FS92, Fra93,SBV95] pioneered the concept of using decen-
tralized processor resources to reduce coxitgleMultiple clusters, each similar in struc-
ture to a narn superscalarare used toxecute diferent portions of the serial program.
The diferent portions of the program are caltedksand can be identified either by the
compiler or by the hardave. The design is highly decentralized. All major structures in
the pipeline starting from the fetch ham@he are distribted. In addition, the paradigm nat-
urally supports adnced features l&kkmultiple flows of contd and out-of-oder fetd.
These features are considered essentiabjaoing higher leels of parallelism [W92,
Smi95] in future. While the Multiscalar design is a futuristic microarchitecture designed
with compleity-effectiveness in mind, it will ta& some time for the design teoéve and
for its implementation to become feasible. The dependence-based superscalar microarchi-
tectures gplored in this chapter pvade a smooth transition path, from the point ofawie

of implementation, to Multiscaldike designs from current superscalar designs.

More recently processor microarchitectures callechde processors [VM97, RISS97]

have been proposed thaiganize the microarchitecture around traces. Justtikhe Mul-

110
tiscalar and dependence-based microarchitecturesyton resources are partitioned into

clusters. Each cluster is assigned a dynamic instruction traceefuten that is fetched
from a cache of traces called the trace cache. The trace cache in additioridimgpia
high-bandwidth fetch mechanism also simplifies rename logic by caching rename infor-
mation along with the trace. The trace processor microarchitecture cannee \as a
dependence-based microarchitecture that has completehidleiindons in each cluster

and steers instructions to clusters using a round-robinypolic

Farkas et al. [FCJV97] propose the multicluster microarchitecture to reduce the clock
cycle time of typical superscalar microarchitectures. The multicluster microarchitecture is
similar in concept to the dependence-based microarchitectxpsexl here. There are
two primary diferences, hoever. First, the multicluster architecture uses compiler steer-
ing instead of hardare steering. Second, thase &plicit copy instructions to communi-
cate operandalues between the clusters. Steering information is passed to theaterdw
indirectly without changing the instruction set architecture. Each cluster is assigned a sub-
set of the architectural gesters and instructions are steered based on gisaes speci-
fied in the instruction. Their static scheduling heuristic chooses a cluster so that the load
imbalance between the twclusters is minimized. The found that een this heuristic
cannot be directly addressed by the compiler becauseottkedane by a cluster is a func-
tion of the order in which instructions are issued, and the issue order is not deterministic

for dynamically-scheduled processors.

3.6 Chapter Summary

This chapter presented the design avauation of a &mily of compleity-effective
microarchitectures called dependence-based superscalar microarchitectures. These
microarchitecturesatilitate a &st clock while gploiting similar levels of parallelism as
an ideal lage-windav machine. The proposed microarchitectures usegtanged strat-

egy for high performance. First, the issue wiwdand eecution resources are partitioned

1. They only consider 2-cluster systems in their study

111
to facilitate a &st clock. Second, instructions are intelligently steered, taking into account

dependences, to the fdifent partitions in order taxeact similar leels of parallelism as

an ideal lage-windav machine.

One of the dependence-based microarchitectures, called the fifo-based microarchitec-
ture, detects chains of dependent instructions and steers the chains to fifos which are con-
strained to xecute in-orderSince only the instructions at the fifo headsehto be
monitored for gecution, the proposed microarchitecture simplifies winbbgic. Further-
more, the microarchitecture naturally lends itself to clustering by grouping dependent
instructions togetheiThis grouping of dependent instructions helps raiégthe bypass
problem to a lage etent by using dst local bypasses more frequently thanvsiater
cluster bypasses. The performance of a 2 Xag-Wfo-based microarchitecture is com-
pared with a typical 8-ay superscalaiThe results sl two things. First, the proposed
microarchitecture has IPC performance close to that of a typical microarchitestrre (a
age dgradation in IPC performance is 6.3%). Second, when taking the clock spaed adv
tage of the fifo-based microarchitecture into account the aB-wproposed
microarchitecture is 16%aséter than the typical windebased microarchitecture onea-

age.

Overall, the &perimental results presented shthat dependence-based superscalar
microarchitectures are capable oftracting similar lgels of parallelism as typical

microarchitectures while enabling aster clock.

112

113

Chapter 4

| nteger-Decoupled Microarchitecture

The intgerdecoupled microarchitecture is a conxileeffective microarchitecture
that can impree the performance of irger programs with little or no increase in com-
plexity. It is particularly attractie since it can be implemented on top of current microar-
chitectures with relately small hardwre changes. This chapter proposes amatliates

the intggerdecoupled microarchitecture.

Integerdecoupled microarchitecturesegute some of the irger instructions, those not
involved in computing addresses and accessing mermorylle floating-point resources
that hae been augmented to perform simplegers operations. The compiler identifies
computation taff-load to the floating-point subsystem. This results in a number of bene-
fits for integer programs includingx&ra issue width, a bigger fettive windav, and

decoupling of memory access from the actual computation.

Another way to look at the intgerdecoupled microarchitecture, in the comtef depen-
dence-based microarchitectures presented inque chapteris that the xisting floating-

point subsystem pwuides an gtra cluster for free, that can used foxkexuting intger

114
instructions. Hawvever, unlike the dependence-based microarchitectures, instruction steer-

ing in this case is performed by the compiler

The rest of the chapter isgamnized as follows. Sectiort.1 presents the concept behind
the intggerdecoupled microarchitecture. Secth2 discusses the hardwe additions that
have to be made to the ocamtional microarchitecture. Sectid8 illustrates, with an
example, the kind of computation that isf-ifaded to the augmented FP subsystem.
Sectiond.4 discusses the role of the compiler and the basic partitioning scheme used by
the compiler Sectiord.5 shavs hav the basic partitioning scheme can be impobusing
copy instructions and code duplication. Sectb@ presents the results of aqperimental
evaluation of the proposed microarchitecture. Finathe chapter is summarized in
Sectior4.8.

4.1 Concept

To motivate the proposed microarchitecture, consider the conentional microarchi-
tecture illustrated in Figure 1-1 on page @ks. The instruction fetch unit reads multiple
instructions from the instruction cache and feeds them tgeni@nd floating-point sub-
systems forxecution. The intger subsystem contains a number of load/store, branch, and
functional units that operate on ige¥ operands. The floating-point subsystem is similar
to the intger subsystemxeept it does not contain load/store units, and it operates on
floating-point operands. Instruction winge, in the form of bffers, are used to decouple

the instruction fetch unit from the igger and floating-point@cution subsystems.

Partitioning issue andxecution resources into irgger and floating-point subsystems has
several adantages. First, as shio in Chapter 2, it eliminates thgale time penalties
associated with centralized structurest &xample, rgisters are dided into intger and
floating-point files, each with a set of ports. And, the instruction wingosimilarly
divided with separate issue logic. Second, whiecating floating-point programs, the
microarchitecture naturally decouples addressing and floating-point computation: address

computation gecutes in the intger subsystem while floating-point computatixe@ites

115
in the FP subsystem so that dynamic scheduling betweendheatwbe enhanced. Third,

since intger data and floating-point data typicallwealifferent widths (32-bit @rsus 64-

bit), using separate irger and floating-point subsystems helps reduce implementation
compleity and sa&e silicon area. The last benefit will be nullified by theventovards
64-bit instruction set architectures in which bothgeteand floating-point data are 64 bits
wide. The uniform use of 64-bit data in both geeand floating-point subsystems enables

the optimization being proposed here.

This microarchitecture style leads to idle floating-point resourcegistees, functional
units, instruction winde logic, and lnses — while xecuting intger programs or intger
intensve portions of floating-point programso Rddress this dwback, we propose a
more general decoupled microarchitecture style based on earlierk w
[BRT93,GHL85,PD83,Smi82,87], in which the floating-point subsystenxeeutes
both integer and floating-point operations. In this microarchitecture, which we refer to as
the integer-decoupled microarchitecture, a load/store subsystem (LdSt) that maostly e
cutes intger instructions wolved in efective address calculation and memory access. A
computation (Comp) subsystem supports all floating-point operations as well as non-
memory related intger computation. The inger decoupled microarchitecture can hétb
on top of the corentional microarchitecture with relegily few hardware additions. These

hardware changes are discussed in thd section.

The intggerdecoupled microarchitecture has a number of performan@ntdyes wer
a corventional microarchitecture for irger programs. First, it pvades etra issue and
execution bandwidth for intger programs. & example, by implementing the irger
decoupled microarchitecture, a superscalar processor withgeirded 2 floating-point
functional units can prade an issue andecution width of 4 for most inger codes. Sec-
ond, by using the instruction windain the floating-point subsystem, the g¢edecou-
pled microarchitecture pvades a lager oserall windaw. This can potentially increase the
amount of parallelismxploited. Third, the compiler mo has 64 logical mgisters (32 int

and 32 fp) for holding intger \ariables instead of the usual 32. Finalhe intgerdecou-

116
pled microarchitecture ofteradilitates early resolution of mispredicted branches. If the

branch computation associated with a mispredicted braxetutes in the less haly
loaded Comp subsystem then it ey likely that the branch will be res@la earlier rela-

tive to the cowentional microarchitecture

The intgerdecoupled concept can also be used to reduce the capgiea cowven-
tional superscalar microarchitecture. By steeringgetenstructions to the augmented
floating-point subsystem, the igexdecoupled microarchitecture does not require as
mary issue windw entries in the intger subsystem as the eentional microarchitecture.
Similarly, it can be used to reduce the size of thegsidal reister file in the intger sub-
system. ldeally the complgity of a n-wide comwventional microarchitecture can be
reduced by implementing it as an igéedecoupled microarchitecture with the LdSt and
Comp subsystems each beimg 2-wide. This adentage of the interdecoupled

microarchitecture is not quantified here.

4.2 Changesto the Conventional Microar chitecture

The intgerdecoupled microarchitecture remaingry similar to a coventional
microarchitecture. The only hardwe modification required is augmenting théstng
floating-point functional units to perform simple igés operations. There needs to be no
additional cost for gisters and bses if the intger operations are embedded in thiste
ing floating-point functional units and share theseng ragister file ports anduses. Sim-
ilarly, instruction fetch and issue resources are unchanged. Thextralycests are the
additional gites required to implement the simple geeoperations and the opcodes for
specifying these operations. Results presented later gfad the gte-intensie integer
multiply and dvide operations need not be duplicated and hencextitzea®st should not

be a &ctor

The instruction set architecture (ISA) has to be minimally augmented to include the sim-
ple integer operations that operate on the floating-pomgfisters. The changes required are

similar in spirit to the recent multimediatensions introduced by most microprocessor

117
vendors [Gwe95¢c, Gwe96b]. The igex opcodes of the SimpleScalaAB96] ISA that
are supported in the Comp subsystem arevshio Table4.1. Because the floating-point
opcode space is usually reletly sparse compared to the e opcode space, and about

21 etra opcodes are required, the necessary M@énesions are realistic.

Operation type Opcodes

Control bgez bgtz blez bltz bne
Logical andi nor ori xori sllv sll snasra srlv srl
Arithmetic addi addiu addu lui slti sltiu

Table 4.1: Extra opcodes supported in the Comp subsystem.

4.3 Partitioning the Program

Given the constraints of the igerdecoupled microarchitecture, let us look at the kind
of integer computation that can bef-tdaded to the Comp subsystem and the role of the
compiler in identifying such computation. Because vamt¥o decouple address computa-
tion from the rest of the program computation, all load/store instructions amgrinte
instructions inolved in efective address computation are assigned to the LdSt subsystem.
All other sequences of instructions terminate either in the computation of branch out-
comes or storealues. The instruction sequences, called branch computation and store-
value computation, are ideal candidates k@ceation in the Comp subsystem becausg the
do not require anspecial support in the Comp subsystem. The result of a branch compu-
tation, the branch outcome, is sent to the fetch unit where it is usedidate the pre-
dicted outcome. This functionality is present iiséng floating-point subsystems for
floating-point branches. The result of a stoaése computation, thealue being stored, is
deposited in the writeuffer where it meges with the corresponding store address gener-
ated by the LdSt subsystem. This mechanism is also implemented in current floating-point
subsystems to store floating-poirstives. Havever, some storealue and branch compu-

tations might not be assigned to the Comp subsystem if the instructions in these computa-

118

extern unsigned long regs_inv_by call;

for (regno = 0; regno < FIRST_PSEUDO_REG; regno++)
if (regs_inv_by_call & (1 << regno)) {
delete_equiv_reg(regno);
if (reg_tick[regno] >= 0)
reg_tick[regno]++;

}
11: move $16, $0 I* regno =0 */
12: $L5: Iw $2, regs_inv_by call
13: sra $2, $2, $16
14: andi $2, $2, Ox1 I* $2=regs_inv_by_call & (1<<regno) */
15: beq $2, $0, $L4
16: move $4, $16
17: jal delete_equiv_reg
18: lw $3, reg_tick
19: sll $2, $16, 2
110: addu $2, $2, $3
111: Iw $4, 0($2) [* $4 = reg_tick[regno] */
112: bltz $4, $L4
113: addu $4,$4,1
114: sw $4, 0($2) I* reg_tick[regno]++ */
115: $L4: addu $16, $16, 1 [* regno++ */
116: slt $2, $16, 66
117: bne $2,$0,$L5 /* regno < FIRST_PSEUDO_REG */

Figure4-1. An example program fragment.

tions are also wolved in address computation. Thgample to be presented xte

illustrates this.

Figure4-1 shavs a program fragment in C fromvalidate_for_call, a frequently xe-
cuted function in the SPEC benchmaudc. The forloop in the program runs through all
the pseudo gsters and does some boeklping for those that arevalidated by function
calls. The figure shves assembly code compiled for a eentional microarchitecture. The
whole program xecutes in the ingger subsystem leag the floating-point subsystem

completely idle.

With very little efort, the assembly code shio in Figure4-1 can be transformed tofof
load some of the intger computation to the Comp subsystem asvehon the left in

Figure4-2. Intgyer instructions thatxecute in Comp are stvm in bold with a,c suffix.

119

11; move $16, $0
11: move $16, $0 I11: cp_comp $f2, $16
12: $L5: w $2, regs_inv_by _call 12: $L5: Iw $f4, regs_inv_by_call
13: sra $2, $2, $16 13: sra,c $f4, $f4, $f2
14: andi $2, $2, 0x1 14: andi,c $f4, $f4, Ox1
I5: beq $2, $0, $L4 I5: beq,c $f4, $0, $L4
16: move $4, $16 16: move $4, $16
17 jal delete_equiv_reg 17: jal delete_equiv_reg
18: Iw $3, reg_tick 18: Iw $3, reg_tick
19 sll $2, $16, 2 19: sli $2, $16, 2
110: addu $2, $2, $3 110: addu $2, $2, $3
111: Iw $f0, 0($2) 111: Iw $f0, 0($2)
112 bltz,c $f0, $L4 112: bltz,c $f0, $L4
113: addu,c $f0, $f0, 1 113: addu,c $f0, $f0, 1
114: sw $f0, 0($2) 114: sw $f0, 0($2)
115: $L4: addu $16, $16, 1 115: $L4: addu $16, $16, 1
116: slt $2, $16, 66 115 addu,c $f2, $f2, 1
117: bne $2,$0,$L5 116: slt,c $f4, $f2, 66
117: bne,c $f4,$0,$L5
Basic partitioning scheme Advanced partitioning scheme
Figure 4-2. Code partitioning forx@ample fragment.

The load instruction, 111, instead of loading into geeraister $4, nw loads the alue

into floating-point rgister $f0. Instructions 112 and 113 operate on the loaddwakvin
floating-point rgister $f0 and »eecute in the Comp subsystem. The result of the branch
instruction (112) is sent from the Comp subsystem to the fetch uratlittate the predic-

tion made. The result of the add instruction (I113) is sent to the suffier kvhere it is
meimged with the address generated by the store instruction {@édjted in the LdSt sub-
system. The load and store instructions (111 and 114) are italicized to point out that these
instructions nw load and store floating-pointgisters. These are the same as floating-
point load and store instructions in the wamtional microarchitecture. Relating theam-

ple to the discussion earljghe branch computation and stosdwe computation that are
off-loaded in this case are the singleton sets {112} and {I13} respdytiThe branch
computation {I15, 116, and 117} as not assigned to the Comp subsystem because instruc-

tion 115 is also imolved in generating the address for the load instruction 111.

In the transformation just presented, computatias wf-loaded to the Comp subsystem

without introducing ne instructions in the program. Meaver, by stratgically inserting

120
copy instructions and duplicating some instructions, additional computation car-be of

loaded to the Comp subsysteror Example, consider the transformation presented on the
right in Figure4-2. The cop instruction (Ii) and the duplicate instruction (I’l?ﬂelp of-
load a sizable fraction of the total computation to the Comp subsystem aslonag as

seven static instructions of the original prograkeeute in the Comp subsystem.

The compiler for the inggerdecoupled microarchitecture is responsible feating the
transformations presented &ko More abstractlythe compiler is responsible for parti-
tioning the original program into LdSt and Comp partitions. The transformation on the left
in Figure4-2 is a result of thdasic partitioning scheme used by the compiler this
scheme, no ne instructions are introduced and communication between tbestiv-
systems happens via loads and stores that alresidy i@ the original program.
Section4.4 discusses the basic scheme in detail. The second transformation is a result of
the adanced partitioning scheme used by the comgitethis scheme, the compiler intel-
ligently introduces a f& extra instructions in the form of cgmr duplicate instructions to
enable dfloading of more computation to the Comp subsystem. Se¢ttodiscusses the

advanced partitioning scheme.

4.4 Basic Partitioning Scheme

As mentioned earliethe basic partitioning schemd-tdads computation to the Comp
subsystem without introducing wenstructions. In this section, some terminology is pre-
sented first to aid subsequent discussion. Then, the necessary conditions that need to be
satisfied for branch and storalre computation to be assigned to the Comp subsystem are

described. Finallythe partitioning algorithm used by the compiler is presented.

4.4.1 Terminology and Data Structures

A slice [Wei84] of a progran® with respect to aaluev is defined to be the subsethf
that is irvolved in the computation of We term this thdvackward slice of P with respect

to v and represent it @&ackward-Sice(P,v). The forvard slice ofP with respect tw is all

121

a=b+c; a=b+c;

d=a*g; d=a*g; d=a*g;
f=d+2; f=d+2;

Program P Backward-Slice(P,f) Forward-Slice(P,a)

Figure4-3. Program dlices.

computation that is affected by v, and is represented as Forward-Sice(P,v). An exampleis
shown in Figure 4-3.

To partition a program, the compiler uses a data structure called the static dependence
graph that compactly represents all the register dependences in a program. The static
dependence graph (SDG) is a directed graph which has a node corresponding to each
static instruction in the program. The SDG has an edge from node v; to node v if instruc-
tion i produces a register value that could be consumed by instruction j. Load and store
instructions are specia cased in the SDG to simplify the partitioning algorithm. Each load
instruction is split into two nodes - one representing the load address and the other repre-
senting the loaded value. Similarly, each store instruction is split into two nodes - one rep-
resenting the store address and the other representing the store value. Thisis done because
aload instruction executes in the LdSt subsystem, but the value can be loaded into either
subsystem. Likewise, the value being stored can come from either the LdSt subsystem or

the Comp subsystem.

Figure 4-4 shows the SDG for the program fragment in Figure 4-1. Nodes 2, 8, and 11
correspond to load instructions and have been split. To show that both nodes correspond to
a single program instruction, the split nodes have been enclosed in a bigger oval node.
Similarly, node 14 corresponds to a store instruction and has been split. The edges corre-
spond to register dependences. For example, instruction 13 produces $2 that is used by

instruction 14 and hence, there is an edge between 13 and 14.

122

11 move $16, $0

12: $L5: Iw $2, regs_inv_by_call

13: sra $2, $2, $16

14: andi $2, $2, Ox1

I5: beq $2, $0, $L4

16: move $4, $16 e
17 jal delete_equiv_reg @
18: Iw $3, reg_tick

19: sll $2,$16,2 Loads

110: addu $2, $2, $3

111: Iw $4, 0($2) \

112: bltz $4, $L4

113: addu $4,%4,1

114: SwW $4, 0($2)

115: $L4: addu $16, $16, 1

116: slt $2, $16, 66

117: bne $2,$0,5L5

Figure 4-4. SDG for kample program.

4.4.2 Partitioning Conditions
Given a progrank, let

G = SDG forP

LSG) = Set of load/store address node&in
C(G) = Comp patrtition of5

L(G) = LdSt partition ofG

Any partition ofG into L(G) andC(G) must satisfy tw conditions. Firstl.(G) andC(G)
must be disjoint. Second, a nodel C(G) should satisfy the folleing conditions:
1. Backward-Sice(G,v) n L(G) = @. For a nodesr C(G), this conditions specifies that
or ary of its ancestors should not reegeary value fromL(G).

2. Forward-Sice(G,v) n L(G) = @. For a nodey [OC(G), this condition specifies that

or ary of its descendants should not supply aalue toL(G).

Clearly, nodes inL§G) must be inL(G) because only the LdSt subsystem cescate

loads and stores. Instructions in the baaitdislices of these address nodes amaved in

123
addressing. The union of these baakavslices is termed the LdSt slice. It falo from

the backvard slice condition that the LdSt slice must also be assigrid¢jo

For our kample program repeated in Figurd,

LS(G) = {2, 8, 11, 14},
C(G) ={11", 12, 13, 14}, and
L(G)=G-C(G)={1,2,7,3,4,5,6,7,8,89, 10, 11, 14, 15, 16, 17}

It can be easily erified that all nodes i€(G) satisfy the backerd and fonard slicing
conditions. The branch computation {16, 17} could not be assigned to the Comp sub-
system because node 16 is suppliecalaer by node 15 which is in the LdSt slice and
hence in_(G). If this branch computation were assigned to Comp, then the betklice

condition would be violated for nodes 16 and 17.

4.4.3 Partitioning Algorithm

The goal of the partitioning algorithm is to find thegkest seC(G) that satisfies the par-
titioning conditions presented mreusly. A simple anddst algorithm for identifying the
largest selC(G) based on the obsetion that the partitioning conditions specifiedvpre
ously can be restated as reachability conditions on the undirected@raplresponding
to G.

Let G, be the undirected graph correspondinio.e. G, consists of the samentices
and edges a6, hut the edges are undirected. Then, the slicing conditions can be inter-
preted as : Iv JC(G), thenv is not reachable from gmode inL(G,). So, @ery con-
nected component G, either belongs t.(G,) or C(G,) but is not shared between the
two partitions. Thus, if a connected component contains a load or a store address node,
then the connected component must be assigned to the LdSt partition because the load/

store instruction is assigned to LdSt. @ersely if a connected component contains a

124
branch of storealue and does not containydonad/store address node, then the connected

component is assigned to the Comp partition.

The graph in Figurd-4 has four connected components. One component consists of
nodes {11,12,13,14}. Since this component does not contairy &vad/store address
nodes, it can be assigned to the Comp subsystem. In contrast, all the other components

contain load/store address nodes and hence are assigned to the LdSt subsystem.

The complaity of the algorithm based on reachabilityQg¢|V| + E|) where V| is the
number of nodes in the SDG afid s the number of edges in the SDG. This directly fol-
lows from the result that the connected components of an undirected graph can be com-
puted inO(|V| + EJ) time [CLL92].

4.5 Advanced Partitioning Schemes

This section discusses auhced partitioning techniques that relax the restrictions on
inserting &tra instructions in order to find more computation fel@dd to the Comp sub-
system. The restrictions are redaixin two ways. First, the adnced schemes assume the
availability of copy instructions that can cgpalues between the LdSt and Comgiseer
files without accessing memorguch instructions are present in a number of ISAs (e.g.
MIPS [KH92] and Alpha [Dig96]). Second, the amced scheme duplicates some instruc-
tions to arve at better partitions. Cgmand duplicate instructions can not only increase
the size of the Comp partitionytcan also increase the total number of dynamic instruc-
tions executed and instruction cache miss rates. Hence, care musebedakinimize the
overheads associated with go@and duplicate instructions. Our heuristics etaikto
account theseverheads. It is shwn in Sectiond.6 that our heuristics introducery few

extra instructions.

11 move $16, $0

11" cp_comp $16,$f2

12: $L5: w $f4, regs_inv_by_call

13: sra,c $f4, $f4, $f2

14: andi,c $f4, $f4, Ox1

I5: beq,c $f4, $0, $L4

16: move $4, $16 e
17 jal delete_equiv_reg @
18: Iw $3, reg_tick

19: sll $2,$16,2 Loads

110: addu $2, $2, $3

111: Iw $f0, 0($2) \

112: bltz,c $f0, $L4
113: addu,c $f0, $f0, 1
114: SwW $f0, 0($2)
I15’:$L4: addu $16, $16, 1
115: cp_comp $16, $f2
116: slt,c $f4, $f2, 66
117: bne,c $f2,$0,$L5

Figure 4-5. Partitioning with copies.

4.5.1 Limitationsof the Basic Partitioning Scheme

The need for adnced partitioning schemes is first naated by presenting specific
examples where the basic partitioning algorithm is limited in its ability teencomputa-

tion to the Comp subsystem.

Function calls limit the ability of the basic partitioning algorithm in finding Comp com-
putation in the called function and near the call site because callingntmms require all
the intgervalue aguments to be passed in igge reisters and the returralue to be
returned in an intger re@jister Since the basic scheme is constrained not to introdcktice e
(copy) instructions, all instructions at the call site that compueraent alues, and all
instructions inside the function that usgumnent alues are assigned to the LdSt sub-
system. The same holds for instructions that compute function retlu@svand instruc-
tions that use function returnales. One solution to this problem is to wspy

instructions. Once could let the algorithm partition code ignoring the restrictions imposed

126
by the calling coventions and latewhen necessaryntroduce copies to adhere to the

corventions.

If any branch or storealue computation in the program is suppliedatue by ag
addressing instruction, then the basic partitioning scheme assigns that computation to the
LdSt subsystem. Figu#e4 shavs the SDG and the partitioning generated by the basic
partitioning scheme for our runningample. In the xaample, the branch computations
{116, 117} and {12, 13, 14, 15} are supplied by the addressing instructions 11 and 115 and
hence could not be assigned to Comp. By inserting copies for the results of 11 and 115,
these branch computations caeeute in Comp. Figuré-5 shavs the code generated and
the associated SDG when this is done. In tkésrele, copies ha enabled the bfoad-
ing of five more instructions to Comp. Since i4 outside the loop, cgpoverheads are

repeatedly incurred only for node i15

For this kample code-duplication can be used to achitbe same partitioning as real-
ized by inserting copies. In the C code fragmentwshm Figure4-1, the loop induction
variableregno is used both for address computation as well as for branch computation.
By duplicating the inductionariableregno in Comp, the tw pieces of code can proceed
independently without ancommunication. Figuré-6 shavs the assembly code and the
associated SDG when this is done.dfd 115 are duplicated instructions and enable fiv
more instructions to be fabaded to the Comp subsystem.aky since I1is outside the

loop, duplication verheads are repeatedly incurred only for node 115

Thus, cop instructions and code duplication can aghibetter code partitioning. Me
ever, arbitrary use of these techniques can hurt performance because copies and duplicates
may introduce werhead. The adwnced partitioning algorithm used by the compiler
emplgys a cost model to identify profitable sites for gampsertion and code duplication.
The cost model and the algorithm are briefly described here. Suly@i8astry \as a
major contrilutor in designing the cost model and theamwbed partitioning algorithm.
They are discussed in detail in [SPS97].

127

11 move $16, $0

11" move,c $f2, $0

12: $L5: w $f4, regs_inv_by_call

13: sra,c $f4, $f4, $f2

14: andi,c $f4, $f4, Ox1

I5: beq,c $f4, $0, $L4

16: move $4, $16 e

17 jal delete_equiv_reg @ e
18: Iw $3, reg_tick

19: sll $2,$16,2 Loads

110: addu $2, $2, $3

111: Iw $f0, 0($2) \ o

112: bltz,c $f0, $L4
113: addu,c $f0, $f0, 1
114: SwW $f0, 0($2)
I15’:$L4: addu $16, $16, 1
115: addu,c $f2, $f2, 1
116: slt,c $f4, $f2, 66
117: bne,c $f2,$0,$L5

Figure 4-6. Partitioning with code duplication.

452 Cost Mode

Intuitively, the benefit from a cgpnstruction or a duplicated instruction is the number
of extra dynamic instructions that will gecute in the Comp subsystem as a result of the

copy/duplicate inserted. Symbolicallgiven a SDGG,

Let &qpy e the set of nodes in G for which copies are inserted.
Let Syp be the set of nodes which are duplicated
Let S be the set of nodes that can be meed to from LdSt to Comp as a result of

the copies and duplicates.

The nodes irg. execute in Comp yielding a bigger Comp partitionwéeer, execution
of nodes MGy, andSy,y introduces wverhead in the program. It is beneficial to introduce
these copies and duplicates only if the increase in size of the Comp parfsets die

overhead. This is quantified by the follmg equations.

128

Benefit = g& Ngy)
\

Overhead = 0, % ; Ng(y) + Ogypl X ; Ngy)
v O Scopy v O Sdupl

Profit = Benefit — Overhead

where:

B(l): Basic block containing instructidn

ng: Number of times basic blodkexecuted at run-time
Ocopy Overhead of a cgpinstruction

Ogupi- Overhead of a duplicate instructions

Hence, it is beneficial to introduce copies and duplicate instructions dyfif=> 0.

4.5.3 Algorithm for Introducing Copies and Duplicating Code

A simple heuristic is used to decide whetheneinodev should be copiear dupli-
cated. The heuristic uses the number of parents of the node as input. The havoistic f
duplication of the node if it hasvieparents or if the node has parents outside its enclosing
loop. In our &le program, nodes 1 and 15 are candidates fginggguplication.
Because node 15 is within a loop, both techniques introduceesthead of one instruc-
tion per loop iteration. Duplication of node 15 requires that node 1 be duplicated/copied.

Because node 1 is outside the loop, duplication is preferable.

The adwanced partitioning algorithm starts by initializing the LdSt partition to be the
LdSt slice. Then the algorithm itenegly expands the LdSt partition to include instruc-
tions that are not profitable forecution in the Comp subsystem. It does so by analyzing

the instructions on the boundary between the LdSt and Comp partitionsetutien in

1. to be more precise, the result of nadghould be copied.

129
the Comp subsystem. The boundary is made up of LdSt nodes whose children are not in

LdSt. For each child of a boundary instruction, the algorithm essentially checks if the ben-
efit of executing the child instruction in the Comp subsystem is pesitaking into
account the xra copies and duplicate instructions that might be necedargt, the
boundary is gpanded to include the instruction in the LdSt partition. The algorithm stops
when the boundary can no longer bevgro The adenced partitioning algorithm is
described in further detail in [SPS97].

4.6 Experimental Evaluation

4.6.1 Evaluation M ethodology

We usedycc-2.7.1 as the base compiler for studying the partitioning schemes. The com-
piler was modified by Subramga Sastry to generate code for tikéeeaded SimpleScalar
[BAB96] ISA which is based on the MIPS ISA. The SimpleScalar instruction agt w
extended by using meopcodes to encode iger instructionsxecuting in the augmented
floating-point subsystem.oF the comentional microarchitecture, the benchmark pro-

grams are compiled by the base compiler (unmodifoee?.7.1).

Code partitioning is performed on the intermediate representation of the program. This
is done only after the initial machine-independent optimizations [ASU&S8]dibp-irvari-
ant code motion, constant propéign, common subx@ression elimination, etc., are com-
plete. Rgister allocation is performed only after code partitioning is performed. Operands

of instructions in Comp are allocated floating-poimfisters.

A timing simulator based on the SimpleScalar tool sé&tB85] was used for perfor-
mance ealuations. The timing simulator models both awvemional and an intger
decoupled microarchitecture. Both microarchitectures are identicapefor eecution of
integer operations in the floating-point subsystem. The simulatorcle-based and the
machine parameters simulated for the &vand 8-vay issue machines are detailed in
Table4.2.

130

Parameter 4-way 8-way
Fetch width ary 4 instructions ary 8 instructions
[-Cache 32 KB, 2-way set associate 64 byte lines, lycle hit time

6 ¢ycle miss penalty

t

Branch predictor McFarling’s gshare[McF93] with 1M 2-bit counters, 20K
global history unconditional control fi instructions pre-
dicted perfectly

Rename width ary 4 instructions ary 8 instructions
Issue windw size 16 int/16 fp 32int/ 32 fp
Max. in-flight insts 32 64

Retire width 4 8
Functional units 2 Int + 2 Fp units 4 Int + 4 Fp units
Functional unit latenc 6 ¢gycle mul, 12 gcle dv, 1 g/cle for rest
Issue mechanism up to 4 opskcle up to 8 opshecle

out-of-order issue loads mayexute when prior store
addresses are kwo

Physical reisters 48 int/48 fp 80 int/80 fp

D-Cache 32 KB, 2-way set-associate, write-back, write-allocate,
32 byte lines, 1yxle hit time, 6 gcle miss penalty

one load/store port two load/store ports

Table 4.2: Machine parameters.

We used programs from the SPECint95 benchmark suite to condusatuat®n. The
benchmarks and the inputs used axemgiin Table4.3. The base optimizationviel used
for compiling the benchmarks is -O3 which enables commorxpubgsion elimination,
loop invariant remeal, and jump optimizations among others. All the benchmarks were
run to completionCompress had the lavest instruction count at 410 millions instructions

andperl had the highest at 1.2 billion instructions.

131

Benchmark Input
compress test.in
li browse.lsp
gcc stmt.i

m88ksim ctl.raw, dhrybig

go 2stone9.in
ijpeg vigo.ppm
perl srabbl.ppl

Table 4.3: Benchmark programs.

4.6.2 Performance Results

In this subsection, results for the performance of thepartitioning schemes and the
net speedups possible with the gegedecoupled microarchitecture are presented. All our
results are based on the assumption that only the simplgeintgerations sk in
Table4.1 are supported in the Comp subsystera.tiién gamine the impact on perfor-
mance of supporting some of the more compteeger operations in the Comp sub-

system.

Per centage of Computation Off-loaded to the Comp subsystem

The graph in Figurd-7 shavs the percentage of total dynamic instructiorfdazded

by the compiler for each of the benchmark programs. The grapts ghe size of the
Comp partition for both the basic and the aubhed partitioning schemes. Because all the
benchmark programs are igex programs thatxecute ngligible floating-point instruc-
tions, the bars in the graph correspond to the amount gemt®emputation that the com-
piler is able to identify and Bfoad to the Comp subsystem. @aull, the compiler is
successful in dfloading a sizable fraction of the total computation to the Comp sub-
system. In the case gpeg, m88ksim, andgcc more than 20% of the total computation is

supported in the Comp subsystem.The graph alsesskimat the adanced partitioning

132

4
40 - [] Basic scheme N
35 - [l Advanced scheme |

ddeﬂ .

compress gcc go ijpeg li m88ksim perl

BN
o o
T 1

Instructions in Comp (%)
w
o

o ol
T

Sigure 4-7. Percentage of instructions assigned to Comp.

scheme generates bigger partitions than the basic scheme for all the benchonaekk. F
go, andcompress, the partitions generated by the adeed partitioning scheme are almost
twice the size of those generated by the basic sch@peg.benefits the most from the
advanced scheme: the Comp computation increases from 10.7% to 32 d@&vekidor li,

the adanced scheme does not perform better than the basic scheme bedsusd

intensve and has a number of small functions.

While the adanced partitioning scheme might be able fdadd more computation, the
percentages must be judged in conjunction with the change in the instruction cache perfor-
mance and the total number of instructioreoeited due to thexta instructions intro-
duced. Hence, we studied theechead introduced by the ahced partitioning scheme.

For all the benchmarks, we found the change in static code size t@ligibhe As a

result there \&s \ery little change in I-cache hit rates for all the benchmarks. Only in the
case operl was there a noticeable increase in I-cache hit rate by 1.8%. The increase in the
number of dynamic instructiongecuted is also small. The maximum increase is 2% for
compress. Copies account for 0.6% and the rest, 1.4% is due to duplicategd-there

is a 1.2% increase in instruction count, half of which resulted from an increase in loads
and stores. Copies and duplicates accounted for the restalDthese results sivathat

the adanced partitioning scheme is successful in increasing the Comp partition sizes

without introducing a lot ofwerhead.

133

S 25

= 00 | [] Basic scheme |
% I Advanced scheme

S 15]
3

a 10 | -
2

ngﬂﬂdﬂ |
S

: —m

compress gcc go ijpeg l m88ksim perl
Figure 4-8. Speedups on the 4ay machine.

Per for mance | mprovements

The graph in Figurd-8 shavs the performance imprements obtained by the iger
decoupled microarchitectureer a comentional microarchitecture for the dawissue (2
int + 2 fp) machine. Imprements due to both the basic and theaaded partitioning
schemes are presentechr Fn88ksim, compress, andijpeg, performance imprements
over 10% are achued with the adanced partitioning scheme. In the case88ksim, an
impressve improzement of 23% is achyed with the adanced partitioning scheme. v
all for the 4-vay machine, the ingerdecoupled microarchitecture coupled with the
advanced partitioning scheme is capable ovgimg modest to impress speedupsver
the cowentional microarchitecture.

As expected, performance imprements increase as more instructions dréoatied to
the Comp subsystem. Wever, the improeements do not directly reflect the size of the
Comp partitions, i.e. a bigger Comp partition does not necessarily result in a greater per-
formance impreement, for tw reasons. First, the load imbalance between the LdSt and
the Comp partitions results inder speedups thaxgected. Br example, the Comp par-
tition of ijpeg with adwanced partitioning is bigger than thatr88ksim with basic parti-
tioning, lut the corresponding imprement ofijpeg is much smaller than that oB8ksim.
We found load imbalance to be the culprit in this case. There are phases in which majority

of the computation is supported in the Comp subsystevintgéhe LdSt subsystem rela-

134

g 25

S o0 | [] Basic scheme i

5] Advanced scheme

815 - i

Q.

£

o 10 4

(8]

3

=] Fl _

o

5 0 — N [= -
compress gcc go ijpeg li m88ksim perl

Figure 4-9. Speedups on the 8ay machine.

tively idle. Quantitatiely, simulations ofjpeg shav that the LdSt subsystem is idle 13.5%
of the gcles when the Comp subsystemxs@uting one or more instructions. The egui
alent number fom88ksim is only 4.4%. Vith the adanced partitioning schemeg8ksim
also sufers from the problem of load imbalancer f88ksim with the adanced scheme,
the LdSt subsystem is idle 12.4% of tlyeles in which the Comp subsystem xeeuting
one or more instructions. This partlypdains wly performance only impkes by about

2.6% e&en though the size of the partition increases by 12%.

Another reason performance might not imgravith Comp partition size is that in some
cases the critical path okecution is not décted by partitioning. 6 example, with the
basic partitioning scheme, 15% of the codenpegplay executes in the Comp subsystem,
but the resulting speedup is only 2.7%. Loads and stores adstilose to 47% of the
total instructions in the benchmarks, and hence performancgetylaetermined by the
cache bandwidthvailable. Since the ingerdecoupled microarchitecture has the same
cache bandwidth as the a@mtional microarchitecture, the performancenagfegplay
does not impree significantly Even with the adanced partitioning scheme and a bigger

Comp partition, the speedup is only 4%.

The graph also sk that for most benchmarks, the adeed partitioning scheme

yields better speedups than the basic partitioning scheme. dhexdeptions ardi and

135
mB88ksim. In the case of li, the increase in the size of the Comp partition is very small. For

m88ksim, load imbalance seems to be the problem as mentioned earlier.

Perfor mance | mprovements on the 8-way machine

The graph in Figure 4-9 shows performance improvements on the 8-way issue (4 int + 4
fp) machine. The speedups on the 8-way issue machine are smaller than the speedups
achieved on the 4-way issue machine. Thisis expected because the number of unitsin the
LdSt subsystem now gets within the range of average parallelism in the programs. So, the
extra issue bandwidth available in the Comp subsystem is not exploited as much. How-
ever, m88ksim achieves an improvement of 19% because it has enough parallelism and is
able to exploit the presence of a bigger instruction window and the wider issue and execu-
tion bandwidth.

Instruction mix of the Comp partition

The instruction mix of the Comp partition, assuming that integer multiply and divide
operations are also available in the Comp subsystem, is shown in Figure 4-10. The graphs
shows that, except for ijpeg, all the benchmarks execute a negligible number of integer
multiply and divide operationsin the Comp subsystem. |jpeg has the maximum percentage
of multiplies at 2.77%. |jpeg aso has the maximum number of divides at 0.11%. For the
remaining benchmarks, the instruction mix is almost entirely composed of simple control,
logical, and arithmetic instructions. Note that this matches with the results of other studies
[HP96].

For ijpeg, we studied the performance effects of supporting integer multiply and divide
operations in the Comp subsystem. This has a dramatic effect on the basic partitioning
scheme. The Comp percentage increased from 11% to 40%. The speedups also increased
from 6% to 16% because in some frequently executed functions of ijpeg, the multiply
instructions are closely related to the rest of the instructions in the function. So, when the

multiply instructions are moved to the LdSt subsystem, all reachable instructions are also

136

$100 vz

\é 90 1] Integer divs
= 80 r 1E4 Integer muls
= n0r 1] Arithmetic
% 28 : [] Logical

g 20 | | Il Control

© 30r 1

2 207 :

g 10¢ 1

& 0 compress gcc go ijpeg li m88ksim perl

Figure4-10. Instruction mix of the Comp partition.

moved to the LdSt subsystem whictiestively moves the whole function to LdSt. He
ever, the change as not as madd with the adanced partitioning scheme becauseasw
able to recoup some of the computation that goteddo LdSt using copies. The Comp
partition size increased from 11% to 32%. The performance iraprent on the 4-ay
iIssue machine increased from 6% to 11%. Thisnvshthat the adwnced partitioning
scheme is successful in reducing the impact of the absencegdrimeltiply and diide

instructions in the Comp subsystem.

4.7 Related Work

The early Control Data Corporation and Cray Research style of architectures [Rus78,
Tho61] were the first to distinguish operand access and computation. One set of functional
units and rgisters is used for addressing and a second set is used for computation in these
architectures. Smith [Smi82] proposed the decoupled style of maclgarization in
which operand access and computation are separatesemdesl in parallel. The access
subsystem»ecutes memory access related instructions whilexbeuge subsystem sup-
ports compute instructions. The access axetwite subsystems communicate through
queues. This ganization style permits the access subsystem to slip ahead ckthaee
subsystem and hence, helps hide the Igtemenemory access. Experimentahkiation

showved considerable speedups for the floating-point programs studiekl aWng similar

137
lines is reported by Pleszkun andvidlson [PD83], Goodman et al. [GA85], and Bird

et al.[BRT93].

The decoupling concept has since been successfully implemented in a number of com-
mercial machines lithe IBM RS/6000 [Gro90] and the MIPS R8000 [Hsu94|vEler,
both these implementations only decouplegateand floating-point subsystems. While
this helps to decouple memory access and computation in floating-point prograges, inte

programs cannot benefit from decoupling in these implementations.

The work presented in this chaptettends earlier wrk in the area of decoupled archi-
tectures in tw important vays. First, the proposed igerdecoupled microarchitecture
applies the concept of decoupling to gee programs. Second, decoupling is used as a
technique todract additional performance for iiger codes from carentional microar-

chitectures without increasing their comyteg.

In the contgt of the compiler wrk presented, the most closely relateatknis done in
[CDN92]. In this paperthe authors study code partitioning for a VLIW architecture with
partitioned rgister files. Their architecture consists of a number of homogeneous clusters
each of which are statically scheduled. In contrast, thgentkecoupled microarchitec-
ture is heterogeneous; only the LdSt subsystem xecute loads and stores. Furthee
earlier study applied code partitioning only to straight-line loop bodies and did not con-

sider code duplication as a means\adiding interpartition communications.

4.8 Chapter Summary

Conventional microarchitectures $ef from idle floating-point resources whexeeut-
ing integer codes. This chapter proposed getalecoupled microarchitectures that
address this dvgback by supporting some of the non-addressing computation geinte
programs in an augmented floating-point subsystamirfteger programs, this pvales
extra issue andxecution bandwidth as well as prdes a lager windav for dynamic

scheduling without increasing the comytg of the cowentional microarchitecture. Fur-

138
thermore, the only change required to the haréws the implementation of simple inte-

ger operations in the floating-point subsystem.

The performance of the proposed microarchitectias @aluated relatie to a cowen-
tional microarchitecture. The results shtwo things. First, for the benchmarks studied,
the compiler is able to Bfoad a significant fraction, from 9% to 41%, of the total compu-
tation in intgger programs to the augmented floating-point subsystem. Second, as a result
the performance impvements in the 3% to 23% range were agkdeon a 4-\ay issue

processar

Hence, | belige that the intgerdecoupled microarchitecture is an attnaetthoice for
future processors especially considering that the remslwhanges required to adapt the

conventional microarchitecture are small.

139

Chapter 5

Conclusions

This thesis kamined the trade-bbetween hardare complgity and clock speed in the
design of superscalar microarchitectures. Using the results of the tfaa®abyfsis, the
thesis proposed andauated two nev superscalar microarchitectures designed with the

goal of achieing high performance by reducing comptg.

5.1 ThesisSummary

Superscalar microarchitectures yide high performance by using harahe techniques
to execute multiple instructionsvery g/cle. The performance of these microarchitectures
is directly proportional to the product —nstructions Per Cycle x Clock Freguency .
Instructions Per Cycle or IPC measures the amount of parallektracted by the
microarchitecture and Clock Frequgns the speed at which the microarchitecture can be
clocked. Complg hardware helps impnee the IPC &ctor by etracting higher leels of
instruction-level parallelism. Hwever, the complg hardware emplged to achiee high
IPC can potentially st@ the clock and hence, nullify the impements in IPC. Therefore,

there is a need for deloping microarchitectures that judiciously use hamsmcomplgity

140
for extracting higher leels of parallelism while permitting ast clock; that is, to delop

microarchitectures we refer to e@mplexity-effective microarchitectures.

To design microarchitectures that are comipjeeffective, computer architects need
simple models for measuring comyty that can be used at aifly early stage of the
design process. In addition to determining comipjeeffectiveness, such models help

identify long-term compbety trends.

The first part of this thesis presented simple models that quantifying the gtiynpfe
superscalar microarchitectures. A baseline superscalar pipeline is presented and structures
whose compbeity grows with increasing ILP are identified. Of these structuregstey
renaming, instruction winde wakeup, instruction windw selection, rgister file access,
and operand bypassing are analyzed in detail. Each is modeled and Spice simulated for
three diferent feature sizes representing past, present, and future technologies. Simple
analytical models are deloped thatxpress the delay of each of the structures in terms of
microarchitectural parametersdikssue width and instruction wingdaize. The impact of
technology trends is also studied. In particulae impact of poor scaling of wire delays in

future technologies is analyzed.

Results she that the logic associated with managing the issue wirafa superscalar
processor is likly to become the most critical structure as weertovards widetissue,
larger windavs, and adanced technologies in which wire delays dominate. One of the
functions implemented by the logic is the broadcast of results vagsvores that span the
instruction windav. This operation does not scale well especially as feature sizes are
reduced. Furthermore, in order to be ablextecate dependent instructions in conseeuti
cycles — a desirable feature from the point ofwiaf performance — the delay of the

window logic should be less than gote.

In addition to windw logic, a second structure that needs careful consideration in future

technologies is the data bypass logic. The length of result wires used to broadcast bypass

141
values increases linearly with issue width and hence, the delay of the data bypass logic

increases at least linearly with issue width. As a result, the data bypass delaycsig-gro
nificantly for wider microarchitectures in future technologies and force architects to con-

sider clustered microarchitectures.

To address the compigy of window logic and data bypass logic, anfily of comple-
ity-effective microarchitectures called the dependence-based superscalar microarchitec-
tures is proposed and studied. The proposed microarchitecturegeati@edual goals of
high IPC and adst clock using te main techniques. The machine is partitioned into mul-
tiple clusters each of which contains a slice of the instruction wiralod eecution
resources of the whole processhhis enables high-speed clocking of thewidlial clus-
ters since the namoissue width and the small instruction wimdo each clusterdeps
critical delays small. The second techniqueives intelligent steering of instructions to
the multiple clusters so that the whole width of the machine is utilized while minimizing
the performance dgadation due to sk intercluster communication. Experimental
results she that dependence-based superscalar microarchitectures are capablecof e
ing similar levels of parallelism as cwantional microarchitectures whiladilitating a

faster clock.

The third contrilntion of this thesis is the irderdecoupled microarchitecture. The inte-
gerdecoupled microarchitecture impes the performance of imgger programs and can
be intgrated into a carentional microarchitecture with little or no increase in coxiple
Floating-point units in the ceentional microarchitecture are augmented to perform sim-
ple integer operations and the resulting floating-point subsystem is used to support some
of the computation in ingger programs. The computation to b&loaded is identified by
the compiler Simulation results are presented thawxshwdest speedups for a &ypro-

cessorThe speedups diminish with increasing issue width.

142
5.2 Futuredirections

5.2.1 Quantifying the Complexity of Superscalar Microarchitectures

Analysis similar to that presented in this thesis can be applied to other structures in the
pipeline that are not studied heradrspecific gamples are the instruction fetch logic and
the load/store queue logic. The conxtie of the latter in particular has been problematic

[Yea97] for designers in industry

5.2.2 Dependence-based Superscalar Microar chitectures

The instruction steering heuristics studied in this thesis are simple in thaddheot
require more than onextea pipe stage. Onevenue for future research is the feasibility
and applicability of caching steering information. Caching steering information can help
move the steering logic out of the critical path. Thmwad open up the possibility of more
comple steering heuristics. Therefore, it might bertkwhile to study sophisticated
steering heuristics that can further boost the parallelistnacted by the dependence-

based microarchitectures.

The fifo steering heuristic studied in this thesis steers instructions solely basgtson re
ter dependences between instructions. It might be possible to augment the heuristic with
the memory-dependence prediction techniques proposed in [MBVS97] to help create
longer chains. & example, a load instruction can be steered to the fifo that contains an
earlier store instruction to the same address as the one referenced by the load. Note that at
the time of steering, the addresses referenced by the load and the store instruction are not
known. Memory-dependence prediction can be used to chain dependent load-store pairs

and steer them to the same fifo.

5.2.3 Integer-decoupled Microar chitecture

There is alvays scope for more research iveleping improed partitioning heuristics

that can dfload more computation to the augmented FP subsystem. Another possibility is

143
to study heuristics that not only try tof-¢dad sizable fraction of the total computation,

but also try to balance the load on the@tsubsystems.

An alternatve scheme for utilizing the idle floating-point subsystem in aeaional
microarchitecture, is to use the idle subsystemxecite along both paths of dly

mispredicted branches [HS96] in igex programs. Of course, thisould require etra
hardware support.

144

145
References

[ABHS89] M. C. August, GM. Brost, C.C. Hsiung, and AJ. Schifleger Cray x-mp: The
birth of a supercomputdiEEE Computer, 22:45-54, January 1989.

[ACR95]P. S. Ahuja, DW. Clark, and ARogers. The performance impact of incomplete
bypassing in processor pipelines.Rroceedings of the 28th Annual International
Symposium on Microarchitecture, November 1995.

[AMG *95] C. Asato, RMontoye, J.GmuenderE.W. Simmons, Alke, and JZasio. A
14-port 3.8ns 116-wrd 64b read-renaminggsster file. In1995 |EEE I nternational
Sold-Sate Circuits Conference Digest of Technical Papers, pages 104-105, Febru-
ary 1995.

[AS92] T. M. Austin and GS. Sohi. Dynamic dependgnanalysis of ordinary programs.
In Proceedings of the 19th Annual International Symposium on Computer Architec-
ture, pages 342-351, May 1992.

[Ass97]Semiconductomdustry Association. The national technology roadmap for semi-
conductors, 1997.

[AST67]D. W. Anderson, FJ. Sparacio, and R1. Tomasulo. The ibm system/360 model
91: Machine philosophand instruction-handlingBM Journal of Research and
Development, 11:8—-24, January 1967.

[ASUB8S8] A. V. Aho, R.Sethi, and JD. Uliman. Compilers : Principles, Techniques and
Tools. Addison Vsley, 1988.

[BAB96] D. Burger, T. M. Austin, and SBennett. Ewaluating future microprocessors: the
simplescalar tool set.ethnical Report CS-TR-96-1308 V@ilable from http://
www.cs.wisc.edu/trs.html), Umersity of Wisconsin-Madison, July 1996.

[Boh95] M. T. Bohr Interconnect scaling - the real limiter to high performance ulsi. In
1995 International Electron Devices Meeting Technical Digest, pages 241-244,
1995.

[BP92] M. Butler and YN. Patt. An irnvestigation of the performance oaxious dynamic
scheduling techniques. Proceedings of the 25th Annual International Symposium
on Microarchitecture, pages 1-9, December 1992.

146

[Bre] S.E. Breach. Design andi@uation of a multiscalar processBh.D. thesis in prep-
aration at Uniersity of Wisconsin—Madison.

[BRT93] P. L. Bird, A. Rawsthorne, and N2 Topham. The ééctiveness of decoupling. In
Proceedings of the 7th ACM International Conference on Supercomputing, pages
47-56, 1993.

[Buc62]W. Bucholtz.Planning a Computer System: Project Stretch. McGraw-Hill, 1962.

[CDN92] A. Capitanio, NDutt, and A.Nicolau. Rartitioned register files for VLIWs: A
preliminary analysis of tradest In Proceedings of the 25th Annual International
Symposium on Microarchitecture, pages 292—-300, December 1992.

[CH97]J.Crawnvford and JHuck. Motivations and design approach for avné4-bit
instruction set architecture, October 1997. 10th Annual Microprocessomi-San
Jose, California.

[Cha81]A. E. Charleswrth. An approach to scientific array processing: the architectural
design of the ap-120b/fps-16dnily. IEEE Computer, 14(9):18-27, 1981.

[Cha91]T. Chappell. A 2nsyxle, 4 ns access 512kb cmos ecl srami981 | EEE Interna-
tional Sold-State Circuits Conference Digest of Technical Papers, pages 50-51, Feb-
ruary 1991.

[Cha95]J.1. ChamdaniMicroarchitecture Techniques to Improve the Design of Supersca-
lar Microprocessors. PhD thesis, Gegra Institute of €chnology March 1995.

[CLL92] T. H. Cormen, CE. Leiserson, and R.Rivest. Introduction to Algorithms.
McGraw Hill, 1992.

[CNO*88] R. P. Colell, R.P. Nix, J.J. O’Donnell, D.B. Papworth, and PK. Rodman. A
vliw architecture for a trace scheduling compil&EE Transactions on Computers,
37:9667-979, August 1988.

[DF90] P. K. Dubey and M.J. Flynn. Optimal pipelininglournal of Parallel and Distrib-
uted Computing, 8:10-19, 1990.

[Dig96] Digital Equipment Corporatiolpha Architecture Handbook, Version 3, October
1996.

[DM74] J.B. Dennis and DR. Misunas. A preliminary architecture for a basic dataflo
computer In Proceedings of the 2nd Annual International Symposium on Computer
Architecture, pages 126-132, 1974.

147

[D*74] R. Dennard etl. Design of ion-implanted mosfets witary small plysical dimen-
sions.|EEE Journal of Solid-Sate Circuits, SC-9:256—-268, 1974.

[D*92] D. Dobberpuhl etil. A 200-mhz 64-bit dual-issue microprocesHeEE Journal of
Solid-Sate Circuits, 27(11), Neember 1992.

[ElI85] J.R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press, Cam-
bridge, Massachussets, 1985.

[FCIVI7]K. I. Farkas, PChaw, N. P. Jouppi, and ZVranesic. The multicluster architec-
ture: Reducing ycle time through partitioning. IRroceedings of the 30th Annual
International Symposium on Microarchitecture, pages 149-159, December 1997.

[Fis81]J. A. Fisher Trace scheduling: a technique for global microcode compatE&i
Transactions on Computers, C-30(7), July 1981.

[FIC96]K. I. Farkas, NP. Jouppi, and .Chow. Reagister file design considerations in
dynamically scheduled processors Pioceedings of the Second IEEE Symposium
on High-Performance Computer Architecture, February 1996.

[FID80]S. Fuller, A. Jones, and Durham. CMU Cm* rgiew. Technical Report AD-
A050135, Department of Computer Science , Ggimdlellon Uniersity, 1980.

[Fra93]M. Franklin. The Multiscalar Architecture. PhD thesis, Unersity of Wsconsin—
Madison, Neember 1993.

[FS92]M. Franklin and GS. Sohi. Thexgpandable split winde paradigm for eploiting
fine-grain parallelism. IfProceedings of the 19th Annual International Symposium
on Computer Architecture, pages 58-69, May 1992.

[GHL*85]J.R. Goodman, JI. Hsieh, K.Liou, A. R. Plezkun, FB. Schechtgrand H.C.
Young. Pipe: A visi decoupled architecturePhoceedings of the 12th Annual Inter-
national Symposium on Computer Architecture, pages 20-27, 1985.

[Gro90] G. F. Grohoski. Machine ganization of the IBM RISC system/6000 processor
IBM Journal of Research and Development, 34(1):37-58, January 1990.

[GT97]B. A. Giesele etal. A 600mhz superscalar risc microprocessor with out-of-order
execution. In1997 |IEEE International Sold-Sate Circuits Conference Digest of
Technical Papers, pages 176-177, February 1997.

[Gwe93]L. Gwennap. Speed kills? not for risc procesddisroprocessor Report, 7(3):3,
March 1993.

148

[Gwe95a]L. Gwennap. Hal neeals multichip sparc processdiicroprocessor Report,
9(3), March 1995.

[Gwe95b]L. Gwennap. Inte§ p6 uses decoupled superscalar dedigjroprocessor
Report, 9(2), February 1995.

[Gwe95c]L. Gwennap. Ultrasparc adds multimedia instructidvisroprocessor Report,
8(16), December 1995.

[Gwe96a]L. Gwennap. Digital 21264 sets westandard. Microprocessor Report,
10(14):11-16, October 1996.

[Gwe96b]L. Gwennap. Inte§ mmx speeds multimedidicroprocessor Report, 10(3),
March 1996.

[HF88]I. S. Hwang and AL. Fisher A 3.1ns 32b cmos adder in multiple output domino
logic. In 1988 IEEE International Sold-Sate Circuits Conference Digest of Techni-
cal Papers, pages 140-141, February 1988.

[Hin95] G. Hinton. Pentium pro processdecember 1995.uforial talk at 28th Annual
International Symposium on Microarchitecture.

[HP86]W. W. Hwu and YN. Patt. Hpsm, a high performance restricted data 8chitec-
ture haing minimal functionality In Proceedings of the 13th Annual International
Symposium on Computer Architecture, pages 297-307, June 1986.

[HP96]J.L. Hennessy and DA. Patterson.Computer Architecture. A Quantitative
Approach. Morgan Kaufmann, second edition, 1996.

[HPS92]M. Horowitz, S.Przybylski, and MD. Smith. Recent trends in processor design:
Reclimbing the compiaty curve, August 1992. Otorial talk at Véstern Institute of
Computer Science, Stanford Wersity.

[HS96] T. H. Heil and JE. Smith. Selectie dual pathxecution. Unpublished, Uwersity
of Wisconsin-Madison, Neember 1996.

[Hsu94]P Y. T. Hsu. Design of the r8000 microproces$BEE Micro, pages 23—-33, April
1994,

[1795] Inoue etal. A 0.4um 1.4ns 32b dynamic adder using non-preehamultiplexers
and reduced preclge \ltage techniques. 16995 Symposium on VLS Circuits
Digest of Technical Papers, pages 9—-10, June 1995.

[JJ90]IM. G. Johnson and NP. Jouppi. Tansistor model for a synthetic 0.8um cmos pro-
cess, May 1990. Class notes for Stanfordvesity EE371.

149
[Joh91]M. JohnsonSuperscalar Microprocessor Design. Prentice-Hall, 1991.

[JOI91]R. D. Jolly. A 9-ns, 1.4-gigbyte/s, 17-ported cmosgister file.IEEE Journal of
Solid-Sate Circuits, 26(10), October 1991.

[JW89]N. P. Jouppi and DW. Wall. Available instruction-eel parallelism for superscalar
and superpipelined machines.Rroceedings of the Third International Conference
on Architectural Support for Programming Languages and Operating Systems,
April 1989.

[Kel96]J.Keller. The 21264: A superscalar alpha processor with out-of-oxgeugon,
October 1996. 9th Annual Microprocessarim, San Jose, California.

[KF96] G. A. Kemp and MFranklin. P&s: A decentralized dynamic scheduler for ilp
processing. IiProceedings of the International Conference on Parallel Processing,
volumel, pages 239-246, 1996.

[KH92] G. Kane and JHeinrich.MIPS RISC Architecture. Prentice Hall, 1992.

[KM89] L. Kohn and NMargulis. Introducing the intel i860 64-bit microprocessor
|EEE Micro, pages 15-30, August 1989.

[Kog81]P. M. Kogge.The Architecture of Pipelined Computers. McGraw-Hill, 1981.

[KS86] S.R. Kunkel and JE. Smith. Optimal pipelining in supercomputers Phoceed-
ings of the 13th Annual International Symposium on Computer Architecture, June
1986.

[K93] P. Knebel etal. Hp’'s pa7100Ic: A le-cost superscalar pa-risc processoiPro-
ceedings of COMPCON, pages 441-448, 1993.

[Kum96]A. Kumar The hp-pa8000 risc cpu: A high performance out-of-order processor
In Proceedings of the Hot Chips VIII, pages 9—20, August 1996.

[LW92] M. S. Lam and RR. Wilson. Limits of control flav on parallelism. IriProceedings
of the 19th Annual International Symposium on Computer Architecture, pages 46—
57, May 1992.

[Mat97] D. Matzke. Will physical scalability sabotage performaneéng.|EEE Computer,
30(9):37-39, 1997.

[MBVS97] A. Moshovos, SE. Breach, TN. Vijaykumar and G.S. Sohi. Dynamic specu-
lation and synchronization of data dependenceBrdneedings of the 24th Annual
International Symposium on Computer Architecture, pages 181-193, June 1997.

150

[McF93] S. McFarling. Combining branch predictorsedhnical Report DEC WRLeEEh-
nical Note TN-36, DEC \&ktern Research Laboratphp93.

[Met87] Meta-Softvare Inc.HSpice Uses Manua) June 1987.

[MF95] G. McFarland and MFlynn. Limits of scaling mosfets.e€hnical Report CSL-
TR-95-662 (Reised), Stanford Unersity, November 1995.

[NH97] K. Nowka and HP. Hofstee. Circuits and microarchitecture for ajigrtz visi
designs. InProceedings of the 17th Condeice on Advanced Researin VLS|
pages 284-287, September 1997.

[Now95] K. Nowka. High-Performance CMOS System Design Usingv®V/Pipelining
PhD thesis, Stanford Urersity, August 1995.

[PD83]A. R. Pleszkun and ES. Davidson. Structured memory access architecture. In
Proceedings of the International Cordece on Rrallel Processing pages 461—
471, 1983.

[PS81]D. A. Patterson and GH. Sequin. Risc i: A reduced instruction set visi computer
In Proceedings of the 8th Annual International Symposium on Compudeitesr
ture, May 1981.

[Rab96]J.M. Rabag. Digital Integrated Circuits - A Design &spective Prentice Hall
Electronics and VLSI Series, 1996.

[RBS96]E. Rotenbeg, S.Bennet, and E. Smith. Tace cache: a¥wlateny approach to
high bandwidth instruction fetching. IRroccedings of the 29th Annual Interna-
tional Symposium on Mioarchitecture, December 1996.

[RF72]E. M. Riseman and CC. Foster The inhibition of potential parallelism by condi-
tional jumps.IEEE Transactions on ComputgrC-21(12):1405-1411, December
1972.

[RISS97E. Rotenbeg, Q.Jacobson, (Bazeides, and E. Smith. Tace processors. In
Proceedings of the 30th Annual International Symposium onohfiritectuse,
pages 138-148, December 1997.

[RNOM95] K. Rahmat, OS. Nakagwa, S-Y Oh, and JMoll. A scaling scheme for inter-
connect in deep-submicron processexhhical Report HPL-95-77, Meett-Pack-
ard Laboratories, July 1995.

[Rus78]R.M. Russell. The cray-1 computer syste@ommunications of the GM,
21(1):63-72, January 1978.

151

[RYYT89] B.R. Rau, DW. L. Yen, WYen, and RTowle. The gdra 5 departmental
supercomputer: Design philosophies, decisions, and tréslelBEE Computer,
22:12-35, January 1989.

[SBV95] G. S. Sohi, SE. Breach, and.N. Vijaykumar Multiscalar processors. Pro-
ceedings of the 22nd Annual International Symposium on Computer Architecture,
pages 414-425, June 1995.

[Sch71]H. Schorr Design principles for a high-performance systemSymposium on
Computers and Automata, Polytechnic Institute of Brooklyn, pages 165-192, 1971.

[SDC95]S.P. Song, MDenman, and hang. The peerpc 604 risc microprocessdn
|EEE Micro, pages 8-17, October 1995.

[SF91]G. S. Sohi and MFranklin. High-bandwidth data memory systems for superscalar
processors. liProceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 53-62, April
1991.

[Smi82]J.E. Smith. Decoupled accesséeute computer architecture. Pnoceedings of
the 9th Annual International Symposium on Computer Architecture, pages 112-119,
April 1982.

[Smi95]J.E. Smith. Nev paradigms for instructionvel parallelism, October 1995alk
prepared at Umersity of Wsconsin—Madison.

[Smi97]J.E. Smith. AmdahB lav: Not just an equation, June 199&yKote speech at the
24th Annual International Symposium on Computer Architecture.

[Soh90]G. S. Sohi. Instruction issue logic for high-performance, interruptible, multiple
functional units, pipelined computeds&EE Transactions on Computers, 39:349—
359, March 1990.

[SP88]J.E. Smith and AR. Pleszkun. Implementing precise interrupts in pipelined pro-
cessorslEEE Transactions on Computers, 37:562-573, May 1988.

[SPS97]S. Sastry S.Palacharla, and E. Smith. Exploiting idle floating-point resources
for integer execution. Submitted for véew to PLDI '98, November 1997.

[SS90]J.E. Smith and GS. Sohi. Studies in program characteristics and architectural
choices for high-performance, fine-grain parallel processors, 1990. Grant proposal
prepared at the Uversity of Wisconsin—Madison.

[SS95]J.E. Smith and GS. Sohi. The microarchitecture of superscalar proced3ars.
ceedings of the IEEE, December 1995.

152

[S*87] J.E. Smith etal. The zs-1 central processiorProceedings of the 2nd Inter national
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 199-204, October 1987.

[ST91] H. Shinohara eal. A flexible multiport ram compiler for data patiEEE Journal of
Solid-Sate Circuits, 26(3), March 1991.

[ST93] M. Suzuki etal. A 1.4ns 32b cmos alu in double pass-transistor IGgEE Journal
of Solid-Sate Circuits, 28(11), Neember 1993.

[TF70]G.S. Tjaden and MJ. Flynn. Detection and parallexexzution of independent
instructionsEEE Transactions on Computers, C-19:889-895, October 1970.

[Tho61]J.E. Thornton. Rrallel operation in the control data 6600 Phoceedings of the
Fall Joint Computers Conference, volume26, pages 33-40, 1961.

[Tho63]J.E. Thornton. Considerations in computer design — leading up to the control data
6600, 1963. Contol Data Chippa Laboratory Report.

[Tom67]R. M. Tomasulo. An dicient algorithm for gploiting multiple arithmetic units.
IBM Journal of Research and Development, 11:25-33, January 1967.

. M. Tullsen efal. Exploiting choice: Instruction fetch and issue on an implement-

[TT96]D. M. Tull l. Exploiti hoice: | ion fetch and i impl
able simultaneous multithreading procesdarProceedings of the 23rd Annual
International Symposium on Computer Architecture, pages 191-202, May 1996.

[Unk79] Unknawn. Cray-2 central processdi979. Unpublished Cray Research Report.

[VM97] S.Vajapgzam and TMitra. Improving superscalar instruction dispatch and issue
by exploiting dynamic code sequences.Aroceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, pages 1-12, June 1997.

[V*96] N. Vassghi etal. 200 mhz superscalar risc processor circuit design issuk39an
IEEE International Sold-Sate Circuits Conference Digest of Technical Papers,
pages 356-357, February 1996.

[WE93] N. Weste and KEshraghianPrinciples of CMOSVLS Design. Addison Vésley,
second edition, 1993.

[Wei84]Mark Weiser Program slicing.lEEE Transactions on Software Engineering,
10(4):352-357, July 1984.

153

[Wil51] M. V. Wilkes. The best ay to design an automatic calculating machine?rim
ceedings of the Manchester University Computer Inaugural Conference, pages 16—
18, July 1951.

[Wil95] N. C. Wilhelm. Why wire delays will no longer scale for visi chipsechnical
Report SMLI TR-95-44, Sun Microsystems Laboratories, August 1995.

[WJ94]S.J.E. Wilton and N.P. Jouppi. An enhanced access aydetime model for on-
chip caches. dchnical Report 93/5, DEC &8tern Research Laboratpdyly 1994.

[WRP92]T. Wada, SRajan, and SA. Przybylski. An analytical access time model for on-
chip cache memoriedEEE Journal of Solid-Sate Circuits, 27(8):1147-1156,
August 1992.

[Yea96]K. C. Yeager Mips r10000 superscalar microprocesdarlEEE Micro, April
1996.

[Yea97]K. C. Yeagey October 1997. Personal Communication.

[YPO2]T.Y. Yeh and YN. Patt. Alternate implementations of dAlevel adaptie training
branch prediction. IfProceedings of the 19th Annual International Symposium on
Computer Architecture, pages 124-134, May 1992.

154

Appendix A

A.1 Technology Parameters

155

The Hspice Level 3 models used to simulate the synthetic 0.8um, 0.35um, and 0.18um

CMOS technologies are givenin Table A.1..

Parameter 0.8um 0.35um 0.18um

tox 165 70 35
vto 0.77(-0.87) 0.67(-0.77) 0.55(-0.55)
uo 570(145) 535(122) 450(80)
gamma 0.8(0.73) 0.53(0.42) 0.40(0.32)
vimax 2.7e5(0.0) 1.8e5(0.0) 1.05e5(0.0)
theta 0.404(0.233) 0.404(0.233) 0.404(0.233)
eta 0.04(0.028) 0.024(0.018) 0.008(0.008)
kappa 1.2(0.04) 1.2(0.04) 1.2(0.04)
phi 0.90 0.90 0.90
nsub 8.8e16(9.0e16) | 1.38el7(1.38el7) 4.07e17(4.07el7)
nfs 4ell 4ell 4ell
X 0.2u 0.2u 0.2u
Cj 2e-4(5e-4) 5.4e-4(9.3e-4) 10.6e-4(21.3e-4)
mj 0.389(0.420) 0.389(0.420) 0.389(0.420)
Cjsw 4e-10 1.5e-10 3.0e-11
mjsw 0.26(0.31) 0.26(0.31) 0.26(0.31)
pb 0.80 0.80 0.80
Cgso 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)
cgdo 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)
delta 0.0 0.0 0.0
Id 0.0001p 0.0001p 0.0001p
rsh 0.5 0.5 0.5
Vdd 5.0 25 2.0

Table A.1: Spice parameters.

156
Table A.2 gives the metal resistance and capacitance values assumed for the three tech-

nologies.
Rietal Cretal
Technology (Q/pm) (FF/um)
0.8um 0.02 0.275
0.35um 0.046 0.628
0.18um 0.09 1.22

Table A.2: Meta resistance and capacitance.

A.2 Delay Results

Issue | Decoder | WordlineDrive Bitline Sense Amp Total
Width | Delay (ps) Delay(ps) Delay(ps) | Delay(ps) Delay(ps)
0.8um technology
2 540.3 218.9 188.5 309.7 1502.2
4 547.1 227.9 2121 3175 1566.9
8 562.5 245.8 259.1 335.1 1700.9
0.35um technology
220.2 95.6 98.6 137.9 649.4
4 225.8 103.9 116.2 143.0 698.5
8 243.1 115.8 151.7 1514 800.8
0.18um technology
129.6 70.6 72.9 102.8 435.4
4 136.8 78.2 87.6 105.8 478.9
1484 92.5 117.8 110.7 561.7

Table A.3: Break down of rename delay.

Window | TagDrive | TagMatch | Match OR Total
Size | Delay(ps) | Delay(ps) | Delay(ps) | Delay(ps)
Issue Width = 2
8 73.0 331.3 248.1 652.4
16 82.6 333.1 248.5 664.2
24 92.6 337.3 248.8 678.7
32 103.7 344.0 249.1 696.9
40 114.9 347.7 248.9 711.5
48 126.3 352.4 248.7 7275
56 137.4 358.7 249.2 745.4
64 149.1 364.6 248.7 762.4
Issue Width = 4
8 74.5 368.2 407.0 849.7
16 86.4 3724 406.8 865.6
24 98.8 377.6 403.9 880.3
32 112.3 384.8 409.2 906.2
40 126.2 392.3 408.7 927.2
48 140.6 400.1 404.2 944.9
56 156.3 409.0 404.1 969.4
64 172.4 416.9 403.3 992.7
Issue Width = 8
8 775 400.2 665.3 1143.0
16 93.3 406.6 665.7 1165.5
24 1114 415.2 664.8 11914
32 130.7 425.2 658.5 1214.4
40 151.5 437.7 660.2 1249.5
48 174.4 451.0 658.3 1283.8
56 199.3 465.0 664.6 1328.9
64 228.2 479.2 664.6 1372.0

Table A.4: Break down of window wakeup delay for 0.8um technology.

157

158

Window | TagDrive | TagMatch | Match OR Total
Size | Delay(ps) | Delay(ps) | Delay(ps) | Delay(ps)
Issue Width = 2
8 28.5 126.1 101.3 255.8
16 334 128.7 101.5 263.7
24 38.3 129.1 101.2 268.6
32 43.7 133.2 97.3 274.1
40 49.7 136.3 101.2 287.3
48 53.1 138.8 97.4 289.3
56 58.9 142.7 101.1 302.8
64 64.4 145.0 98.9 308.3
Issue Width = 4
8 29.7 147.1 155.8 332.6
16 36.0 151.2 158.3 345.4
24 42.7 155.0 159.1 356.8
32 50.5 157.7 158.4 366.7
40 56.3 163.2 159.0 378.5
48 63.2 168.1 159.6 390.9
56 72.0 171.9 157.0 400.9
64 80.9 179.0 159.1 419.0
Issue Width = 8
8 32.2 1734 257.6 463.2
16 41.6 177.5 257.8 476.9
24 511 183.7 257.8 492.5
32 61.9 190.6 257.7 510.1
40 74.7 199.1 257.7 531.5
48 88.8 208.9 257.6 555.3
56 102.9 216.4 258.4 577.7
64 121.8 224.8 258.4 605.0

Table A.5: Break down of window wakeup delay for 0.35um technology.

Window | TagDrive | TagMatch | Match OR Total
Size | Delay(ps) | Delay(ps) | Delay(ps) | Delay(ps)
Issue Width = 2
8 14.6 67.9 60.7 143.1
16 18.8 68.7 60.6 148.1
24 224 69.8 60.6 152.7
32 26.1 71.8 60.6 152.7
40 29.9 73.6 60.3 163.8
48 33.7 75.7 59.9 169.3
56 36.6 77.3 61.0 174.8
64 41.4 794 59.7 180.5
Issue Width = 4
8 15.8 84.1 84.7 184.7
16 21.1 85.1 84.4 190.6
24 26.1 87.6 84.8 198.5
32 31.2 90.8 84.3 206.3
40 36.6 93.3 84.8 214.7
48 41.7 96.5 84.4 2225
56 47.5 99.4 84.8 231.8
64 54.1 102.8 84.4 241.3
Issue Width = 8
8 18.8 104.9 123.6 247.3
16 26.1 108.4 123.8 258.3
24 33.8 113.6 123.1 270.5
32 42.0 118.2 125.0 285.1
40 51.5 124.8 123.2 299.5
48 62.6 130.4 123.0 316.0
56 75.1 135.2 123.2 3334
64 90.0 139.4 1229 352.3

Table A.6: Break down of window wakeup delay for 0.18um technology.

159

160

WIS? Sgw Tregpropd(PS) Troot(PS) Tgrantpropd(PS) D ; g;/?lps)
0.8um technology
16 233.2 607.2 2725 1113.0
32 532.5 737.6 7274 1997.5
64 534.6 742.9 719.8 1997.4
128 802.8 753.4 1118.5 2674.6
0.35um technology
16 125.0 338.5 1354 598.9
32 246.6 339.7 2954 881.7
64 2455 338.0 296.3 879.8
128 347.9 338.5 460.3 1146.7
0.18um technology
16 53.6 141.7 55.1 2504
32 107.0 141.2 1235 371.7
64 106.9 144.2 1219 373.0
128 159.9 146.7 1955 502.1

Table A.7: Break down of selection delay.

161

I ssue Wi r_ldow R_egi ster Rename | Window Relgiilseter Bsgtais
Width Size File Size | Delay(ps) | Delay(ps) Delay(ps) | Delay(ps)
2 16 48 137457 | 1777.20 1902.05 233.15
4 32 80 1417.25 | 2903.70 2222.10 411.12
8 64 120 1489.91 3369.4 2715.71 836.79

Table A.8: Overall delay results for 0.8um technol ogy.

I ssue Wi ndow Regi ster Rename | Window Relgilséter BSSIaZs
Width Size File Size | Delay(ps) | Delay(ps) Delay(ps) | Delay(ps)
2 16 48 524.76 862.60 724.43 110.45
4 32 80 554.08 1248.40 873.21 223.79
8 64 120 603.59 1484.80 1155.45 486.50

Table A.9: Overall delay results for 0.35um technol ogy.

I ssue Wi ndow Regi ster Rename | Window Relgiilzter Bssta;
Width Size File Size | Delay(ps) | Delay(ps) Delay(ps) | Delay(ps)
2 16 48 285.43 398.50 393.43 91.00
4 32 80 311.55 578.00 498.29 177.58
8 64 120 355.62 725.30 729.40 421.42

Table A.10: Overal delay results for 0.18um technology.

162

163

Appendix B

The constants in the delay equations presented in Chapter 2 alegetdlbela. The
table entries contain both absolute and nedaimlues of the constants. The relatialues

are presented to slvdhov each componerst’contritution varies with feature size.

The delays computed using the analytical models are matyslclose to the Spice
delays. The dferences arise due to a number of reasons. First, the simple RC analysis
malkes a number of approximations and simplifications that cawvsgtida from the Spice
result. Second, the simple delay equations used here do edtalccount the slopes of
input signals. Third, we could not find reliable delay models for quantifying the delay of
dynamic @tes. Since it is lyend the scope of the thesis, no attemas wade to delop
advanced delay models tailored for this stubiypwever, the constants presented lvelo
help establish dependence relationships and identify components that will become

increasingly important in future.

B.1 Window wakeup logic

Tag drivetime

Tiagarive = o+ (C1 + € X IW) X WINSIZE + (€5 + €, X IW + Cg X W?) x WINSIZE?
Feature Co Cq Co C3 Cy Cs
Size (ps) (ps) (ps) (ps) (ps) (ps)

0.8um 26.28 0.92 0.14 4.42e-3 | 2.21e-3 | 0.18e-3
(12.00) (35.1e-3) | (5.2e-3) | (1.7e-4) | (8.4e-5) | (6.7e-6)

0.35um 10.43 0.43 0.09 3.04e-3 | 1.87e-3 | 0.18e-3
(2.00) (41.2e-3) | (8.2e-3) | (2.9e-4) | (17.9e-5)| (16.9e-6)

0.181m 5.56 0.26 0.06 2.41e-3 | 1.56e-3 | 0.18e-3
(1.00) | (47.3e-3)| (11.3e-3)| (4.3e-4) | (28.0e-5)| (32.4e-6)

Table B.1: Constants for tag dre delay equation.

164
Tag match time

Ttagmatch =G + Cy X W+ Gy % |W2
Feature Co C1 C2
Size (ps) (ps) (ps)
0.8um 213.68 8.00 4.85e-3
(1.00) (37.45e-3) | (22.69e-6)
0.35um 87.91 5.05 4.85e-3
(1.00) (57.44e-3) | (55.17e-6)
0.18um 48.51 3.69 4.85e-3
(1.00) (76.06e-3) | (99.98e-6)

Table B.2: Constants for tag match delay equation.

Match OR time

TmatchOR = C0 + Cl x W

Feature Co C

Size (ps) (ps)
0.8um 60.00 70.00
0.35um 26.25 30.62
0.18um 13.63 15.75

Table B.3: Constants for match OR delay equation.

Total delay

165

Delay = (cy+cyxIW+c,x W)
+ (Ca+cyx W) x WINSIZE
2 2
+ (Cg+Ce X W+, x W) x WINSIZE
Feature Co C1 Co C3 Ca Cs
Size (ps) (ps) (ps) (ps) (ps) (ps)
0.8um 299.96 78.00 4.85e-3 0.92 0.14 4.42e-3
(1.00) (0.26) | (1.61e-5) | (3.06e-3) | (0.47e-3) | (0.15e-4)
0.35um 124.59 35.67 4.85e-3 0.43 0.09 3.04e-3
(1.00) (0.29) | (3.89e-5) | (3.45e-3) | (0.72e-3) | (0.24e-4)
0.18um 67.70 19.44 4.85e-3 0.26 0.06 2.41e3
(1.00) (0.29) | (7.16e-5) | (3.84e-3) | (0.88e-3) | (0.35e-4)
. C6 C7
Feature Size
(ps) (ps)
0.8um 2.21e-3 0.18e-3
(7.36e-6) (0.60e-6)
0.35um 1.87e-3 0.18e-3
(1.50e-5) (1.44e-6)
0.18um 1.56e-3 0.18e-3
(2.30e-3) (2.65€-6)

Table B.4: Constants for total delay equation.

166
B.2 Databypasslogic

Thypass = Cot Cy X IW+Cy ¥ e
Feature Co C1 G
Size (ps) (ps) (ps)
0.8um 26.28 36.96 8.91
(1.00) (1.41) (0.34)
0.35um 10.43 23.28 8.91
(1.00) (2.23) (0.85)
0.18um 5.56 16.99 8.91
(1.00) (3.06) (1.60)

Table B.5: Constants for data bypass delay equation.

